1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
|
/*
* Flow - walk the linearized flowgraph, simplifying it as we
* go along.
*
* Copyright (C) 2004 Linus Torvalds
*/
#include <string.h>
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <stddef.h>
#include <assert.h>
#include "parse.h"
#include "expression.h"
#include "linearize.h"
#include "flow.h"
unsigned long bb_generation;
/*
* Dammit, if we have a phi-node followed by a conditional
* branch on that phi-node, we should damn well be able to
* do something about the source. Maybe.
*/
static int rewrite_branch(struct basic_block *bb,
struct basic_block **ptr,
struct basic_block *old,
struct basic_block *new)
{
if (*ptr != old || new == old)
return 0;
/* We might find new if-conversions or non-dominating CSEs */
repeat_phase |= REPEAT_CSE;
*ptr = new;
replace_bb_in_list(&bb->children, old, new, 1);
remove_bb_from_list(&old->parents, bb, 1);
add_bb(&new->parents, bb);
return 1;
}
/*
* Return the known truth value of a pseudo, or -1 if
* it's not known.
*/
static int pseudo_truth_value(pseudo_t pseudo)
{
switch (pseudo->type) {
case PSEUDO_VAL:
return !!pseudo->value;
case PSEUDO_REG: {
struct instruction *insn = pseudo->def;
/* A symbol address is always considered true.. */
if (insn->opcode == OP_SYMADDR && insn->target == pseudo)
return 1;
}
/* Fall through */
default:
return -1;
}
}
/*
* Does a basic block depend on the pseudos that "src" defines?
*/
static int bb_depends_on(struct basic_block *target, struct basic_block *src)
{
pseudo_t pseudo;
FOR_EACH_PTR(src->defines, pseudo) {
if (pseudo_in_list(target->needs, pseudo))
return 1;
} END_FOR_EACH_PTR(pseudo);
return 0;
}
/*
* When we reach here, we have:
* - a basic block that ends in a conditional branch and
* that has no side effects apart from the pseudos it
* may change.
* - the phi-node that the conditional branch depends on
* - full pseudo liveness information
*
* We need to check if any of the _sources_ of the phi-node
* may be constant, and not actually need this block at all.
*/
static int try_to_simplify_bb(struct basic_block *bb, struct instruction *first, struct instruction *second)
{
int changed = 0;
pseudo_t phi;
FOR_EACH_PTR(first->phi_list, phi) {
struct instruction *def = phi->def;
struct basic_block *source, *target;
pseudo_t pseudo;
struct instruction *br;
int true;
if (!def)
continue;
source = def->bb;
pseudo = def->src1;
if (!pseudo || !source)
continue;
br = last_instruction(source->insns);
if (!br)
continue;
if (br->opcode != OP_BR)
continue;
true = pseudo_truth_value(pseudo);
if (true < 0)
continue;
target = true ? second->bb_true : second->bb_false;
if (bb_depends_on(target, bb))
continue;
changed |= rewrite_branch(source, &br->bb_true, bb, target);
changed |= rewrite_branch(source, &br->bb_false, bb, target);
} END_FOR_EACH_PTR(phi);
return changed;
}
static int bb_has_side_effects(struct basic_block *bb)
{
struct instruction *insn;
FOR_EACH_PTR(bb->insns, insn) {
switch (insn->opcode) {
case OP_CALL:
/* FIXME! This should take "const" etc into account */
return 1;
case OP_STORE:
case OP_CONTEXT:
return 1;
case OP_ASM:
/* FIXME! This should take "volatile" etc into account */
return 1;
default:
continue;
}
} END_FOR_EACH_PTR(insn);
return 0;
}
static int simplify_phi_branch(struct basic_block *bb, struct instruction *br)
{
pseudo_t cond = br->cond;
struct instruction *def;
if (cond->type != PSEUDO_REG)
return 0;
def = cond->def;
if (def->bb != bb || def->opcode != OP_PHI)
return 0;
if (bb_has_side_effects(bb))
return 0;
return try_to_simplify_bb(bb, def, br);
}
static int simplify_branch_branch(struct basic_block *bb, struct instruction *br,
struct basic_block **target_p, int true)
{
struct basic_block *target = *target_p, *final;
struct instruction *insn;
int retval;
if (target == bb)
return 0;
insn = last_instruction(target->insns);
if (!insn || insn->opcode != OP_BR || insn->cond != br->cond)
return 0;
/*
* Ahhah! We've found a branch to a branch on the same conditional!
* Now we just need to see if we can rewrite the branch..
*/
retval = 0;
final = true ? insn->bb_true : insn->bb_false;
if (bb_has_side_effects(target))
goto try_to_rewrite_target;
if (bb_depends_on(final, target))
goto try_to_rewrite_target;
return rewrite_branch(bb, target_p, target, final);
try_to_rewrite_target:
/*
* If we're the only parent, at least we can rewrite the
* now-known second branch.
*/
if (bb_list_size(target->parents) != 1)
return retval;
insert_branch(target, insn, final);
kill_instruction(insn);
return 1;
}
static int simplify_one_branch(struct basic_block *bb, struct instruction *br)
{
if (simplify_phi_branch(bb, br))
return 1;
return simplify_branch_branch(bb, br, &br->bb_true, 1) |
simplify_branch_branch(bb, br, &br->bb_false, 0);
}
static int simplify_branch_nodes(struct entrypoint *ep)
{
int changed = 0;
struct basic_block *bb;
FOR_EACH_PTR(ep->bbs, bb) {
struct instruction *br = last_instruction(bb->insns);
if (!br || br->opcode != OP_BR || !br->bb_false)
continue;
changed |= simplify_one_branch(bb, br);
} END_FOR_EACH_PTR(bb);
return changed;
}
/*
* This is called late - when we have intra-bb liveness information..
*/
int simplify_flow(struct entrypoint *ep)
{
return simplify_branch_nodes(ep);
}
static inline void concat_user_list(struct pseudo_user_list *src, struct pseudo_user_list **dst)
{
concat_ptr_list((struct ptr_list *)src, (struct ptr_list **)dst);
}
void convert_instruction_target(struct instruction *insn, pseudo_t src)
{
pseudo_t target;
struct pseudo_user *pu;
/*
* Go through the "insn->users" list and replace them all..
*/
target = insn->target;
if (target == src)
return;
FOR_EACH_PTR(target->users, pu) {
if (*pu->userp != VOID) {
assert(*pu->userp == target);
*pu->userp = src;
}
} END_FOR_EACH_PTR(pu);
concat_user_list(target->users, &src->users);
target->users = NULL;
}
void convert_load_instruction(struct instruction *insn, pseudo_t src)
{
convert_instruction_target(insn, src);
/* Turn the load into a no-op */
insn->opcode = OP_LNOP;
insn->bb = NULL;
}
static int overlapping_memop(struct instruction *a, struct instruction *b)
{
unsigned int a_start = a->offset << 3;
unsigned int b_start = b->offset << 3;
unsigned int a_size = a->size;
unsigned int b_size = b->size;
if (a_size + a_start <= b_start)
return 0;
if (b_size + b_start <= a_start)
return 0;
return 1;
}
static inline int same_memop(struct instruction *a, struct instruction *b)
{
return a->offset == b->offset && a->size == b->size;
}
/*
* Return 1 if "one" dominates the access to 'pseudo'
* in insn.
*
* Return 0 if it doesn't, and -1 if you don't know.
*/
int dominates(pseudo_t pseudo, struct instruction *insn, struct instruction *dom, int local)
{
int opcode = dom->opcode;
if (opcode == OP_CALL || opcode == OP_ENTRY)
return local ? 0 : -1;
if (opcode != OP_LOAD && opcode != OP_STORE)
return 0;
if (dom->src != pseudo) {
if (local)
return 0;
/* We don't think two explicitly different symbols ever alias */
if (dom->src->type == PSEUDO_SYM)
return 0;
/* We could try to do some alias analysis here */
return -1;
}
if (!same_memop(insn, dom)) {
if (dom->opcode == OP_LOAD)
return 0;
if (!overlapping_memop(insn, dom))
return 0;
return -1;
}
return 1;
}
static int find_dominating_parents(pseudo_t pseudo, struct instruction *insn,
struct basic_block *bb, unsigned long generation, struct pseudo_list **dominators,
int local, int loads)
{
struct basic_block *parent;
if (!bb->parents)
return !!local;
if (bb_list_size(bb->parents) > 1)
loads = 0;
FOR_EACH_PTR(bb->parents, parent) {
struct instruction *one;
struct instruction *br;
pseudo_t phi;
FOR_EACH_PTR_REVERSE(parent->insns, one) {
int dominance;
if (one == insn)
goto no_dominance;
dominance = dominates(pseudo, insn, one, local);
if (dominance < 0) {
if (one->opcode == OP_LOAD)
continue;
return 0;
}
if (!dominance)
continue;
if (one->opcode == OP_LOAD && !loads)
continue;
goto found_dominator;
} END_FOR_EACH_PTR_REVERSE(one);
no_dominance:
if (parent->generation == generation)
continue;
parent->generation = generation;
if (!find_dominating_parents(pseudo, insn, parent, generation, dominators, local, loads))
return 0;
continue;
found_dominator:
br = delete_last_instruction(&parent->insns);
phi = alloc_phi(parent, one->target, one->size);
phi->ident = phi->ident ? : pseudo->ident;
add_instruction(&parent->insns, br);
use_pseudo(insn, phi, add_pseudo(dominators, phi));
} END_FOR_EACH_PTR(parent);
return 1;
}
/*
* We should probably sort the phi list just to make it easier to compare
* later for equality.
*/
void rewrite_load_instruction(struct instruction *insn, struct pseudo_list *dominators)
{
pseudo_t new, phi;
/*
* Check for somewhat common case of duplicate
* phi nodes.
*/
new = first_pseudo(dominators)->def->src1;
FOR_EACH_PTR(dominators, phi) {
if (new != phi->def->src1)
goto complex_phi;
new->ident = new->ident ? : phi->ident;
} END_FOR_EACH_PTR(phi);
/*
* All the same pseudo - mark the phi-nodes unused
* and convert the load into a LNOP and replace the
* pseudo.
*/
FOR_EACH_PTR(dominators, phi) {
phi->def->bb = NULL;
} END_FOR_EACH_PTR(phi);
convert_load_instruction(insn, new);
return;
complex_phi:
/* We leave symbol pseudos with a bogus usage list here */
if (insn->src->type != PSEUDO_SYM)
kill_use(&insn->src);
insn->opcode = OP_PHI;
insn->phi_list = dominators;
}
static int find_dominating_stores(pseudo_t pseudo, struct instruction *insn,
unsigned long generation, int local)
{
struct basic_block *bb = insn->bb;
struct instruction *one, *dom = NULL;
struct pseudo_list *dominators;
int partial;
/* Unreachable load? Undo it */
if (!bb) {
insn->opcode = OP_LNOP;
return 1;
}
partial = 0;
FOR_EACH_PTR(bb->insns, one) {
int dominance;
if (one == insn)
goto found;
dominance = dominates(pseudo, insn, one, local);
if (dominance < 0) {
/* Ignore partial load dominators */
if (one->opcode == OP_LOAD)
continue;
dom = NULL;
partial = 1;
continue;
}
if (!dominance)
continue;
dom = one;
partial = 0;
} END_FOR_EACH_PTR(one);
/* Whaa? */
warning(pseudo->sym->pos, "unable to find symbol read");
return 0;
found:
if (partial)
return 0;
if (dom) {
convert_load_instruction(insn, dom->target);
return 1;
}
/* OK, go find the parents */
bb->generation = generation;
dominators = NULL;
if (!find_dominating_parents(pseudo, insn, bb, generation, &dominators, local, 1))
return 0;
/* This happens with initial assignments to structures etc.. */
if (!dominators) {
if (!local)
return 0;
check_access(insn);
convert_load_instruction(insn, value_pseudo(0));
return 1;
}
/*
* If we find just one dominating instruction, we
* can turn it into a direct thing. Otherwise we'll
* have to turn the load into a phi-node of the
* dominators.
*/
rewrite_load_instruction(insn, dominators);
return 1;
}
static void kill_store(struct instruction *insn)
{
if (insn) {
insn->bb = NULL;
insn->opcode = OP_SNOP;
kill_use(&insn->target);
}
}
/* Kill a pseudo that is dead on exit from the bb */
static void kill_dead_stores(pseudo_t pseudo, unsigned long generation, struct basic_block *bb, int local)
{
struct instruction *insn;
struct basic_block *parent;
if (bb->generation == generation)
return;
bb->generation = generation;
FOR_EACH_PTR_REVERSE(bb->insns, insn) {
int opcode = insn->opcode;
if (opcode != OP_LOAD && opcode != OP_STORE) {
if (local)
continue;
if (opcode == OP_CALL)
return;
continue;
}
if (insn->src == pseudo) {
if (opcode == OP_LOAD)
return;
kill_store(insn);
continue;
}
if (local)
continue;
if (insn->src->type != PSEUDO_SYM)
return;
} END_FOR_EACH_PTR_REVERSE(insn);
FOR_EACH_PTR(bb->parents, parent) {
struct basic_block *child;
FOR_EACH_PTR(parent->children, child) {
if (child && child != bb)
return;
} END_FOR_EACH_PTR(child);
kill_dead_stores(pseudo, generation, parent, local);
} END_FOR_EACH_PTR(parent);
}
/*
* This should see if the "insn" trivially dominates some previous store, and kill the
* store if unnecessary.
*/
static void kill_dominated_stores(pseudo_t pseudo, struct instruction *insn,
unsigned long generation, struct basic_block *bb, int local, int found)
{
struct instruction *one;
struct basic_block *parent;
/* Unreachable store? Undo it */
if (!bb) {
kill_store(insn);
return;
}
if (bb->generation == generation)
return;
bb->generation = generation;
FOR_EACH_PTR_REVERSE(bb->insns, one) {
int dominance;
if (!found) {
if (one != insn)
continue;
found = 1;
continue;
}
dominance = dominates(pseudo, insn, one, local);
if (!dominance)
continue;
if (dominance < 0)
return;
if (one->opcode == OP_LOAD)
return;
kill_store(one);
} END_FOR_EACH_PTR_REVERSE(one);
if (!found) {
warning(bb->pos, "Unable to find instruction");
return;
}
FOR_EACH_PTR(bb->parents, parent) {
struct basic_block *child;
FOR_EACH_PTR(parent->children, child) {
if (child && child != bb)
return;
} END_FOR_EACH_PTR(child);
kill_dominated_stores(pseudo, insn, generation, parent, local, found);
} END_FOR_EACH_PTR(parent);
}
void check_access(struct instruction *insn)
{
pseudo_t pseudo = insn->src;
if (insn->bb && pseudo->type == PSEUDO_SYM) {
int offset = insn->offset, bit = (offset << 3) + insn->size;
struct symbol *sym = pseudo->sym;
if (sym->bit_size > 0 && (offset < 0 || bit > sym->bit_size))
warning(insn->pos, "invalid access %s '%s' (%d %d)",
offset < 0 ? "below" : "past the end of",
show_ident(sym->ident), offset, sym->bit_size >> 3);
}
}
static void simplify_one_symbol(struct entrypoint *ep, struct symbol *sym)
{
pseudo_t pseudo, src;
struct pseudo_user *pu;
struct instruction *def;
unsigned long mod;
int all, stores, complex;
/* Never used as a symbol? */
pseudo = sym->pseudo;
if (!pseudo)
return;
/* We don't do coverage analysis of volatiles.. */
if (sym->ctype.modifiers & MOD_VOLATILE)
return;
/* ..and symbols with external visibility need more care */
mod = sym->ctype.modifiers & (MOD_NONLOCAL | MOD_STATIC | MOD_ADDRESSABLE);
if (mod)
goto external_visibility;
def = NULL;
stores = 0;
complex = 0;
FOR_EACH_PTR(pseudo->users, pu) {
/* We know that the symbol-pseudo use is the "src" in the instruction */
struct instruction *insn = pu->insn;
switch (insn->opcode) {
case OP_STORE:
stores++;
def = insn;
break;
case OP_LOAD:
break;
case OP_SYMADDR:
if (!insn->bb)
continue;
mod |= MOD_ADDRESSABLE;
goto external_visibility;
case OP_NOP:
case OP_SNOP:
case OP_LNOP:
case OP_PHI:
continue;
default:
warning(sym->pos, "symbol '%s' pseudo used in unexpected way", show_ident(sym->ident));
}
complex |= insn->offset;
} END_FOR_EACH_PTR(pu);
if (complex)
goto complex_def;
if (stores > 1)
goto multi_def;
/*
* Goodie, we have a single store (if even that) in the whole
* thing. Replace all loads with moves from the pseudo,
* replace the store with a def.
*/
src = VOID;
if (def)
src = def->target;
FOR_EACH_PTR(pseudo->users, pu) {
struct instruction *insn = pu->insn;
if (insn->opcode == OP_LOAD) {
check_access(insn);
convert_load_instruction(insn, src);
}
} END_FOR_EACH_PTR(pu);
/* Turn the store into a no-op */
kill_store(def);
return;
multi_def:
complex_def:
external_visibility:
all = 1;
FOR_EACH_PTR_REVERSE(pseudo->users, pu) {
struct instruction *insn = pu->insn;
if (insn->opcode == OP_LOAD)
all &= find_dominating_stores(pseudo, insn, ++bb_generation, !mod);
} END_FOR_EACH_PTR_REVERSE(pu);
/* If we converted all the loads, remove the stores. They are dead */
if (all && !mod) {
FOR_EACH_PTR(pseudo->users, pu) {
struct instruction *insn = pu->insn;
if (insn->opcode == OP_STORE)
kill_store(insn);
} END_FOR_EACH_PTR(pu);
} else {
/*
* If we couldn't take the shortcut, see if we can at least kill some
* of them..
*/
FOR_EACH_PTR(pseudo->users, pu) {
struct instruction *insn = pu->insn;
if (insn->opcode == OP_STORE)
kill_dominated_stores(pseudo, insn, ++bb_generation, insn->bb, !mod, 0);
} END_FOR_EACH_PTR(pu);
if (!(mod & (MOD_NONLOCAL | MOD_STATIC))) {
struct basic_block *bb;
FOR_EACH_PTR(ep->bbs, bb) {
if (!bb->children)
kill_dead_stores(pseudo, ++bb_generation, bb, !mod);
} END_FOR_EACH_PTR(bb);
}
}
return;
}
void simplify_symbol_usage(struct entrypoint *ep)
{
pseudo_t pseudo;
FOR_EACH_PTR(ep->accesses, pseudo) {
simplify_one_symbol(ep, pseudo->sym);
} END_FOR_EACH_PTR(pseudo);
}
static void mark_bb_reachable(struct basic_block *bb, unsigned long generation)
{
struct basic_block *child;
if (bb->generation == generation)
return;
bb->generation = generation;
FOR_EACH_PTR(bb->children, child) {
mark_bb_reachable(child, generation);
} END_FOR_EACH_PTR(child);
}
static void kill_defs(struct instruction *insn)
{
pseudo_t target = insn->target;
if (!has_use_list(target))
return;
if (target->def != insn)
return;
convert_instruction_target(insn, VOID);
}
void kill_bb(struct basic_block *bb)
{
struct instruction *insn;
struct basic_block *child, *parent;
FOR_EACH_PTR(bb->insns, insn) {
kill_instruction(insn);
kill_defs(insn);
/*
* We kill unreachable instructions even if they
* otherwise aren't "killable" (e.g. volatile loads)
*/
insn->bb = NULL;
} END_FOR_EACH_PTR(insn);
bb->insns = NULL;
FOR_EACH_PTR(bb->children, child) {
remove_bb_from_list(&child->parents, bb, 0);
} END_FOR_EACH_PTR(child);
bb->children = NULL;
FOR_EACH_PTR(bb->parents, parent) {
remove_bb_from_list(&parent->children, bb, 0);
} END_FOR_EACH_PTR(parent);
bb->parents = NULL;
}
void kill_unreachable_bbs(struct entrypoint *ep)
{
struct basic_block *bb;
unsigned long generation = ++bb_generation;
mark_bb_reachable(ep->entry->bb, generation);
FOR_EACH_PTR(ep->bbs, bb) {
if (bb->generation == generation)
continue;
/* Mark it as being dead */
kill_bb(bb);
bb->ep = NULL;
DELETE_CURRENT_PTR(bb);
} END_FOR_EACH_PTR(bb);
PACK_PTR_LIST(&ep->bbs);
}
static int rewrite_parent_branch(struct basic_block *bb, struct basic_block *old, struct basic_block *new)
{
int changed = 0;
struct instruction *insn = last_instruction(bb->insns);
if (!insn)
return 0;
/* Infinite loops: let's not "optimize" them.. */
if (old == new)
return 0;
switch (insn->opcode) {
case OP_BR:
changed |= rewrite_branch(bb, &insn->bb_true, old, new);
changed |= rewrite_branch(bb, &insn->bb_false, old, new);
assert(changed);
return changed;
case OP_SWITCH: {
struct multijmp *jmp;
FOR_EACH_PTR(insn->multijmp_list, jmp) {
changed |= rewrite_branch(bb, &jmp->target, old, new);
} END_FOR_EACH_PTR(jmp);
assert(changed);
return changed;
}
default:
return 0;
}
}
static struct basic_block * rewrite_branch_bb(struct basic_block *bb, struct instruction *br)
{
struct basic_block *parent;
struct basic_block *target = br->bb_true;
struct basic_block *false = br->bb_false;
if (target && false) {
pseudo_t cond = br->cond;
if (cond->type != PSEUDO_VAL)
return NULL;
target = cond->value ? target : false;
}
/*
* We can't do FOR_EACH_PTR() here, because the parent list
* may change when we rewrite the parent.
*/
while ((parent = first_basic_block(bb->parents)) != NULL) {
if (!rewrite_parent_branch(parent, bb, target))
return NULL;
}
return target;
}
static void vrfy_bb_in_list(struct basic_block *bb, struct basic_block_list *list)
{
if (bb) {
struct basic_block *tmp;
int no_bb_in_list = 0;
FOR_EACH_PTR(list, tmp) {
if (bb == tmp)
return;
} END_FOR_EACH_PTR(tmp);
assert(no_bb_in_list);
}
}
static void vrfy_parents(struct basic_block *bb)
{
struct basic_block *tmp;
FOR_EACH_PTR(bb->parents, tmp) {
vrfy_bb_in_list(bb, tmp->children);
} END_FOR_EACH_PTR(tmp);
}
static void vrfy_children(struct basic_block *bb)
{
struct basic_block *tmp;
struct instruction *br = last_instruction(bb->insns);
if (!br) {
assert(!bb->children);
return;
}
switch (br->opcode) {
struct multijmp *jmp;
case OP_BR:
vrfy_bb_in_list(br->bb_true, bb->children);
vrfy_bb_in_list(br->bb_false, bb->children);
break;
case OP_SWITCH:
case OP_COMPUTEDGOTO:
FOR_EACH_PTR(br->multijmp_list, jmp) {
vrfy_bb_in_list(jmp->target, bb->children);
} END_FOR_EACH_PTR(jmp);
break;
default:
break;
}
FOR_EACH_PTR(bb->children, tmp) {
vrfy_bb_in_list(bb, tmp->parents);
} END_FOR_EACH_PTR(tmp);
}
static void vrfy_bb_flow(struct basic_block *bb)
{
vrfy_children(bb);
vrfy_parents(bb);
}
void vrfy_flow(struct entrypoint *ep)
{
struct basic_block *bb;
struct basic_block *entry = ep->entry->bb;
FOR_EACH_PTR(ep->bbs, bb) {
if (bb == entry)
entry = NULL;
vrfy_bb_flow(bb);
} END_FOR_EACH_PTR(bb);
assert(!entry);
}
void pack_basic_blocks(struct entrypoint *ep)
{
struct basic_block *bb;
/* See if we can merge a bb into another one.. */
FOR_EACH_PTR(ep->bbs, bb) {
struct instruction *first, *insn;
struct basic_block *parent, *child, *last;
if (!bb_reachable(bb))
continue;
/*
* Just a branch?
*/
FOR_EACH_PTR(bb->insns, first) {
if (!first->bb)
continue;
switch (first->opcode) {
case OP_NOP: case OP_LNOP: case OP_SNOP:
continue;
case OP_BR: {
struct basic_block *replace;
replace = rewrite_branch_bb(bb, first);
if (replace) {
kill_bb(bb);
goto no_merge;
}
}
/* fallthrough */
default:
goto out;
}
} END_FOR_EACH_PTR(first);
out:
/*
* See if we only have one parent..
*/
last = NULL;
FOR_EACH_PTR(bb->parents, parent) {
if (last) {
if (last != parent)
goto no_merge;
continue;
}
last = parent;
} END_FOR_EACH_PTR(parent);
parent = last;
if (!parent || parent == bb)
continue;
/*
* Goodie. See if the parent can merge..
*/
FOR_EACH_PTR(parent->children, child) {
if (child != bb)
goto no_merge;
} END_FOR_EACH_PTR(child);
/*
* Merge the two.
*/
repeat_phase |= REPEAT_CSE;
parent->children = bb->children;
bb->children = NULL;
bb->parents = NULL;
FOR_EACH_PTR(parent->children, child) {
replace_bb_in_list(&child->parents, bb, parent, 0);
} END_FOR_EACH_PTR(child);
kill_instruction(delete_last_instruction(&parent->insns));
FOR_EACH_PTR(bb->insns, insn) {
if (insn->bb) {
assert(insn->bb == bb);
insn->bb = parent;
}
add_instruction(&parent->insns, insn);
} END_FOR_EACH_PTR(insn);
bb->insns = NULL;
no_merge:
/* nothing to do */;
} END_FOR_EACH_PTR(bb);
}
|