File: maths.ads

package info (click to toggle)
spark 2012.0.deb-9
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 29,260 kB
  • ctags: 3,098
  • sloc: ada: 186,243; cpp: 13,497; makefile: 685; yacc: 440; lex: 176; ansic: 119; sh: 16
file content (467 lines) | stat: -rw-r--r-- 19,187 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
-------------------------------------------------------------------------------
-- (C) Altran Praxis Limited
-------------------------------------------------------------------------------
--
-- The SPARK toolset is free software; you can redistribute it and/or modify it
-- under terms of the GNU General Public License as published by the Free
-- Software Foundation; either version 3, or (at your option) any later
-- version. The SPARK toolset is distributed in the hope that it will be
-- useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
-- Public License for more details. You should have received a copy of the GNU
-- General Public License distributed with the SPARK toolset; see file
-- COPYING3. If not, go to http://www.gnu.org/licenses for a complete copy of
-- the license.
--
--=============================================================================

with E_Strings;
with LexTokenManager;

use type LexTokenManager.Str_Comp_Result;

--# inherit E_Strings,
--#         LexTokenManager,
--#         SPARK_IO;

package Maths is
   type Value is private;

   NoValue     : constant Value;
   ZeroReal    : constant Value;
   ZeroInteger : constant Value;
   OneInteger  : constant Value;
   ExactHalf   : constant Value;
   TrueValue   : constant Value;
   FalseValue  : constant Value;

   type ErrorCode is (
                      NoError,
                      IllegalValue, --ie. not a valid SPARK literal
                      IllegalOperation, --ie. wrong for Value types passed
                      OverFlow, --ie. too many digits for array
                      DivideByZero,
                      TypeMismatch,
                      ConstraintError); --eg. pred(t'base'first)

   ----------------------------------------------------------------------------

   --Conversion of numeric literals
   procedure LiteralToValue (Str : in     LexTokenManager.Lex_String;
                             Num :    out Value;
                             OK  :    out ErrorCode);
   --# global in LexTokenManager.State;
   --# derives Num,
   --#         OK  from LexTokenManager.State,
   --#                  Str;
   --  post (Ok = NoError) or (Ok = illegalValue) or (Ok = overflow);
   ----------------------------------------------------------------------------

   function IntegerToValue (I : Integer) return Value;

   ---------------------------------------------------------------------------

   procedure StorageRep (Num : in     Value;
                         Rep :    out LexTokenManager.Lex_String);
   --# global in out LexTokenManager.State;
   --# derives LexTokenManager.State,
   --#         Rep                   from LexTokenManager.State,
   --#                                    Num;

   ----------------------------------------------------------------------------

   function ValueRep (StoreRep : LexTokenManager.Lex_String) return Value;
   --# global in LexTokenManager.State;
   --caution, although this function turns a LexString into a value it is
   --not the same as procedure LiteralToValue.  This one converts only
   --things which were first converted by StorageRep.  LiteralToValue can parse
   --any numeric literal to a value.

   ----------------------------------------------------------------------------

   function HasNoValue (Num : Value) return Boolean;
   pragma Inline (HasNoValue);

   ----------------------------------------------------------------------------

   function ValueToString (Num : Value) return E_Strings.T;

   ----------------------------------------------------------------------------

   procedure ValueToInteger (Num : in     Value;
                             Int :    out Integer;
                             Ok  :    out ErrorCode);
   --# derives Int,
   --#         Ok  from Num;
   --  post (Ok = NoError) or (Ok = TypeMismatch) or (Ok = overflow);

   ----------------------------------------------------------------------------

   procedure Negate (Num : in out Value);
   --# derives Num from *;
   --  pre Num.Sort = IntegerValue or Num.Sort = RealValue;

   ----------------------------------------------------------------------------

   procedure Absolute (Num : in out Value);
   --# derives Num from *;
   --  pre Num.Sort = IntegerValue or Num.Sort = RealValue;

   ----------------------------------------------------------------------------

   procedure ConvertToInteger (Num : in out Value);
   --# derives Num from *;
   --  pre Num.Sort = IntegerValue or Num.Sort = RealValue;

   ----------------------------------------------------------------------------

   procedure ConvertToReal (Num : in out Value);
   --# derives Num from *;
   --  pre Num.Sort = IntegerValue or Num.Sort = RealValue;

   ----------------------------------------------------------------------------

   procedure Floor (Val    : in     Value;
                    Result :    out Value;
                    OK     :    out ErrorCode);
   --# derives OK,
   --#         Result from Val;
   --  pre Val.Sort = IntegerValue or Val.Sort = RealValue;
   --  post (Ok = NoError) or (Ok = Overflow)

   ----------------------------------------------------------------------------

   procedure Ceiling (Val    : in     Value;
                      Result :    out Value;
                      OK     :    out ErrorCode);
   --# derives OK,
   --#         Result from Val;
   --  pre Val.Sort = IntegerValue or Val.Sort = RealValue;
   --  post (Ok = NoError) or (Ok = Overflow)

   ----------------------------------------------------------------------------

   procedure Add (FirstNum, SecondNum : in     Value;
                  Result              :    out Value;
                  Ok                  :    out ErrorCode);
   --# derives Ok,
   --#         Result from FirstNum,
   --#                     SecondNum;
   --  post (Ok = NoError) or (Ok = TypeMismatch) or (Ok = Overflow);

   ----------------------------------------------------------------------------

   procedure Subtract (FirstNum, SecondNum : in     Value;
                       Result              :    out Value;
                       Ok                  :    out ErrorCode);
   --# derives Ok,
   --#         Result from FirstNum,
   --#                     SecondNum;
   --  post (Ok = NoError) or (Ok = TypeMismatch) or (Ok = Overflow);

   ----------------------------------------------------------------------------

   procedure Multiply (FirstNum, SecondNum : in     Value;
                       Result              :    out Value;
                       Ok                  :    out ErrorCode);
   --# derives Ok,
   --#         Result from FirstNum,
   --#                     SecondNum;
   --  post (Ok = NoError) or (Ok = TypeMismatch) or (Ok = Overflow);

   ----------------------------------------------------------------------------

   procedure Divide (FirstNum, SecondNum : in     Value;
                     Result              :    out Value;
                     Ok                  :    out ErrorCode);
   --# derives Ok,
   --#         Result from FirstNum,
   --#                     SecondNum;
   --  post (Ok = NoError) or (Ok = TypeMismatch) or (Ok = Overflow) or
   --       (Ok = DivideByZero);

   ----------------------------------------------------------------------------

   procedure Modulus (FirstNum, SecondNum : in     Value;
                      Result              :    out Value;
                      Ok                  :    out ErrorCode);
   --# derives Ok,
   --#         Result from FirstNum,
   --#                     SecondNum;
   --  post (Ok = NoError) or (Ok = TypeMismatch) or (Ok = IllegalOperation) or
   --       (Ok = DivideByZero);

   ----------------------------------------------------------------------------

   procedure Remainder (FirstNum, SecondNum : in     Value;
                        Result              :    out Value;
                        Ok                  :    out ErrorCode);
   --# derives Ok,
   --#         Result from FirstNum,
   --#                     SecondNum;
   --  post (Ok = NoError) or (Ok = TypeMismatch) or (Ok = IllegalOperation) or
   --       (Ok = DivideByZero);

   ----------------------------------------------------------------------------

   procedure Greater (FirstNum, SecondNum : in     Value;
                      Result              :    out Value;
                      Ok                  :    out ErrorCode);
   --# derives Ok,
   --#         Result from FirstNum,
   --#                     SecondNum;
   --  post (Ok = NoError) or (Ok = TypeMismatch);

   ----------------------------------------------------------------------------

   procedure Lesser (FirstNum, SecondNum : in     Value;
                     Result              :    out Value;
                     Ok                  :    out ErrorCode);
   --# derives Ok,
   --#         Result from FirstNum,
   --#                     SecondNum;
   --  post (Ok = NoError) or (Ok = TypeMismatch);

   ----------------------------------------------------------------------------

   procedure LesserOrEqual (FirstNum, SecondNum : in     Value;
                            Result              :    out Value;
                            Ok                  :    out ErrorCode);
   --# derives Ok,
   --#         Result from FirstNum,
   --#                     SecondNum;
   --  post (Ok = NoError) or (Ok = TypeMismatch);

   ----------------------------------------------------------------------------

   procedure GreaterOrEqual (FirstNum, SecondNum : in     Value;
                             Result              :    out Value;
                             Ok                  :    out ErrorCode);
   --# derives Ok,
   --#         Result from FirstNum,
   --#                     SecondNum;
   --  post (Ok = NoError) or (Ok = TypeMismatch);

   ----------------------------------------------------------------------------

   procedure InsideRange (Val, LowerBound, UpperBound : in     Value;
                          Result                      :    out Value;
                          Ok                          :    out ErrorCode);
   --# derives Ok,
   --#         Result from LowerBound,
   --#                     UpperBound,
   --#                     Val;
   --  post (Ok = NoError) or (Ok = TypeMismatch);

   ----------------------------------------------------------------------------

   procedure OutsideRange (Val, LowerBound, UpperBound : in     Value;
                           Result                      :    out Value;
                           Ok                          :    out ErrorCode);
   --# derives Ok,
   --#         Result from LowerBound,
   --#                     UpperBound,
   --#                     Val;
   --  post (Ok = NoError) or (Ok = TypeMismatch);

   ----------------------------------------------------------------------------

   procedure RaiseByPower (FirstNum, SecondNum : in     Value;
                           Result              :    out Value;
                           Ok                  :    out ErrorCode);
   --# derives Ok,
   --#         Result from FirstNum,
   --#                     SecondNum;
   --  post (Ok = NoError) or (Ok = IllegalOperation) or (Ok = OverFlow);

   ----------------------------------------------------------------------------
   -- Support for non-numeric types
   ----------------------------------------------------------------------------
   function AndOp (LeftVal, RightVal : Value) return Value;
   ----------------------------------------------------------------------------
   function OrOp (LeftVal, RightVal : Value) return Value;
   ----------------------------------------------------------------------------
   function XorOp (LeftVal, RightVal : Value) return Value;
   ----------------------------------------------------------------------------
   procedure NotOp (TheVal : in out Value);
   --# derives TheVal from *;
   --  pre TheVal.Sort = TruthValue

   ----------------------------------------------------------------------------
   procedure ModularNotOp (TheVal     : in out Value;
                           TheModulus : in     Value);
   --# derives TheVal from *,
   --#                     TheModulus;
   --  pre TheVal.Sort = IntegerValue and IsAPositivePowerOf2 (TheModulus);

   ----------------------------------------------------------------------------

   procedure ValueToBool (TheVal : in     Value;
                          Result :    out Boolean;
                          Ok     :    out ErrorCode);
   --# derives Ok,
   --#         Result from TheVal;
   --  post (Ok = NoError) or (Ok = TypeMismatch)

   ----------------------------------------------------------------------------

   function BoolToValue (B : Boolean) return Value;

   ----------------------------------------------------------------------------

   procedure PredOp (TheVal : in out Value;
                     Ok     :    out ErrorCode);
   --# derives Ok,
   --#         TheVal from TheVal;
   --  post (Ok = NoError) or (Ok = TypeMismatch)

   ----------------------------------------------------------------------------

   procedure SuccOp (TheVal : in out Value;
                     Ok     :    out ErrorCode);
   --# derives Ok,
   --#         TheVal from TheVal;
   --  post (Ok = NoError) or (Ok = TypeMismatch)

   ----------------------------------------------------------------------------

   function MakeEnum (Pos : Natural) return Value;

   ----------------------------------------------------------------------------

   function IsIntegerValue (Val : Value) return Boolean;

   function IsRealValue (Val : Value) return Boolean;

   ----------------------------------------------------------------------------
   --converts real value to integer value rounding away from 0 as required by
   --Ada 95 LRM 4.9(33) and LRM 4.9(40).

   function Ada95RealToInteger (TheReal : Value) return Value;

   ----------------------------------------------------------------------------

   -- returns True for 1, 2, 4, 8, 16 ... useful for wellformedness
   -- of modular type declarations
   function IsAPositivePowerOf2 (Num : in Value) return Boolean;

private

   --------------- IMPORTANT -----------------------------------------------
   -- MaxLength defines the size of the numbers that can be supported
   -- to full precision.
   --
   -- If we want to support a floating point defined by
   --     1 sign bit
   --     e exponent bits
   --     s significand bits
   -- The largest number that can be represented is   2 ** (2**(e-1))
   -- The smallest number that can be represented is  2 ** -((2**(e-1))+s-1)
   --
   -- In order to represent any number in this range to the precision
   -- implied by the smallest number then in the numerator/denominator format
   -- the numerator must be able to represent 2 ** ((2**e) + s -1)

   -- So we require MaxLength > ((2**e) + s-1) log 2
   --
   --                                e    s     MaxLength >
   -- IEEE Single Precision Float    8    23     84
   -- IEEE Double Precision Float    11   52    632
   -------------------------------------------------------------------------

   MaxLength : constant Integer := 640;

   subtype LengthRange is Integer range 0 .. MaxLength;
   subtype PosRange is Integer range 1 .. MaxLength;

   type Digit is range 0 .. 15;
   for Digit'Size use 4;

   type ValueType is (RealValue, IntegerValue, TruthValue, UnknownValue);

   type ValueArray is array (PosRange) of Digit;
   pragma Pack (ValueArray);

   --NB.  Values are stored with LSD in Numerals(1) and MSD in
   --                                    Numerals(Length)
   type Part is record
      Numerals   : ValueArray;
      Length     : LengthRange;
      Overflowed : Boolean;
   end record;

   type Value is record
      Numerator   : Part;
      Denominator : Part;
      IsPositive  : Boolean;
      Sort        : ValueType;
   end record;

   ------------------------IMPORTANT--------------------------------------
   -- Modular Type support
   --
   -- The largest modular type supported is 2**BinaryMaxLength.
   --
   -- The value of BinaryMaxLength has an upper bound of
   --    |_ MaxLength / Log 2 _|
   -- which is the largest power of 2 that can be evaluated in a ValueArray.
   --
   -- These values are stored with LSB in element 0,
   -- and MSB in element BinaryMaxLength
   -----------------------------------------------------------------------
   BinaryMaxLength : constant Integer := 211;
   subtype BinaryLengthRange is Integer range 0 .. BinaryMaxLength;
   type Bits is array (BinaryLengthRange) of Boolean;

   ZeroBits : constant Bits := Bits'(others => False);

   ZeroPart : constant Part := Part'(Length     => 1,
                                     Numerals   => ValueArray'(PosRange => 0),
                                     Overflowed => False);

   OnePart : constant Part := Part'(Length     => 1,
                                    Numerals   => ValueArray'(1      => 1,
                                                              others => 0),
                                    Overflowed => False);

   TwoPart : constant Part := Part'(Length     => 1,
                                    Numerals   => ValueArray'(1      => 2,
                                                              others => 0),
                                    Overflowed => False);

   ZeroReal : constant Value := Value'(Numerator   => ZeroPart,
                                       Denominator => OnePart,
                                       IsPositive  => True,
                                       Sort        => RealValue);

   ExactHalf : constant Value := Value'(Numerator   => OnePart,
                                        Denominator => TwoPart,
                                        IsPositive  => True,
                                        Sort        => RealValue);

   ZeroInteger : constant Value :=
     Value'(Numerator   => ZeroPart,
            Denominator => OnePart,
            IsPositive  => True,
            Sort        => IntegerValue);

   OneInteger : constant Value := Value'(Numerator   => OnePart,
                                         Denominator => OnePart,
                                         IsPositive  => True,
                                         Sort        => IntegerValue);

   NoValue : constant Value := Value'(Numerator   => ZeroPart,
                                      Denominator => OnePart,
                                      IsPositive  => True,
                                      Sort        => UnknownValue);

   FalseValue : constant Value := Value'(Numerator   => ZeroPart,
                                         Denominator => ZeroPart,
                                         IsPositive  => False,
                                         Sort        => TruthValue);

   TrueValue : constant Value := Value'(Numerator   => ZeroPart,
                                        Denominator => ZeroPart,
                                        IsPositive  => True,
                                        Sort        => TruthValue);
end Maths;