1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
|
-------------------------------------------------------------------------------
-- (C) Altran Praxis Limited
-------------------------------------------------------------------------------
--
-- The SPARK toolset is free software; you can redistribute it and/or modify it
-- under terms of the GNU General Public License as published by the Free
-- Software Foundation; either version 3, or (at your option) any later
-- version. The SPARK toolset is distributed in the hope that it will be
-- useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
-- Public License for more details. You should have received a copy of the GNU
-- General Public License distributed with the SPARK toolset; see file
-- COPYING3. If not, go to http://www.gnu.org/licenses for a complete copy of
-- the license.
--
--=============================================================================
with E_Strings;
with LexTokenManager;
use type LexTokenManager.Str_Comp_Result;
--# inherit E_Strings,
--# LexTokenManager,
--# SPARK_IO;
package Maths is
type Value is private;
NoValue : constant Value;
ZeroReal : constant Value;
ZeroInteger : constant Value;
OneInteger : constant Value;
ExactHalf : constant Value;
TrueValue : constant Value;
FalseValue : constant Value;
type ErrorCode is (
NoError,
IllegalValue, --ie. not a valid SPARK literal
IllegalOperation, --ie. wrong for Value types passed
OverFlow, --ie. too many digits for array
DivideByZero,
TypeMismatch,
ConstraintError); --eg. pred(t'base'first)
----------------------------------------------------------------------------
--Conversion of numeric literals
procedure LiteralToValue (Str : in LexTokenManager.Lex_String;
Num : out Value;
OK : out ErrorCode);
--# global in LexTokenManager.State;
--# derives Num,
--# OK from LexTokenManager.State,
--# Str;
-- post (Ok = NoError) or (Ok = illegalValue) or (Ok = overflow);
----------------------------------------------------------------------------
function IntegerToValue (I : Integer) return Value;
---------------------------------------------------------------------------
procedure StorageRep (Num : in Value;
Rep : out LexTokenManager.Lex_String);
--# global in out LexTokenManager.State;
--# derives LexTokenManager.State,
--# Rep from LexTokenManager.State,
--# Num;
----------------------------------------------------------------------------
function ValueRep (StoreRep : LexTokenManager.Lex_String) return Value;
--# global in LexTokenManager.State;
--caution, although this function turns a LexString into a value it is
--not the same as procedure LiteralToValue. This one converts only
--things which were first converted by StorageRep. LiteralToValue can parse
--any numeric literal to a value.
----------------------------------------------------------------------------
function HasNoValue (Num : Value) return Boolean;
pragma Inline (HasNoValue);
----------------------------------------------------------------------------
function ValueToString (Num : Value) return E_Strings.T;
----------------------------------------------------------------------------
procedure ValueToInteger (Num : in Value;
Int : out Integer;
Ok : out ErrorCode);
--# derives Int,
--# Ok from Num;
-- post (Ok = NoError) or (Ok = TypeMismatch) or (Ok = overflow);
----------------------------------------------------------------------------
procedure Negate (Num : in out Value);
--# derives Num from *;
-- pre Num.Sort = IntegerValue or Num.Sort = RealValue;
----------------------------------------------------------------------------
procedure Absolute (Num : in out Value);
--# derives Num from *;
-- pre Num.Sort = IntegerValue or Num.Sort = RealValue;
----------------------------------------------------------------------------
procedure ConvertToInteger (Num : in out Value);
--# derives Num from *;
-- pre Num.Sort = IntegerValue or Num.Sort = RealValue;
----------------------------------------------------------------------------
procedure ConvertToReal (Num : in out Value);
--# derives Num from *;
-- pre Num.Sort = IntegerValue or Num.Sort = RealValue;
----------------------------------------------------------------------------
procedure Floor (Val : in Value;
Result : out Value;
OK : out ErrorCode);
--# derives OK,
--# Result from Val;
-- pre Val.Sort = IntegerValue or Val.Sort = RealValue;
-- post (Ok = NoError) or (Ok = Overflow)
----------------------------------------------------------------------------
procedure Ceiling (Val : in Value;
Result : out Value;
OK : out ErrorCode);
--# derives OK,
--# Result from Val;
-- pre Val.Sort = IntegerValue or Val.Sort = RealValue;
-- post (Ok = NoError) or (Ok = Overflow)
----------------------------------------------------------------------------
procedure Add (FirstNum, SecondNum : in Value;
Result : out Value;
Ok : out ErrorCode);
--# derives Ok,
--# Result from FirstNum,
--# SecondNum;
-- post (Ok = NoError) or (Ok = TypeMismatch) or (Ok = Overflow);
----------------------------------------------------------------------------
procedure Subtract (FirstNum, SecondNum : in Value;
Result : out Value;
Ok : out ErrorCode);
--# derives Ok,
--# Result from FirstNum,
--# SecondNum;
-- post (Ok = NoError) or (Ok = TypeMismatch) or (Ok = Overflow);
----------------------------------------------------------------------------
procedure Multiply (FirstNum, SecondNum : in Value;
Result : out Value;
Ok : out ErrorCode);
--# derives Ok,
--# Result from FirstNum,
--# SecondNum;
-- post (Ok = NoError) or (Ok = TypeMismatch) or (Ok = Overflow);
----------------------------------------------------------------------------
procedure Divide (FirstNum, SecondNum : in Value;
Result : out Value;
Ok : out ErrorCode);
--# derives Ok,
--# Result from FirstNum,
--# SecondNum;
-- post (Ok = NoError) or (Ok = TypeMismatch) or (Ok = Overflow) or
-- (Ok = DivideByZero);
----------------------------------------------------------------------------
procedure Modulus (FirstNum, SecondNum : in Value;
Result : out Value;
Ok : out ErrorCode);
--# derives Ok,
--# Result from FirstNum,
--# SecondNum;
-- post (Ok = NoError) or (Ok = TypeMismatch) or (Ok = IllegalOperation) or
-- (Ok = DivideByZero);
----------------------------------------------------------------------------
procedure Remainder (FirstNum, SecondNum : in Value;
Result : out Value;
Ok : out ErrorCode);
--# derives Ok,
--# Result from FirstNum,
--# SecondNum;
-- post (Ok = NoError) or (Ok = TypeMismatch) or (Ok = IllegalOperation) or
-- (Ok = DivideByZero);
----------------------------------------------------------------------------
procedure Greater (FirstNum, SecondNum : in Value;
Result : out Value;
Ok : out ErrorCode);
--# derives Ok,
--# Result from FirstNum,
--# SecondNum;
-- post (Ok = NoError) or (Ok = TypeMismatch);
----------------------------------------------------------------------------
procedure Lesser (FirstNum, SecondNum : in Value;
Result : out Value;
Ok : out ErrorCode);
--# derives Ok,
--# Result from FirstNum,
--# SecondNum;
-- post (Ok = NoError) or (Ok = TypeMismatch);
----------------------------------------------------------------------------
procedure LesserOrEqual (FirstNum, SecondNum : in Value;
Result : out Value;
Ok : out ErrorCode);
--# derives Ok,
--# Result from FirstNum,
--# SecondNum;
-- post (Ok = NoError) or (Ok = TypeMismatch);
----------------------------------------------------------------------------
procedure GreaterOrEqual (FirstNum, SecondNum : in Value;
Result : out Value;
Ok : out ErrorCode);
--# derives Ok,
--# Result from FirstNum,
--# SecondNum;
-- post (Ok = NoError) or (Ok = TypeMismatch);
----------------------------------------------------------------------------
procedure InsideRange (Val, LowerBound, UpperBound : in Value;
Result : out Value;
Ok : out ErrorCode);
--# derives Ok,
--# Result from LowerBound,
--# UpperBound,
--# Val;
-- post (Ok = NoError) or (Ok = TypeMismatch);
----------------------------------------------------------------------------
procedure OutsideRange (Val, LowerBound, UpperBound : in Value;
Result : out Value;
Ok : out ErrorCode);
--# derives Ok,
--# Result from LowerBound,
--# UpperBound,
--# Val;
-- post (Ok = NoError) or (Ok = TypeMismatch);
----------------------------------------------------------------------------
procedure RaiseByPower (FirstNum, SecondNum : in Value;
Result : out Value;
Ok : out ErrorCode);
--# derives Ok,
--# Result from FirstNum,
--# SecondNum;
-- post (Ok = NoError) or (Ok = IllegalOperation) or (Ok = OverFlow);
----------------------------------------------------------------------------
-- Support for non-numeric types
----------------------------------------------------------------------------
function AndOp (LeftVal, RightVal : Value) return Value;
----------------------------------------------------------------------------
function OrOp (LeftVal, RightVal : Value) return Value;
----------------------------------------------------------------------------
function XorOp (LeftVal, RightVal : Value) return Value;
----------------------------------------------------------------------------
procedure NotOp (TheVal : in out Value);
--# derives TheVal from *;
-- pre TheVal.Sort = TruthValue
----------------------------------------------------------------------------
procedure ModularNotOp (TheVal : in out Value;
TheModulus : in Value);
--# derives TheVal from *,
--# TheModulus;
-- pre TheVal.Sort = IntegerValue and IsAPositivePowerOf2 (TheModulus);
----------------------------------------------------------------------------
procedure ValueToBool (TheVal : in Value;
Result : out Boolean;
Ok : out ErrorCode);
--# derives Ok,
--# Result from TheVal;
-- post (Ok = NoError) or (Ok = TypeMismatch)
----------------------------------------------------------------------------
function BoolToValue (B : Boolean) return Value;
----------------------------------------------------------------------------
procedure PredOp (TheVal : in out Value;
Ok : out ErrorCode);
--# derives Ok,
--# TheVal from TheVal;
-- post (Ok = NoError) or (Ok = TypeMismatch)
----------------------------------------------------------------------------
procedure SuccOp (TheVal : in out Value;
Ok : out ErrorCode);
--# derives Ok,
--# TheVal from TheVal;
-- post (Ok = NoError) or (Ok = TypeMismatch)
----------------------------------------------------------------------------
function MakeEnum (Pos : Natural) return Value;
----------------------------------------------------------------------------
function IsIntegerValue (Val : Value) return Boolean;
function IsRealValue (Val : Value) return Boolean;
----------------------------------------------------------------------------
--converts real value to integer value rounding away from 0 as required by
--Ada 95 LRM 4.9(33) and LRM 4.9(40).
function Ada95RealToInteger (TheReal : Value) return Value;
----------------------------------------------------------------------------
-- returns True for 1, 2, 4, 8, 16 ... useful for wellformedness
-- of modular type declarations
function IsAPositivePowerOf2 (Num : in Value) return Boolean;
private
--------------- IMPORTANT -----------------------------------------------
-- MaxLength defines the size of the numbers that can be supported
-- to full precision.
--
-- If we want to support a floating point defined by
-- 1 sign bit
-- e exponent bits
-- s significand bits
-- The largest number that can be represented is 2 ** (2**(e-1))
-- The smallest number that can be represented is 2 ** -((2**(e-1))+s-1)
--
-- In order to represent any number in this range to the precision
-- implied by the smallest number then in the numerator/denominator format
-- the numerator must be able to represent 2 ** ((2**e) + s -1)
-- So we require MaxLength > ((2**e) + s-1) log 2
--
-- e s MaxLength >
-- IEEE Single Precision Float 8 23 84
-- IEEE Double Precision Float 11 52 632
-------------------------------------------------------------------------
MaxLength : constant Integer := 640;
subtype LengthRange is Integer range 0 .. MaxLength;
subtype PosRange is Integer range 1 .. MaxLength;
type Digit is range 0 .. 15;
for Digit'Size use 4;
type ValueType is (RealValue, IntegerValue, TruthValue, UnknownValue);
type ValueArray is array (PosRange) of Digit;
pragma Pack (ValueArray);
--NB. Values are stored with LSD in Numerals(1) and MSD in
-- Numerals(Length)
type Part is record
Numerals : ValueArray;
Length : LengthRange;
Overflowed : Boolean;
end record;
type Value is record
Numerator : Part;
Denominator : Part;
IsPositive : Boolean;
Sort : ValueType;
end record;
------------------------IMPORTANT--------------------------------------
-- Modular Type support
--
-- The largest modular type supported is 2**BinaryMaxLength.
--
-- The value of BinaryMaxLength has an upper bound of
-- |_ MaxLength / Log 2 _|
-- which is the largest power of 2 that can be evaluated in a ValueArray.
--
-- These values are stored with LSB in element 0,
-- and MSB in element BinaryMaxLength
-----------------------------------------------------------------------
BinaryMaxLength : constant Integer := 211;
subtype BinaryLengthRange is Integer range 0 .. BinaryMaxLength;
type Bits is array (BinaryLengthRange) of Boolean;
ZeroBits : constant Bits := Bits'(others => False);
ZeroPart : constant Part := Part'(Length => 1,
Numerals => ValueArray'(PosRange => 0),
Overflowed => False);
OnePart : constant Part := Part'(Length => 1,
Numerals => ValueArray'(1 => 1,
others => 0),
Overflowed => False);
TwoPart : constant Part := Part'(Length => 1,
Numerals => ValueArray'(1 => 2,
others => 0),
Overflowed => False);
ZeroReal : constant Value := Value'(Numerator => ZeroPart,
Denominator => OnePart,
IsPositive => True,
Sort => RealValue);
ExactHalf : constant Value := Value'(Numerator => OnePart,
Denominator => TwoPart,
IsPositive => True,
Sort => RealValue);
ZeroInteger : constant Value :=
Value'(Numerator => ZeroPart,
Denominator => OnePart,
IsPositive => True,
Sort => IntegerValue);
OneInteger : constant Value := Value'(Numerator => OnePart,
Denominator => OnePart,
IsPositive => True,
Sort => IntegerValue);
NoValue : constant Value := Value'(Numerator => ZeroPart,
Denominator => OnePart,
IsPositive => True,
Sort => UnknownValue);
FalseValue : constant Value := Value'(Numerator => ZeroPart,
Denominator => ZeroPart,
IsPositive => False,
Sort => TruthValue);
TrueValue : constant Value := Value'(Numerator => ZeroPart,
Denominator => ZeroPart,
IsPositive => True,
Sort => TruthValue);
end Maths;
|