1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
c-----------------------------------------------------------------------
c contains the functions needed for defining the PDE poroblems.
c
c first for the scalar 5-point and 7-point PDE
c-----------------------------------------------------------------------
function afun (x,y,z)
real*8 afun, x,y,z
afun = -1.0d0
return
end
function bfun (x,y,z)
real*8 bfun, x,y,z
bfun = -1.0d0
return
end
function cfun (x,y,z)
real*8 cfun, x,y,z
cfun = -1.0d0
return
end
function dfun (x,y,z)
real*8 dfun, x,y,z
data gamma /100.0/
c dfun = gamma * exp( x * y )
dfun = 10.d0
return
end
function efun (x,y,z)
real*8 efun, x,y,z
data gamma /100.0/
c efun = gamma * exp( (- x) * y )
efun = 0.d0
return
end
function ffun (x,y,z)
real*8 ffun, x,y,z
ffun = 0.0
return
end
function gfun (x,y,z)
real*8 gfun, x,y,z
gfun = 0.0
return
end
function hfun(x, y, z)
real*8 hfun, x, y, z
hfun = 0.0
return
end
function betfun(side, x, y, z)
real*8 betfun, x, y, z
character*2 side
betfun = 1.0
return
end
function gamfun(side, x, y, z)
real*8 gamfun, x, y, z
character*2 side
if (side.eq.'x2') then
gamfun = 5.0
else if (side.eq.'y1') then
gamfun = 2.0
else if (side.eq.'y2') then
gamfun = 7.0
else
gamfun = 0.0
endif
return
end
c-----------------------------------------------------------------------
c functions for the block PDE's
c-----------------------------------------------------------------------
subroutine afunbl (nfree,x,y,z,coeff)
real*8 x, y, z, coeff(100)
do 2 j=1, nfree
do 1 i=1, nfree
coeff((j-1)*nfree+i) = 0.0d0
1 continue
coeff((j-1)*nfree+j) = -1.0d0
2 continue
return
end
subroutine bfunbl (nfree,x,y,z,coeff)
real*8 x, y, z, coeff(100)
do 2 j=1, nfree
do 1 i=1, nfree
coeff((j-1)*nfree+i) = 0.0d0
1 continue
coeff((j-1)*nfree+j) = -1.0d0
2 continue
return
end
subroutine cfunbl (nfree,x,y,z,coeff)
real*8 x, y, z, coeff(100)
do 2 j=1, nfree
do 1 i=1, nfree
coeff((j-1)*nfree+i) = 0.0d0
1 continue
coeff((j-1)*nfree+j) = -1.0d0
2 continue
return
end
subroutine dfunbl (nfree,x,y,z,coeff)
real*8 x, y, z, coeff(100)
do 2 j=1, nfree
do 1 i=1, nfree
coeff((j-1)*nfree+i) = 0.0d0
1 continue
2 continue
return
end
subroutine efunbl (nfree,x,y,z,coeff)
real*8 x, y, z, coeff(100)
do 2 j=1, nfree
do 1 i=1, nfree
coeff((j-1)*nfree+i) = 0.0d0
1 continue
2 continue
return
end
subroutine ffunbl (nfree,x,y,z,coeff)
real*8 x, y, z, coeff(100)
do 2 j=1, nfree
do 1 i=1, nfree
coeff((j-1)*nfree+i) = 0.0d0
1 continue
2 continue
return
end
subroutine gfunbl (nfree,x,y,z,coeff)
real*8 x, y, z, coeff(100)
do 2 j=1, nfree
do 1 i=1, nfree
coeff((j-1)*nfree+i) = 0.0d0
1 continue
2 continue
return
end
c-----------------------------------------------------------------------
c The material property function xyk for the
c finite element problem
c-----------------------------------------------------------------------
subroutine xyk(nel,xyke,x,y,ijk,node)
implicit real*8 (a-h,o-z)
dimension xyke(2,2), x(*), y(*), ijk(node,*)
c
c this is the identity matrix.
c
xyke(1,1) = 1.0d0
xyke(2,2) = 1.0d0
xyke(1,2) = 0.0d0
xyke(2,1) = 0.0d0
return
end
|