File: quant.pro

package info (click to toggle)
spark 2012.0.deb-9
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 29,260 kB
  • ctags: 3,098
  • sloc: ada: 186,243; cpp: 13,497; makefile: 685; yacc: 440; lex: 176; ansic: 119; sh: 16
file content (206 lines) | stat: -rw-r--r-- 7,896 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
% -----------------------------------------------------------------------------
%  (C) Altran Praxis Limited
% -----------------------------------------------------------------------------
% 
%  The SPARK toolset is free software; you can redistribute it and/or modify it
%  under terms of the GNU General Public License as published by the Free
%  Software Foundation; either version 3, or (at your option) any later
%  version. The SPARK toolset is distributed in the hope that it will be
%  useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
%  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
%  Public License for more details. You should have received a copy of the GNU
%  General Public License distributed with the SPARK toolset; see file
%  COPYING3. If not, go to http://www.gnu.org/licenses for a complete copy of
%  the license.
% 
% =============================================================================

%###############################################################################
% PURPOSE
%-------------------------------------------------------------------------------
% Support predicates for working with quantifiers.
%###############################################################################

%###############################################################################
% DEPENDENCIES
%###############################################################################

%###############################################################################
% TYPES
%###############################################################################

%###############################################################################
% DATA
%###############################################################################

%###############################################################################
% PREDICATES
%###############################################################################

%===============================================================================
% form_instantiable_hyp_facts.
%-------------------------------------------------------------------------------
% This predicate sets up a collection of predicates which can be
% pattern-matched against to automate use of the universally-quantified
% hypothesis formulae in discharging conclusions.
%
% Each for_all will typically be of the form (or worse!):
% for_all(i:ordtype, lwb <= i and i <= upb -> (element(a, [i]) >= x and
%         element(a, [i]) <= y))
%
% This predicate creates a set of facts of the form:
% get_forall_hyp(STROB >= LWB, CONDS, N)
%
% Where N is the hypothesis number from which the fact was derived, STROB
% is typically the structured object access, and CONDS is a list of
% conditions that must be true to allow the hypothesis to be used.  For
% instance, the above, if it were H3, would give us:
% get_forall_hyp(element(a, [I]) >= x, [lwb <= I, I <= upb], 3).
% get_forall_hyp(3, element(a, [I]) <= y, [lwb <= I, I <= upb], 3).
%
% In these facts, bound variables are replaced by Prolog variables, so
% standard Prolog pattern-matching may be used to find matches directly.
% Furthermore, these facts are set up to eliminate all nested for_alls as
% far as possible, so a formula:
% for_all(i:ordt1, l1 <= i and i <= u1 -> for_all(j:ordt2, l2 <= j and
%         j <= u2 -> (element(element(a, [i]), [j]) >= lwb and
%         element(element( a, [i]), [j]) <= upb)))
% Should yield a collection of facts such as:
% get_forall_hyp(element(element(a, [I]), [J]) >= lwb, [l1 <= I, I <= u1,
%              l2 <= J, J <= u2], 4).
% etc.
%===============================================================================

form_instantiable_hyp_facts :-
        prune_all_forall_hyp,
        fail.

form_instantiable_hyp_facts :-
        get_hyp(for_all(X:T, P), x, N),
        save_skolemisation_of(N, for_all(X:T, P)),
        fail.   /* force backtracking, to do all relevant hypotheses */

form_instantiable_hyp_facts.

%-------------------------------------------------------------------------------

save_skolemisation_of(N, Formula) :-
        skolemise(Formula, Skolemisation, Conditions),
        !,
        save_the_skolemisations(N, Skolemisation, Conditions),
        !.

%-------------------------------------------------------------------------------

save_the_skolemisations(N, VAR, C) :-
        var(VAR),
        !,
        add_forall_hyp(VAR, C, N).
save_the_skolemisations(N, X and Y, C) :-
        add_forall_hyp(X and Y, C, N),
        !,
        save_the_skolemisations(N, X, C),
        !,
        save_the_skolemisations(N, Y, C),
        !.
save_the_skolemisations(N, X, C) :-
        add_forall_hyp(X, C, N),
        !.

%===============================================================================
% skolemise(+Formula, -Goal_Part, -Conditions_List).
%-------------------------------------------------------------------------------
% Unwraps for_alls, splits implications up into Conditions (LHS) and Goal
% parts (RHS).  Unwrapping involves replacing the bound variable
% consistently throughout the formula with a new Prolog variable (the "X"
% in the relevant clauses below), but ensuring this variable does not
% become instantiated or "entangled" (to use the quantum terminology!)
% before the relevant expressions-with-Prolog-variables get returned ready
% to be asserted by save_the_skolemisations in the calling environment.
%===============================================================================

skolemise(VAR, VAR, []) :-      /* Need? */
        var(VAR),
        !.

skolemise(for_all(_V:_T, VAR), VAR, []) :-
        var(VAR),
        !.

skolemise(for_all(V:_T, LHS -> RHS), Formula, Conditions) :-
        introduce_prolog_variable(_X, V, LHS -> RHS, L -> R), /* X: new uncaptured variable */
        !,
        skolemise(R, Formula, C2),
        form_conditions(L, C1),
        !,
        append(C1, C2, Conditions).

skolemise(for_all(V:_T, RHS), Formula, Conditions) :-   /* No implication */
        introduce_prolog_variable(_X, V, RHS, R),
        !,
        skolemise(R, Formula, Conditions).

skolemise(LHS -> RHS, Formula, Conditions) :-
        !,
        skolemise(RHS, Formula, C2),
        form_conditions(LHS, C1),
        !,
        append(C1, C2, Conditions).

skolemise(Formula, Formula, []).

%-------------------------------------------------------------------------------

/* introduce_prolog_variable(NewVar, {for} Atom, OldFormula, NewFormula) */
introduce_prolog_variable(_X, _V, Old, Old) :-
        var(Old),
        !.

introduce_prolog_variable(X, V, V, X) :-
        !.

introduce_prolog_variable(_X, _V, Old, Old) :-
        atomic(Old),    /* and not equal to V */
        !.

introduce_prolog_variable(X, V, [H|T], New) :-
        !,
        introduce_prolog_variable_in_list(X, V, [H|T], New).

introduce_prolog_variable(_X, _V, [], []) :-
        !.

introduce_prolog_variable(X, V, Old, New) :-    /* Old must be composite */
        Old =.. [F|OldArgs],
        introduce_prolog_variable_in_list(X, V, OldArgs, NewArgs),
        !,
        New =.. [F|NewArgs].

%-------------------------------------------------------------------------------

introduce_prolog_variable_in_list(X, V, [OldH|OldT], [NewH|NewT]) :-
        introduce_prolog_variable(X, V, OldH, NewH),
        !,
        introduce_prolog_variable_in_list(X, V, OldT, NewT).

introduce_prolog_variable_in_list(_X, _V, [], []) :-
        !.

%-------------------------------------------------------------------------------

form_conditions(VAR, [VAR]) :-
        var(VAR),
        !.

form_conditions(L and R, List) :-
        form_conditions(L, L1),
        !,
        form_conditions(R, L2),
        !,
        append(L1, L2, List).

form_conditions(L, [L]) :-
        !.

%###############################################################################
% END-OF-FILE