1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
|
-------------------------------------------------------------------------------
-- (C) Altran Praxis Limited
-------------------------------------------------------------------------------
--
-- The SPARK toolset is free software; you can redistribute it and/or modify it
-- under terms of the GNU General Public License as published by the Free
-- Software Foundation; either version 3, or (at your option) any later
-- version. The SPARK toolset is distributed in the hope that it will be
-- useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
-- Public License for more details. You should have received a copy of the GNU
-- General Public License distributed with the SPARK toolset; see file
-- COPYING3. If not, go to http://www.gnu.org/licenses for a complete copy of
-- the license.
--
--=============================================================================
package body Maths is
type Division_Result_Type is record
Quotient, Remnant : Part;
end record;
--------------------------------------------------------------------------
-- Local Procedures
--------------------------------------------------------------------------
--------------------------------------------------------------------------
-- Low-level conversions and utilities
--------------------------------------------------------------------------
--------------------------------------------------------------------------
-- Converts extended Character to digit
-- only works for '0'..'9' and 'A'..'F'. ParseString will ensure that
-- no other values will be passed to it.
function CharToDigit (Ch : Character) return Digit
-- # pre ((Ch >= '0') and (Ch <= '9')) or ((Ch >= 'A') and (Ch <= 'F'));
is
Valu : Digit;
begin
if Ch in '0' .. '9' then
Valu := (Character'Pos (Ch) - Character'Pos ('0'));
else
Valu := ((Character'Pos (Ch) - Character'Pos ('A')) + 10);
end if;
return Valu;
end CharToDigit;
--------------------------------------------------------------------------
-- Converts digit (Integer subtype 0..15) to extended Character
function DigitToChar (Dig : Digit) return Character is
Ch : Character;
begin
if Dig <= 9 then
Ch := Character'Val (Dig + Character'Pos ('0'));
else
Ch := Character'Val ((Dig + Character'Pos ('A')) - 10);
end if;
return Ch;
end DigitToChar;
--------------------------------------------------------------------------
-- Returns Larger of 2 Naturals
function Max (X, Y : Natural) return Natural is
Larger : Natural;
begin
if X > Y then
Larger := X;
else
Larger := Y;
end if;
return Larger;
end Max;
--------------------------------------------------------------------------
-- final check of value overflow or underflow before returning Value
-- to caller from one of the exported procedures below. Any existing
-- error is preserved ie. overflow will only be reported if an earlier
-- error is not detected.
function OverflowCheck (ExistingError : ErrorCode;
Num : Value) return ErrorCode is
Result : ErrorCode;
begin
if ExistingError = NoError and then (Num.Numerator.Overflowed or Num.Denominator.Overflowed) then
Result := OverFlow;
else
Result := ExistingError;
end if;
return Result;
end OverflowCheck;
--------------------------------------------------------------------------
-- Low-level manipulation of part-Value arrays
function StripLeadingZeros (P : Part) return Part is
PLocal : Part;
begin
PLocal := P;
while (PLocal.Length > 1) and then (PLocal.Numerals (PLocal.Length) = 0) loop
PLocal.Length := PLocal.Length - 1;
end loop;
return PLocal;
end StripLeadingZeros;
--------------------------------------------------------------------------
-- Multiplies Value part by 10
function ShiftUpPart (P : Part) return Part is
PLocal : Part;
begin
PLocal := P;
if PLocal.Length = MaxLength then ----------can't shift it without overflow
PLocal.Overflowed := True;
else ----------room to shift
for i in reverse PosRange range 1 .. PLocal.Length loop
PLocal.Numerals (i + 1) := PLocal.Numerals (i);
end loop;
PLocal.Numerals (1) := 0;
PLocal.Length := P.Length + 1;
PLocal := StripLeadingZeros (PLocal); --in case we have just turned 0 into 00
end if;
return PLocal;
end ShiftUpPart;
--------------------------------------------------------------------------
-- Divides Value Part by 10
function ShiftDownPart (P : Part) return Part is
PLocal : Part;
begin
PLocal := P;
if PLocal.Length = 1 then
PLocal.Numerals (1) := 0;
else
for i in PosRange range 2 .. PLocal.Length loop
PLocal.Numerals (i - 1) := PLocal.Numerals (i);
end loop;
PLocal.Numerals (PLocal.Length) := 0;
PLocal.Length := PLocal.Length - 1;
end if;
return PLocal;
end ShiftDownPart;
--------------------------------------------------------------------------
-- Basic arithmetic on Part Values
--------------------------------------------------------------------------
-- Symbolically adds two Part Values together
function AddPart (FirstPart, SecondPart : Part) return Part is
Length : PosRange;
Carry, IntermediateValue : Natural;
Result : Part;
begin
Carry := 0;
Result := ZeroPart;
Result.Overflowed := FirstPart.Overflowed or SecondPart.Overflowed; -- propagate error
Length := Max (FirstPart.Length, SecondPart.Length);
for i in PosRange range 1 .. Length loop
IntermediateValue := (Natural (FirstPart.Numerals (i)) + Natural (SecondPart.Numerals (i))) + Carry;
if IntermediateValue >= 10 then
IntermediateValue := IntermediateValue - 10;
Carry := 1;
else
Carry := 0;
end if;
Result.Numerals (i) := Digit (IntermediateValue);
end loop;
if Carry /= 0 then
if Length = MaxLength then -- can't carry without overflow
Result.Overflowed := True;
else -- ok to extend Value
Length := Length + 1;
Result.Numerals (Length) := 1;
end if;
end if;
Result.Length := Length;
return Result;
end AddPart;
--------------------------------------------------------------------------
-- Symbolically subtracts Part Values
-- WARNING second parameter must be <= first before the call
function SubtractPart (Larger, Smaller : Part) return Part is
Length : PosRange;
Borrow : Natural;
IntermediateValue : Integer;
Result : Part;
begin
Borrow := 0;
Result := ZeroPart;
Result.Overflowed := Larger.Overflowed or Smaller.Overflowed; -- propagate error
Length := Max (Larger.Length, Smaller.Length);
Result.Length := Length;
for i in PosRange range 1 .. Length loop
IntermediateValue := (Natural (Larger.Numerals (i)) - Natural (Smaller.Numerals (i))) - Borrow;
if IntermediateValue < 0 then
IntermediateValue := IntermediateValue + 10;
Borrow := 1;
else
Borrow := 0;
end if;
Result.Numerals (i) := Digit (IntermediateValue);
end loop;
return StripLeadingZeros (Result);
end SubtractPart;
--------------------------------------------------------------------------
-- NB. These Parts are considered unsigned
function GreaterPart (FirstPart, SecondPart : Part) return Boolean is
IsGreater : Boolean;
i : LengthRange;
begin
if FirstPart.Length = SecondPart.Length then
IsGreater := False;
i := FirstPart.Length;
loop
if FirstPart.Numerals (i) /= SecondPart.Numerals (i) then
IsGreater := FirstPart.Numerals (i) > SecondPart.Numerals (i);
exit;
end if;
exit when i = 1;
i := i - 1;
end loop;
else
IsGreater := FirstPart.Length > SecondPart.Length;
end if;
return IsGreater;
end GreaterPart;
--------------------------------------------------------------------------
-- NB. These Parts are considered unsigned
function LesserPart (FirstPart, SecondPart : Part) return Boolean is
IsLesser : Boolean;
i : LengthRange;
begin
if FirstPart.Length = SecondPart.Length then
IsLesser := False;
i := FirstPart.Length;
loop
if FirstPart.Numerals (i) /= SecondPart.Numerals (i) then
IsLesser := FirstPart.Numerals (i) < SecondPart.Numerals (i);
exit;
end if;
exit when i = 1;
i := i - 1;
end loop;
else
IsLesser := FirstPart.Length < SecondPart.Length;
end if;
return IsLesser;
end LesserPart;
--------------------------------------------------------------------------
-- Multiplies a Part Value by a single digit (range 0..15).
-- Used in conversion of based literal to a Value and as Part of the
-- Value multiply routines
function SingleDigitMult (P : Part;
D : Digit) return Part is
Carry, IntermediateValue : Natural;
Result : Part;
begin
Carry := 0;
Result := ZeroPart;
Result.Overflowed := P.Overflowed; --propagate error
Result.Length := P.Length;
for i in PosRange range 1 .. P.Length loop
IntermediateValue := Natural (P.Numerals (i)) * Natural (D) + Carry;
Result.Numerals (i) := Digit (IntermediateValue mod 10);
Carry := IntermediateValue / 10;
end loop;
while Carry /= 0 loop
if Result.Length = MaxLength then -- can't carry without overflow
Result.Overflowed := True;
exit;
end if;
Result.Length := Result.Length + 1;
Result.Numerals (Result.Length) := Digit (Carry mod 10);
Carry := Carry / 10;
end loop;
return Result;
end SingleDigitMult;
--------------------------------------------------------------------------
-- Symbolically multiples 2 Part Values together
function MultPart (FirstPart, SecondPart : Part) return Part is
FirstPartLocal, Result : Part;
begin
Result := ZeroPart;
Result.Overflowed := FirstPart.Overflowed or SecondPart.Overflowed; -- propagate error
FirstPartLocal := FirstPart;
for i in PosRange range 1 .. SecondPart.Length loop
Result := AddPart (Result, SingleDigitMult (FirstPartLocal, SecondPart.Numerals (i)));
FirstPartLocal := ShiftUpPart (FirstPartLocal);
end loop;
return Result;
end MultPart;
--------------------------------------------------------------------------
--Digit by digit long div of one Value Part by another
--Do not call with bot=0
function DivPart (Top, Bot : Part) return Division_Result_Type is
subtype GoesIndexRange is Integer range 0 .. 9;
type GoesArray is array (GoesIndexRange) of Part;
GoesDigit : GoesIndexRange;
Goes : GoesArray;
ResultLocal, CurrentTry : Part;
Column : Natural;
---------------------------
-- builds array of 1*divisor..9*divisor
procedure BuildGoesTable
--# global in Bot;
--# out Goes;
--# derives Goes from Bot;
is
begin
Goes := GoesArray'(GoesIndexRange => ZeroPart);
Goes (1) := Bot;
for i in GoesIndexRange range 2 .. 9 loop
Goes (i) := AddPart (Goes (i - 1), Bot);
end loop;
end BuildGoesTable;
---------------------------
function FindGoes (Into : Part) return GoesIndexRange
--# global in Goes;
is
Result : GoesIndexRange;
begin
Result := 0;
for i in reverse Integer range 1 .. 9 loop
if (LesserPart (Goes (i), Into)) or (Goes (i) = Into) then
Result := i;
exit;
end if;
end loop;
return Result;
end FindGoes;
---------------------------
procedure StoreDigit (Dig : in GoesIndexRange;
Dest : in out Part)
--# derives Dest from *,
--# Dig;
--NB. This method of stroring digit automatically excludes leading zeros
-- since Length only increases once a non-zero is present.
is
begin
Dest := ShiftUpPart (Dest);
Dest.Numerals (1) := Digit (Dig);
end StoreDigit;
---------------------------
begin -- DivPart
BuildGoesTable;
ResultLocal := ZeroPart;
CurrentTry := ZeroPart;
Column := Top.Length; -- start at MSD
loop
exit when Column = 0;
StoreDigit (Integer (Top.Numerals (Column)), CurrentTry);
Column := Column - 1;
GoesDigit := FindGoes (CurrentTry);
StoreDigit (GoesDigit, ResultLocal);
if GoesDigit /= 0 then
CurrentTry := SubtractPart (CurrentTry, Goes (GoesDigit));
end if;
end loop;
return Division_Result_Type'(Quotient => ResultLocal,
Remnant => CurrentTry);
end DivPart;
--------------------------------------------------------------------------
-- Conversions too and from Part Values
--------------------------------------------------------------------------
--Converts an Ada Natural type to a Part Value;
function NaturalToPart (Int : Natural) return Part is
IntLocal : Natural;
Result : Part;
begin
Result := ZeroPart;
IntLocal := Int;
Result.Length := 0;
while IntLocal > 0 loop
Result.Length := Result.Length + 1;
Result.Numerals (Result.Length) := Digit (IntLocal mod 10);
IntLocal := IntLocal / 10;
end loop;
return Result;
end NaturalToPart;
--------------------------------------------------------------------------
-- Convert String to Natural - NB. not done symbolically
-- Assumes decimal
function String_To_Natural (Str : E_Strings.T) return Natural is
Position_Multiplier, Total : Natural;
begin
Position_Multiplier := 1;
Total := 0;
for I in reverse E_Strings.Positions range 1 .. E_Strings.Get_Length (E_Str => Str) loop
Total := Total + Position_Multiplier * Natural (CharToDigit (E_Strings.Get_Element (E_Str => Str,
Pos => I)));
Position_Multiplier := Position_Multiplier * 10;
end loop;
return Total;
end String_To_Natural;
--------------------------------------------------------------------------
-- Produces Value Part from string interpreting it as being to base
function String_To_Part (Base : Natural;
Str : E_Strings.T) return Part is
Position_Multiplier, Base_Part, Result : Part;
begin
Result := ZeroPart;
Position_Multiplier := OnePart;
Base_Part := NaturalToPart (Base);
for I in reverse E_Strings.Positions range 1 .. E_Strings.Get_Length (E_Str => Str) loop
Result :=
AddPart
(Result,
SingleDigitMult (Position_Multiplier, CharToDigit (E_Strings.Get_Element (E_Str => Str,
Pos => I))));
Position_Multiplier := MultPart (Position_Multiplier, Base_Part);
end loop;
return Result;
end String_To_Part;
--------------------------------------------------------------------------
-- Produces Value Part from decimal string more quickly than String_To_Part
function Dec_String_To_Part (Str : E_Strings.T) return Part is
Result : Part;
Hi : Natural;
begin
Result := ZeroPart;
Hi := E_Strings.Get_Length (E_Str => Str);
if Hi <= MaxLength then
for I in Natural range 1 .. Hi loop
Result.Numerals (I) := CharToDigit (E_Strings.Get_Element (E_Str => Str,
Pos => (Hi - I) + 1));
end loop;
Result.Length := E_Strings.Get_Length (E_Str => Str);
else
Result.Overflowed := True;
end if;
return Result;
end Dec_String_To_Part;
--------------------------------------------------------------------------
-- Normalization routines for rational pairs
--------------------------------------------------------------------------
-- removes zeros symmetrically from Numerator and Denominator
procedure NormalizeByTen (Num : in out Value)
--# derives Num from *;
is
begin
-- strip mutual trailing zeros
while (Num.Numerator.Numerals (1) = 0) and (Num.Denominator.Numerals (1) = 0) loop
Num.Numerator := ShiftDownPart (Num.Numerator);
Num.Denominator := ShiftDownPart (Num.Denominator);
end loop;
end NormalizeByTen;
--------------------------------------------------------------------------
-- Routine to find GCD of 2 Parts
function GCD (FirstPart, SecondPart : Part) return Part is
FirstPartLocal, SecondPartLocal : Part;
DivisionResult : Division_Result_Type;
begin
FirstPartLocal := FirstPart;
SecondPartLocal := SecondPart;
loop
exit when SecondPartLocal = ZeroPart;
DivisionResult := DivPart (FirstPartLocal, SecondPartLocal);
FirstPartLocal := SecondPartLocal;
SecondPartLocal := DivisionResult.Remnant;
end loop;
return FirstPartLocal;
end GCD;
--------------------------------------------------------------------------
procedure Normalize (Num : in out Value)
--# derives Num from *;
is
Divisor : Part;
begin
NormalizeByTen (Num); --does not reduce no of GCD iterations but shortens each one
if not (Num.Numerator.Overflowed or Num.Denominator.Overflowed) then
Divisor := GCD (Num.Numerator, Num.Denominator);
Num.Numerator := DivPart (Num.Numerator, Divisor).Quotient;
Num.Denominator := DivPart (Num.Denominator, Divisor).Quotient;
end if;
end Normalize;
--------------------------------------------------------------------------
-- Higher level arithmetic routines
--------------------------------------------------------------------------
-- Correctly handles ordering and sign of subtraction of +ve Numerator Parts
-- of Value but leaves Denominator and Value types alone so can be
-- use by both Integer and Real routines. Callers should ensure that field
-- Sort of Result is set correctly.
procedure NumeratorSubtract (FirstNum, SecondNum : in Value;
Result : in out Value)
--# derives Result from *,
--# FirstNum,
--# SecondNum;
is
begin
if GreaterPart (FirstNum.Numerator, SecondNum.Numerator) then
Result.Numerator := SubtractPart (FirstNum.Numerator, SecondNum.Numerator);
elsif GreaterPart (SecondNum.Numerator, FirstNum.Numerator) then
Result.Numerator := SubtractPart (SecondNum.Numerator, FirstNum.Numerator);
Result.IsPositive := False;
else
Result.Numerator := ZeroPart;
end if;
end NumeratorSubtract;
--------------------------------------------------------------------------
-- Correctly handles adding (including ordering and signs) of numerator Parts
-- of Values but leaves Denominator and Value types alone so can be
-- use by both Integer and Real routines. Callers should ensure that field
-- Sort of Result is set correctly.
procedure NumeratorAdd (FirstNum, SecondNum : in Value;
Result : in out Value)
--# derives Result from *,
--# FirstNum,
--# SecondNum;
is
begin
if FirstNum.IsPositive and SecondNum.IsPositive then
Result.Numerator := AddPart (FirstNum.Numerator, SecondNum.Numerator);
elsif not (FirstNum.IsPositive or SecondNum.IsPositive) then
Result.Numerator := AddPart (FirstNum.Numerator, SecondNum.Numerator);
Result.IsPositive := False;
elsif FirstNum.IsPositive and not SecondNum.IsPositive then
NumeratorSubtract (FirstNum => FirstNum,
SecondNum => SecondNum,
Result => Result);
elsif not FirstNum.IsPositive and SecondNum.IsPositive then
NumeratorSubtract (FirstNum => SecondNum,
SecondNum => FirstNum,
Result => Result);
end if;
end NumeratorAdd;
--------------------------------------------------------------------------
-- Modifies 2 Values such that their Denominators are the same
procedure CommonDenominator (FirstNum, SecondNum : in Value;
ModifiedFirst, ModifiedSecond : out Value)
--# derives ModifiedFirst,
--# ModifiedSecond from FirstNum,
--# SecondNum;
is
CommonDenom : Part;
begin
ModifiedFirst := FirstNum;
ModifiedSecond := SecondNum;
if not (FirstNum.Denominator = SecondNum.Denominator) then
CommonDenom := MultPart (FirstNum.Denominator, SecondNum.Denominator);
ModifiedFirst.Numerator := MultPart (FirstNum.Numerator, SecondNum.Denominator);
ModifiedSecond.Numerator := MultPart (SecondNum.Numerator, FirstNum.Denominator);
ModifiedFirst.Denominator := CommonDenom;
ModifiedSecond.Denominator := CommonDenom;
end if;
end CommonDenominator;
--------------------------------------------------------------------------
procedure RealAdd (FirstNum, SecondNum : in Value;
Result : out Value;
Ok : out ErrorCode)
--# derives Ok,
--# Result from FirstNum,
--# SecondNum;
is
FirstNumLocal, SecondNumLocal, Res : Value;
begin
Res := ZeroReal;
CommonDenominator (FirstNum, SecondNum, FirstNumLocal, SecondNumLocal);
NumeratorAdd (FirstNumLocal, SecondNumLocal, Res);
Res.Denominator := FirstNumLocal.Denominator;
Normalize (Res);
Result := Res;
Ok := OverflowCheck (NoError, Res);
end RealAdd;
--------------------------------------------------------------------------
procedure IntegerMultiply (FirstNum, SecondNum : in Value;
Result : out Value;
Ok : out ErrorCode)
--# derives Ok,
--# Result from FirstNum,
--# SecondNum;
is
Res : Value;
begin
Res := ZeroInteger;
Res.Numerator := StripLeadingZeros (MultPart (FirstNum.Numerator, SecondNum.Numerator));
Res.IsPositive := (FirstNum.IsPositive = SecondNum.IsPositive);
Ok := OverflowCheck (NoError, Res);
Result := Res;
end IntegerMultiply;
--------------------------------------------------------------------------
procedure RealMultiply (FirstNum, SecondNum : in Value;
Result : out Value;
Ok : out ErrorCode)
--# derives Ok,
--# Result from FirstNum,
--# SecondNum;
is
Res : Value;
begin
Res := ZeroReal;
Res.Numerator := MultPart (FirstNum.Numerator, SecondNum.Numerator);
Res.Denominator := MultPart (FirstNum.Denominator, SecondNum.Denominator);
Res.IsPositive := (FirstNum.IsPositive = SecondNum.IsPositive);
Normalize (Res);
Result := Res;
Ok := OverflowCheck (NoError, Res);
end RealMultiply;
--------------------------------------------------------------------------
procedure RealDivide (FirstNum, SecondNum : in Value;
Result : out Value;
Ok : out ErrorCode)
--# derives Ok,
--# Result from FirstNum,
--# SecondNum;
is
----------------------------------------
function Invert (N : Value) return Value is
begin
return Value'(Numerator => N.Denominator,
Denominator => N.Numerator,
IsPositive => N.IsPositive,
Sort => N.Sort);
end Invert;
----------------------------------------
begin -- RealDivide
RealMultiply (FirstNum, Invert (SecondNum), Result, Ok);
end RealDivide;
--------------------------------------------------------------------------
procedure GreaterLocal (FirstNum, SecondNum : in Value;
Result : out Boolean;
Ok : out ErrorCode)
--# derives Ok,
--# Result from FirstNum,
--# SecondNum;
is
FirstLocal, SecondLocal : Value;
LocalOk : ErrorCode;
begin
LocalOk := NoError;
if FirstNum.Sort /= SecondNum.Sort then
Result := False;
LocalOk := TypeMismatch;
else --legal types
if FirstNum.Sort = RealValue then --put on common Denominator
CommonDenominator (FirstNum, SecondNum, FirstLocal, SecondLocal);
else --this covers Integer, enumeration and Boolean
FirstLocal := FirstNum;
SecondLocal := SecondNum;
end if;
if FirstLocal.IsPositive then
if SecondLocal.IsPositive then -- both positive
Result := GreaterPart (FirstLocal.Numerator, SecondLocal.Numerator);
else -- first positive and second Value is negative
Result := True;
end if;
else --first Value is negative
if SecondLocal.IsPositive then -- first negative, second positive
Result := False;
else --both Values are negative
Result := LesserPart (FirstLocal.Numerator, SecondLocal.Numerator);
end if;
end if;
LocalOk := OverflowCheck (LocalOk, FirstLocal);
LocalOk := OverflowCheck (LocalOk, SecondLocal);
end if;
Ok := LocalOk;
end GreaterLocal;
--------------------------------------------------------------------------
-- Non-exported procedure used by Remainder and Modulus Only
--------------------------------------------------------------------------
procedure ModRemLegalityCheck (FirstNum, SecondNum : in Value;
Err : out ErrorCode)
--# derives Err from FirstNum,
--# SecondNum;
is
begin
if (FirstNum.Sort = IntegerValue) and (SecondNum.Sort = IntegerValue) then
if SecondNum.Numerator = ZeroPart then
Err := DivideByZero;
else --this is the legal case we can do something with
Err := NoError;
end if;
elsif (FirstNum.Sort = RealValue) and (SecondNum.Sort = RealValue) then
Err := IllegalOperation;
else
Err := TypeMismatch;
end if;
end ModRemLegalityCheck;
-------------------------------------------------------------------------
procedure ParseString
(S : in E_Strings.T;
Decimal_Point_Found, Exponent_Found, Base_Found : out Boolean;
Base : out Natural;
Core_String, Exp_String : out E_Strings.T;
Exp_Sign : out Character;
Places_After_Point : out E_Strings.Lengths;
Legal_Syntax : out Boolean)
--# derives Base,
--# Base_Found,
--# Core_String,
--# Decimal_Point_Found,
--# Exponent_Found,
--# Exp_Sign,
--# Exp_String,
--# Legal_Syntax,
--# Places_After_Point from S;
-- NOTES
-- BaseString will be set to "10" if Base_Found = False
-- Exp_String is "0" if ExpFound = False
-- Exp_Sign is plus if ExpFound = False
-- PlacesAferPoint is 0 if Decimal_Point_Found = False
-- Legal_Syntax only implies that String looks like an Ada literal
is separate;
-------------------------------------------------------------------------
-- PartToBits - converts a Part into a Bits array, with LSB in element 0
-- All insignificant MSBs are set to False
-------------------------------------------------------------------------
function PartToBits (A : in Part) return Bits is
R : Bits;
Power : Part;
Q : Division_Result_Type;
begin
R := ZeroBits;
Power := OnePart;
for J in BinaryLengthRange loop
Q := DivPart (DivPart (A, Power).Quotient, TwoPart);
R (J) := Q.Remnant /= ZeroPart;
Power := SingleDigitMult (Power, 2);
exit when Power.Overflowed;
end loop;
return R;
end PartToBits;
-------------------------------------------------------------------------
-- BitsToPart - converts a Bits array into a Part, assuming LSB in
-- element 0.
-------------------------------------------------------------------------
function BitsToPart (B : in Bits) return Part is
P : Part;
Power : Part;
begin
P := ZeroPart;
Power := OnePart;
for J in BinaryLengthRange loop
if B (J) then
P := AddPart (P, Power);
end if;
Power := SingleDigitMult (Power, 2);
exit when Power.Overflowed;
end loop;
return P;
end BitsToPart;
-------------------------------------------------------------------------
--------------------------------------------------------------------------
-- Exported Procedures
--------------------------------------------------------------------------
--------------------------------------------------------------------------
procedure LiteralToValue (Str : in LexTokenManager.Lex_String;
Num : out Value;
OK : out ErrorCode) is separate;
----------------------------------------------------------------------------
function IntegerToValue (I : Integer) return Value is
IsPositive : Boolean;
Numerator : Part;
ValSoFar : Integer;
NextDigit : Digit;
Length : LengthRange;
begin --IntegerToValue
Numerator := ZeroPart;
IsPositive := I >= 0;
ValSoFar := abs (I);
if ValSoFar /= 0 then
Length := 1;
loop
NextDigit := Digit (ValSoFar mod 10);
ValSoFar := ValSoFar / 10;
Numerator.Numerals (Length) := NextDigit;
exit when ValSoFar = 0;
Length := Length + 1;
end loop;
Numerator.Length := Length;
end if;
return Value'(Numerator => Numerator,
Denominator => OnePart,
IsPositive => IsPositive,
Sort => IntegerValue);
end IntegerToValue;
---------------------------------------------------------------------------
procedure StorageRep (Num : in Value;
Rep : out LexTokenManager.Lex_String)
--670
is
Str : E_Strings.T := E_Strings.Empty_String;
StoreRep : LexTokenManager.Lex_String;
procedure BuildString (IsPos : in Boolean;
PartVal : in Part)
--# global in out Str;
--# derives Str from *,
--# IsPos,
--# PartVal;
is
begin
if not IsPos then
E_Strings.Append_Char (E_Str => Str,
Ch => '-');
end if;
for I in LengthRange range 1 .. PartVal.Length loop
E_Strings.Append_Char (E_Str => Str,
Ch => DigitToChar (PartVal.Numerals (I)));
end loop;
end BuildString;
-----------------
procedure AppendDenominator (PartVal : in Part)
--# global in out Str;
--# derives Str from *,
--# PartVal;
is
begin
E_Strings.Append_Char (E_Str => Str,
Ch => '/');
for I in LengthRange range 1 .. PartVal.Length loop
E_Strings.Append_Char (E_Str => Str,
Ch => DigitToChar (PartVal.Numerals (I)));
end loop;
end AppendDenominator;
begin
case Num.Sort is
when UnknownValue =>
StoreRep := LexTokenManager.Null_String;
when TruthValue =>
if Num.IsPositive then
StoreRep := LexTokenManager.True_Token;
else
StoreRep := LexTokenManager.False_Token;
end if;
when IntegerValue =>
BuildString (Num.IsPositive, Num.Numerator);
LexTokenManager.Insert_Examiner_String (Str => Str,
Lex_Str => StoreRep);
when RealValue =>
BuildString (Num.IsPositive, Num.Numerator);
AppendDenominator (Num.Denominator);
LexTokenManager.Insert_Examiner_String (Str => Str,
Lex_Str => StoreRep);
end case;
Rep := StoreRep;
end StorageRep;
----------------------------------------------------------------------------
function ValueRep (StoreRep : LexTokenManager.Lex_String) return Value is
Str : E_Strings.T;
ValIsPositive : Boolean;
PartVal : Part;
Ptr : E_Strings.Positions;
SlashFound : Boolean;
Val : Value;
----------------
procedure GetSign
--# global in Str;
--# out Ptr;
--# out ValIsPositive;
--# derives Ptr,
--# ValIsPositive from Str;
is
begin
if E_Strings.Get_Element (E_Str => Str,
Pos => 1) = '-' then
ValIsPositive := False;
Ptr := 2;
else
ValIsPositive := True;
Ptr := 1;
end if;
end GetSign;
---------------
procedure GetPart (PartVal : out Part)
--# global in Str;
--# in out Ptr;
--# out SlashFound;
--# derives PartVal,
--# Ptr,
--# SlashFound from Ptr,
--# Str;
is
Len : LengthRange;
begin
SlashFound := False;
PartVal := ZeroPart;
Len := 0;
loop
if E_Strings.Get_Element (E_Str => Str,
Pos => Ptr) = '/' then
Ptr := Ptr + 1; --skip over '/'
SlashFound := True;
exit;
end if;
--here we are neither at the end of the string nor have we reached a /
Len := Len + 1;
PartVal.Numerals (Len) := CharToDigit (E_Strings.Get_Element (E_Str => Str,
Pos => Ptr));
exit when Ptr = E_Strings.Get_Length (E_Str => Str);
Ptr := Ptr + 1;
end loop;
PartVal.Length := Len;
end GetPart;
begin -- ValueRep
if LexTokenManager.Lex_String_Case_Insensitive_Compare (Lex_Str1 => StoreRep,
Lex_Str2 => LexTokenManager.Null_String) =
LexTokenManager.Str_Eq then
Val := NoValue;
elsif LexTokenManager.Lex_String_Case_Insensitive_Compare (Lex_Str1 => StoreRep,
Lex_Str2 => LexTokenManager.True_Token) =
LexTokenManager.Str_Eq then
Val := TrueValue;
elsif LexTokenManager.Lex_String_Case_Insensitive_Compare (Lex_Str1 => StoreRep,
Lex_Str2 => LexTokenManager.False_Token) =
LexTokenManager.Str_Eq then
Val := FalseValue;
else --some Sort of Number
Val := ZeroInteger; --set up all fields with suitable default Values
Str := LexTokenManager.Lex_String_To_String (Lex_Str => StoreRep);
GetSign;
Val.IsPositive := ValIsPositive;
GetPart (PartVal);
Val.Numerator := PartVal;
if SlashFound then
Val.Sort := RealValue;
--# accept F, 10, SlashFound, "SlashFound not used here" &
--# F, 10, Ptr, "Ptr not used here";
GetPart (PartVal);
--# end accept;
Val.Denominator := PartVal;
end if;
end if;
return Val;
end ValueRep;
----------------------------------------------------------------------------
function HasNoValue (Num : Value) return Boolean is
begin
return Num.Sort = UnknownValue;
end HasNoValue;
----------------------------------------------------------------------------
function ValueToString (Num : Value) return E_Strings.T is separate;
--------------------------------------------------------------------------
procedure ValueToInteger (Num : in Value;
Int : out Integer;
Ok : out ErrorCode) is
Column, IntLocal, PosMult : Natural;
begin
if Num.Sort = IntegerValue then
if GreaterPart (Num.Numerator, NaturalToPart (Integer'Last)) then
Int := 0;
Ok := OverFlow;
else
IntLocal := 0;
PosMult := 1;
Column := 1;
loop
IntLocal := IntLocal + PosMult * Natural (Num.Numerator.Numerals (Column));
exit when Column = Num.Numerator.Length;
Column := Column + 1;
PosMult := PosMult * 10;
end loop;
Ok := NoError;
if Num.IsPositive then
Int := IntLocal;
else
Int := -IntLocal;
end if;
end if;
else ------------------------its not an Integer
Int := 0;
Ok := TypeMismatch;
end if;
end ValueToInteger;
--------------------------------------------------------------------------
procedure Add (FirstNum, SecondNum : in Value;
Result : out Value;
Ok : out ErrorCode) is
Res : Value;
begin
if HasNoValue (FirstNum) or else HasNoValue (SecondNum) then
Result := NoValue;
Ok := NoError;
elsif (FirstNum.Sort = IntegerValue) and then (SecondNum.Sort = IntegerValue) then
Res := ZeroInteger;
NumeratorAdd (FirstNum, SecondNum, Res);
Result := Res;
Ok := OverflowCheck (NoError, Res);
elsif (FirstNum.Sort = RealValue) and then (SecondNum.Sort = RealValue) then
RealAdd (FirstNum, SecondNum, Result, Ok);
else
Result := NoValue;
Ok := TypeMismatch;
end if;
end Add;
--------------------------------------------------------------------------
procedure Negate (Num : in out Value) is
begin
if Num.Sort /= UnknownValue and then Num.Numerator /= ZeroPart then
Num.IsPositive := not Num.IsPositive;
end if;
end Negate;
--------------------------------------------------------------------------
procedure Absolute (Num : in out Value) is
begin
Num.IsPositive := True;
end Absolute;
--------------------------------------------------------------------------
procedure ConvertToInteger (Num : in out Value) is
begin
Num.Sort := IntegerValue;
end ConvertToInteger;
----------------------------------------------------------------------------
procedure ConvertToReal (Num : in out Value) is
begin
Num.Sort := RealValue;
end ConvertToReal;
----------------------------------------------------------------------------
procedure Subtract (FirstNum, SecondNum : in Value;
Result : out Value;
Ok : out ErrorCode) is
deductor : Value;
begin
if HasNoValue (FirstNum) or else HasNoValue (SecondNum) then
Result := NoValue;
Ok := NoError;
else
deductor := SecondNum;
Negate (deductor);
Add (FirstNum, deductor, Result, Ok);
end if;
end Subtract;
--------------------------------------------------------------------------
procedure Multiply (FirstNum, SecondNum : in Value;
Result : out Value;
Ok : out ErrorCode) is
begin
if HasNoValue (FirstNum) or else HasNoValue (SecondNum) then
Result := NoValue;
Ok := NoError;
elsif (FirstNum.Sort = IntegerValue) and then (SecondNum.Sort = IntegerValue) then
IntegerMultiply (FirstNum, SecondNum, Result, Ok);
else
RealMultiply (FirstNum, SecondNum, Result, Ok);
end if;
end Multiply;
--------------------------------------------------------------------------
procedure Divide (FirstNum, SecondNum : in Value;
Result : out Value;
Ok : out ErrorCode) is
begin
if HasNoValue (FirstNum) or else HasNoValue (SecondNum) then
Result := NoValue;
Ok := NoError;
elsif (FirstNum.Sort = IntegerValue) and then (SecondNum.Sort = IntegerValue) then
if SecondNum = ZeroInteger then
Result := NoValue;
Ok := DivideByZero;
else
Result := ZeroInteger;
Result.Numerator := DivPart (FirstNum.Numerator, SecondNum.Numerator).Quotient;
Result.IsPositive := (FirstNum.IsPositive = SecondNum.IsPositive);
Ok := NoError;
end if;
elsif (FirstNum.Sort = RealValue) then
if SecondNum = ZeroReal then
Result := NoValue;
Ok := DivideByZero;
else
RealDivide (FirstNum, SecondNum, Result, Ok);
end if;
else
Result := NoValue;
Ok := TypeMismatch;
end if;
end Divide;
--------------------------------------------------------------------------
procedure Remainder (FirstNum, SecondNum : in Value;
Result : out Value;
Ok : out ErrorCode) is
OkLocal : ErrorCode;
ResultLocal : Value;
begin
if HasNoValue (FirstNum) or else HasNoValue (SecondNum) then
Result := NoValue;
Ok := NoError;
else
ModRemLegalityCheck (FirstNum, SecondNum, OkLocal);
if OkLocal = NoError then
ResultLocal := ZeroInteger;
ResultLocal.Numerator := DivPart (FirstNum.Numerator, SecondNum.Numerator).Remnant;
if not (ResultLocal = ZeroInteger) then
ResultLocal.IsPositive := FirstNum.IsPositive;
end if;
Result := ResultLocal;
else --some Sort of error
Result := NoValue;
end if;
Ok := OkLocal;
end if;
end Remainder;
--------------------------------------------------------------------------
procedure Modulus (FirstNum, SecondNum : in Value;
Result : out Value;
Ok : out ErrorCode) is
OkLocal : ErrorCode;
ResultLocal : Value;
DivisionResult : Division_Result_Type;
begin
if HasNoValue (FirstNum) or else HasNoValue (SecondNum) then
Result := NoValue;
Ok := NoError;
elsif FirstNum.IsPositive = SecondNum.IsPositive then
Remainder (FirstNum, SecondNum, Result, Ok);
else -- special handling for MOD with mixed signs
ModRemLegalityCheck (FirstNum, SecondNum, OkLocal);
if OkLocal = NoError then
ResultLocal := ZeroInteger;
DivisionResult := DivPart (FirstNum.Numerator, SecondNum.Numerator);
if DivisionResult.Remnant = ZeroPart then -- modulus is zero
Result := ZeroInteger;
else -- modulus is non zero
ResultLocal.Numerator :=
SubtractPart (MultPart (SecondNum.Numerator, AddPart (DivisionResult.Quotient, OnePart)), FirstNum.Numerator);
ResultLocal.IsPositive := SecondNum.IsPositive;
Result := ResultLocal;
end if; -- of either the zero remainder or actual remainder case
Ok := OkLocal;
else -----------------------------some Sort of error
Result := NoValue;
Ok := OkLocal;
end if;
end if;
end Modulus;
--------------------------------------------------------------------------
function IsAPositivePowerOf2 (Num : in Value) return Boolean is
NormNum : Value;
DR : Division_Result_Type;
D : Part;
IsAPowerOfTwo : Boolean;
begin
IsAPowerOfTwo := True;
if Num.Sort = IntegerValue and then Num.IsPositive then
NormNum := Num;
Normalize (NormNum);
D := NormNum.Numerator;
if D /= ZeroPart then
-- A positive power of 2 has a single "1" digit in binary,
-- so if we shift right (i.e. divide by 2) repeatedly, we should
-- never get a remainder until the current value is 1.
while D /= ZeroPart loop
DR := DivPart (D, TwoPart);
if D /= OnePart and DR.Remnant /= ZeroPart then
-- We have a non-zero remainder, and D is not 1, so
-- the original number could not have been a power of 2.
IsAPowerOfTwo := False;
exit;
end if;
D := DR.Quotient;
end loop;
else
IsAPowerOfTwo := False;
end if;
else
IsAPowerOfTwo := False;
end if;
return IsAPowerOfTwo;
end IsAPositivePowerOf2;
--------------------------------------------------------------------------
function BoolToValue (B : Boolean) return Value is
Result : Value;
begin
if B then
Result := TrueValue;
else
Result := FalseValue;
end if;
return Result;
end BoolToValue;
----------------------------------------------------------------------------
procedure Greater (FirstNum, SecondNum : in Value;
Result : out Value;
Ok : out ErrorCode) is
BoolResult : Boolean;
OkLocal : ErrorCode;
begin
if HasNoValue (FirstNum) or else HasNoValue (SecondNum) then
Result := NoValue;
OkLocal := NoError;
else
GreaterLocal (FirstNum, SecondNum, BoolResult, OkLocal);
if OkLocal = NoError then
Result := BoolToValue (BoolResult);
else
Result := NoValue;
end if;
end if;
Ok := OkLocal;
end Greater;
--------------------------------------------------------------------------
procedure Lesser (FirstNum, SecondNum : in Value;
Result : out Value;
Ok : out ErrorCode) is
BoolResult : Boolean;
OkLocal : ErrorCode;
begin
if HasNoValue (FirstNum) or else HasNoValue (SecondNum) then
Result := NoValue;
OkLocal := NoError;
else
GreaterLocal (SecondNum, FirstNum, BoolResult, OkLocal);
if OkLocal = NoError then
Result := BoolToValue (BoolResult);
else
Result := NoValue;
end if;
end if;
Ok := OkLocal;
end Lesser;
----------------------------------------------------------------------------
procedure FloorCeilInternal
(Val : in Value;
DoFloor : Boolean;
Result : out Value;
OK : out ErrorCode)
--# derives OK,
--# Result from DoFloor,
--# Val;
is
Num : Value;
Denom : Value;
Temp_Swap : Part;
Mod_Val : Value;
New_Num : Value;
Error : ErrorCode;
Ceil_Temp : Value;
Final_Result : Value;
begin
-- floor (Num / Denom) = (Num - Num mod Denom) / Denom
-- if_zero (val, result) = if val = 0 then (result) else (0);
-- ceiling (Num / Denom) = (Nun - Num mod Denom + if_zero (Num mod Denom, Denom)) /
-- Denom
if Val.Sort = IntegerValue then
Result := Val;
OK := NoError;
elsif Val.Sort = RealValue then
Num := Val;
Num.Denominator := OnePart;
Num.Sort := IntegerValue;
Normalize (Num);
Denom := Val;
Temp_Swap := Denom.Denominator;
Denom.Denominator := OnePart;
Denom.Numerator := Temp_Swap;
Denom.Sort := IntegerValue;
Denom.IsPositive := True;
Normalize (Denom);
Modulus (Num, Denom, Mod_Val, Error);
if not DoFloor then -- doing a ceiling operation, so check if addition req'd
Greater (Mod_Val, ZeroInteger, Ceil_Temp, Error);
if Ceil_Temp = TrueValue then
Add (Num, Denom, Ceil_Temp, Error);
Num := Ceil_Temp;
end if;
end if;
if Error = NoError then
Subtract (Num, Mod_Val, New_Num, Error);
if Error = NoError then
Normalize (New_Num);
Divide (New_Num, Denom, Final_Result, Error);
if Error /= NoError then
Result := NoValue;
OK := Error;
else
Final_Result.Sort := RealValue;
Normalize (Final_Result);
Result := Final_Result;
OK := NoError;
end if;
else
Result := NoValue;
OK := Error;
end if;
else
Result := NoValue;
OK := NoError;
end if;
elsif HasNoValue (Val) then
OK := NoError;
Result := NoValue;
else
OK := IllegalValue;
Result := NoValue;
end if;
end FloorCeilInternal;
----------------------------------------------------------------------------
procedure Floor (Val : in Value;
Result : out Value;
OK : out ErrorCode) is
begin
FloorCeilInternal (Val, True, Result, OK);
end Floor;
----------------------------------------------------------------------------
procedure Ceiling (Val : in Value;
Result : out Value;
OK : out ErrorCode) is
begin
FloorCeilInternal (Val, False, Result, OK);
end Ceiling;
--------------------------------------------------------------------------
procedure LesserOrEqual (FirstNum, SecondNum : in Value;
Result : out Value;
Ok : out ErrorCode) is
Res : Value;
begin
if HasNoValue (FirstNum) or else HasNoValue (SecondNum) then
Result := NoValue;
Ok := NoError;
else
Lesser (FirstNum, SecondNum, Res, Ok);
if Res.Sort = TruthValue then
Result := BoolToValue ((Res = TrueValue) or (FirstNum = SecondNum));
else
Result := NoValue;
end if;
end if;
end LesserOrEqual;
--------------------------------------------------------------------------
procedure GreaterOrEqual (FirstNum, SecondNum : in Value;
Result : out Value;
Ok : out ErrorCode) is
Res : Boolean;
OkLocal : ErrorCode;
begin
if HasNoValue (FirstNum) or else HasNoValue (SecondNum) then
Result := NoValue;
OkLocal := NoError;
else
GreaterLocal (FirstNum, SecondNum, Res, OkLocal);
if OkLocal = NoError then
Result := BoolToValue (Res or (FirstNum = SecondNum));
else
Result := NoValue;
end if;
end if;
Ok := OkLocal;
end GreaterOrEqual;
--------------------------------------------------------------------------
procedure RaiseByPower (FirstNum, SecondNum : in Value;
Result : out Value;
Ok : out ErrorCode) is
Swap : Part;
N : Part;
Q : Division_Result_Type;
Y : Value;
Z : Value;
Temp : Value;
Err : ErrorCode;
begin
if HasNoValue (FirstNum) or else HasNoValue (SecondNum) then
Result := NoValue;
Ok := NoError;
elsif (SecondNum.Sort = RealValue) then
Result := NoValue;
Ok := IllegalOperation;
--608--new elsif to catch INT ** NEGATIVE
elsif ((FirstNum.Sort = IntegerValue) and (not SecondNum.IsPositive)) then
Result := NoValue;
Ok := ConstraintError;
--822--new elsif to catch 0.0 ** negative
elsif ((FirstNum = ZeroReal) and then (not SecondNum.IsPositive)) then
Result := NoValue;
Ok := ConstraintError;
elsif SecondNum = ZeroInteger then -- we must return 1
if FirstNum.Sort = IntegerValue then
Result := ZeroInteger;
else
Result := ZeroReal;
end if;
Result.Numerator := OnePart;
Ok := NoError;
else -- we have legal and meaningful operation
-- Bit-wise algorithm. See Knuth Volume 2, section 4.6.3.
N := SecondNum.Numerator;
Y := OneInteger;
Z := FirstNum;
Err := NoError;
loop
Q := DivPart (N, TwoPart);
if Q.Remnant = OnePart then
-- N is odd, so
-- Y := Y * Z;
Multiply (Y, Z, Temp, Err);
Y := Temp;
end if;
-- N := Floor(N/2);
N := Q.Quotient;
exit when N = ZeroPart;
-- Z := Z * Z;
Multiply (Z, Z, Temp, Err);
Z := Temp;
end loop;
-- If exponent was negative then form the
-- reciprocal of Y
if not SecondNum.IsPositive then --reciprocate
Swap := Y.Numerator;
Y.Numerator := Y.Denominator;
Y.Denominator := Swap;
Normalize (Y);
end if;
Result := Y;
Ok := Err;
end if;
end RaiseByPower;
----------------------------------------------------------------------------
-- Support of non-Numeric types
----------------------------------------------------------------------------
procedure ValueToBool (TheVal : in Value;
Result : out Boolean;
Ok : out ErrorCode) is
begin
if TheVal.Sort = TruthValue then
Ok := NoError;
Result := TheVal.IsPositive;
else
Result := False;
Ok := TypeMismatch;
end if;
end ValueToBool;
----------------------------------------------------------------------------
function AndOp (LeftVal, RightVal : Value) return Value is
Result : Value;
begin
if LeftVal.Sort = TruthValue and RightVal.Sort = TruthValue then
-- Boolean "and"
Result := FalseValue;
Result.IsPositive := LeftVal.IsPositive and RightVal.IsPositive;
elsif LeftVal.Sort = IntegerValue and RightVal.Sort = IntegerValue then
-- Must be a modular (bitwise) "and" operator
Result :=
Value'
(Numerator => BitsToPart (PartToBits (LeftVal.Numerator) and PartToBits (RightVal.Numerator)),
Denominator => OnePart,
IsPositive => True,
Sort => IntegerValue);
else
Result := NoValue;
end if;
return Result;
end AndOp;
----------------------------------------------------------------------------
function OrOp (LeftVal, RightVal : Value) return Value is
Result : Value;
begin
if LeftVal.Sort = TruthValue and RightVal.Sort = TruthValue then
-- Boolean "or"
Result := FalseValue;
Result.IsPositive := LeftVal.IsPositive or RightVal.IsPositive;
elsif LeftVal.Sort = IntegerValue and RightVal.Sort = IntegerValue then
-- Must be a modular (bitwise) "or" operator
Result :=
Value'
(Numerator => BitsToPart (PartToBits (LeftVal.Numerator) or PartToBits (RightVal.Numerator)),
Denominator => OnePart,
IsPositive => True,
Sort => IntegerValue);
else
Result := NoValue;
end if;
return Result;
end OrOp;
----------------------------------------------------------------------------
function XorOp (LeftVal, RightVal : Value) return Value is
Result : Value;
begin
if LeftVal.Sort = TruthValue and RightVal.Sort = TruthValue then
-- Boolean "xor"
Result := FalseValue;
Result.IsPositive := LeftVal.IsPositive xor RightVal.IsPositive;
elsif LeftVal.Sort = IntegerValue and RightVal.Sort = IntegerValue then
-- Must be a modular (bitwise) "xor" operator
Result :=
Value'
(Numerator => BitsToPart (PartToBits (LeftVal.Numerator) xor PartToBits (RightVal.Numerator)),
Denominator => OnePart,
IsPositive => True,
Sort => IntegerValue);
else
Result := NoValue;
end if;
return Result;
end XorOp;
----------------------------------------------------------------------------
procedure NotOp (TheVal : in out Value) is
begin
if not HasNoValue (TheVal) then
TheVal.IsPositive := not TheVal.IsPositive;
end if;
end NotOp;
----------------------------------------------------------------------------
-- nb this implementation ONLY WORKS iff TheModulus is a positive power of 2!
procedure ModularNotOp (TheVal : in out Value;
TheModulus : in Value) is
TypeLast, NumeratorPart : Part;
begin
-- for type T is 2**N, then the LRM 4.5.6(5) says that
-- not X == (T'Last - X) == ((T'Modulus - 1) - X), so...
TypeLast := SubtractPart (TheModulus.Numerator, OnePart);
NumeratorPart := SubtractPart (TypeLast, TheVal.Numerator);
TheVal := Value'(Numerator => NumeratorPart,
Denominator => OnePart,
IsPositive => True,
Sort => IntegerValue);
end ModularNotOp;
----------------------------------------------------------------------------
procedure InsideRange (Val, LowerBound, UpperBound : in Value;
Result : out Value;
Ok : out ErrorCode) is
Result1, Result2 : Value;
Tmp_Ok1, Tmp_Ok2 : ErrorCode;
begin
--# accept F, 10, Tmp_Ok1, "Tmp_Ok1 not used here" &
--# F, 33, Tmp_Ok1, "Tmp_Ok1 not used here" &
--# F, 10, Tmp_Ok2, "Tmp_Ok2 not used here" &
--# F, 33, Tmp_Ok2, "Tmp_Ok2 not used here";
if Val.Sort = LowerBound.Sort and then LowerBound.Sort = UpperBound.Sort then
GreaterOrEqual (Val, LowerBound, Result1, Tmp_Ok1);
LesserOrEqual (Val, UpperBound, Result2, Tmp_Ok2);
if Result1.Sort = UnknownValue or else Result2.Sort = UnknownValue then
Result := NoValue;
else
Result := AndOp (Result1, Result2);
end if;
Ok := NoError;
else
Result := NoValue;
Ok := TypeMismatch;
end if;
end InsideRange;
----------------------------------------------------------------------------
procedure OutsideRange (Val, LowerBound, UpperBound : in Value;
Result : out Value;
Ok : out ErrorCode) is
Result1, Result2 : Value;
Tmp_Ok1, Tmp_Ok2 : ErrorCode;
begin
--# accept F, 10, Tmp_Ok1, "Tmp_Ok1 not used here" &
--# F, 33, Tmp_Ok1, "Tmp_Ok1 not used here" &
--# F, 10, Tmp_Ok2, "Tmp_Ok2 not used here" &
--# F, 33, Tmp_Ok2, "Tmp_Ok2 not used here";
if Val.Sort = LowerBound.Sort and then LowerBound.Sort = UpperBound.Sort then
Greater (Val, -- CFR 430 Flow error here: internal anomaly to be fixed
UpperBound, Result1, Tmp_Ok1);
Lesser (Val, LowerBound, Result2, Tmp_Ok2);
if Result1.Sort = UnknownValue or else Result2.Sort = UnknownValue then
Result := NoValue;
else
Result := OrOp (Result1, Result2);
end if;
Ok := NoError;
else
Result := NoValue;
Ok := TypeMismatch;
end if;
end OutsideRange;
----------------------------------------------------------------------------
--attribute ops
----------------------------------------------------------------------------
procedure PredOp (TheVal : in out Value;
Ok : out ErrorCode) is
DedVal : Value;
begin
if HasNoValue (TheVal) then
Ok := NoError;
elsif TheVal.Sort = RealValue then
Ok := TypeMismatch;
TheVal := NoValue;
else
Subtract (TheVal, OneInteger,
-- to get
DedVal, Ok);
TheVal := DedVal;
end if;
end PredOp;
----------------------------------------------------------------------------
procedure SuccOp (TheVal : in out Value;
Ok : out ErrorCode) is
AddVal : Value;
begin
if HasNoValue (TheVal) then
Ok := NoError;
elsif TheVal.Sort = RealValue then
Ok := TypeMismatch;
TheVal := NoValue;
else
Add (TheVal, OneInteger,
-- to get
AddVal, Ok);
TheVal := AddVal;
end if;
end SuccOp;
----------------------------------------------------------------------------
function MakeEnum (Pos : Natural) return Value is
Result : Value;
begin
Result := ZeroInteger;
Result.Numerator := NaturalToPart (Pos);
return Result;
end MakeEnum;
----------------------------------------------------------------------------
function IsIntegerValue (Val : Value) return Boolean is
begin
return Val.Sort = IntegerValue;
end IsIntegerValue;
------------------------------------
function IsRealValue (Val : Value) return Boolean is
begin
return Val.Sort = RealValue;
end IsRealValue;
----------------------------------------------------------------------------
function Ada95RealToInteger (TheReal : Value) return Value is
Temp : Value;
Result : Value;
TheRem : Value;
RoundResult : Value;
Unused : ErrorCode;
DivRes : Division_Result_Type;
begin
--# accept F, 10, Unused, "Unused unused here" &
--# F, 33, Unused, "Unused unused here";
if HasNoValue (TheReal) then
Result := NoValue;
else
--get Quotient and remainder
DivRes := DivPart (TheReal.Numerator, TheReal.Denominator);
--create Integer truncated Part from Quotient
Result := Value'(Numerator => DivRes.Quotient,
Denominator => OnePart,
IsPositive => True,
Sort => IntegerValue);
--create fractional remainder Part
TheRem := Value'(Numerator => DivRes.Remnant,
Denominator => TheReal.Denominator,
IsPositive => True,
Sort => RealValue);
--see if remainder >= 0.5
GreaterOrEqual (TheRem, ExactHalf,
--to get
RoundResult, Unused);
if RoundResult = TrueValue then
Temp := Result; --needed because of aliasing in next call
Add (Temp, OneInteger,
--to get
Result, Unused);
end if;
if Result /= ZeroInteger then
Result.IsPositive := TheReal.IsPositive; --restore sign
end if;
end if;
return Result;
end Ada95RealToInteger;
----------------------------------------------------------------------------
-- Initialisation
--------------------------------------------------------------------------
--none
end Maths;
|