1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
|
subroutine refall(nx, nelx,ijk,node,ndeg,x,y,
* ichild,iparnts,nodcode,nxmax,nelmax,ierr)
implicit real*8 (a-h,o-z)
integer nx, nelx, node, ndeg, nxmax, nelmax
integer ichild(ndeg,1),iparnts(2,nx),ijk(node,*), nodcode(nx)
integer midnode(20),inod(20)
real*8 x(*),y(*)
c-------------------------------------------------------------
c refines a finite element grid using triangular elements.
c uses mid points to refine all the elements of the grid.
c
c nx = number of nodes at input
c nelx = number of elements at input
c ijk = connectivity matrix: for node k, ijk(*,k) point to the
c nodes of element k.
c node = first dimension of array ijk [should be >=3]
c ndeg = first dimension of array ichild which is at least as large
c as the max degree of each node
c x,y = real*8 arrays containing the x(*) and y(*) coordinates
c resp. of the nodes.
c ichild= list of the children of a node: ichild(1,k) stores
c the position in ichild(*,k) of the last child so far.
c (local use)
c iparnts= list of the 2 parents of each node.
c (local use)
c nodcode= boundary information list for each node with the
c following meaning:
c nodcode(i) = 0 --> node i is internal
c nodcode(i) = 1 --> node i is a boundary but not a corner point
c nodcode(i) = 2 --> node i is a corner point.
c corner elements are used only to generate the grid by refinement
c since they do not correspond to real elements.
c nxmax = maximum number of nodes allowed. If during the algorithm
c the number of nodes being created exceeds nxmax then
c refall quits without modifying the (x,y) xoordinates
c and nx, nelx. ijk is modified. Also ierr is set to 1.
c nelmax = same as above for number of elements allowed. See ierr..
c ierr = error message:
c 0 --> normal return
c 1 --> refall quit because nxmax was exceeded.
c 2 --> refall quit because nelmax was exceeded.
c--------------------------------------------------------------
c---------------------------------------------------------------
c inilitialize lists of children and parents --
c data structure is as follows
c ichild(1,k) stores the position of last child of node k so far in list
c ichild(j,k) , j .ge. 2 = list of children of node k.
c iparnts(1,k) and iparnts(2,k) are the two parents of node k.
c---------------------------------------------------------------
c------ do a first check :
if (nx .ge. nxmax) goto 800
if (nelx .ge. nelmax) goto 900
c------ initialize
do 1 k=1,nx
do 2 j=2,ndeg
ichild(j,k) = 0
2 continue
ichild(1,k) = 1
iparnts(1,k)= 0
iparnts(2,k)= 0
1 continue
c------- initialize nelxnew and nxnew
nelxnew = nelx
nxnew = nx
ierr = 0
c--------------------------------------------------------------
c main loop: scan all elements
c--------------------------------------------------------------
c do 100 nel = nelx,1,-1
do 100 nel = 1, nelx
c note : interesting question which order is best for parallelism?
c alternative order: do 100 nel = nelx, 1, -1
c
c------ unpack nodes of element
do 101 i=1,node
inod(i) = ijk(i,nel)
c convention: node after last node = first node.
inod(node+i) = inod(i)
midnode(i) = 0
101 continue
c--------------------------------------------------------------
c for each new potential node determine if it has already been
c numbered. a potential node is the middle of any two nodes ..
c--------------------------------------------------------------
do 80 ii=1,node
k1 = inod(ii)
k2 = inod(ii+1)
c------- test for current pair :
last = ichild(1,k1)
do 21 k=2,last
jchild = ichild(k,k1)
ipar1 = iparnts(1,jchild)
ipar2 = iparnts(2,jchild)
if( (ipar1 .eq. k1 .and. ipar2 .eq. k2) .or.
* (ipar2 .eq. k1 .and. ipar1 .eq. k2)) then
c node has already been created and numbered ....
midnode(ii) = jchild
c... therefore it must be an internal node
nodcode(jchild) = 0
c... and no new node to create.
goto 80
endif
c-----------------------------------------------------
21 continue
c
c else create a new node
c
nxnew = nxnew + 1
if (nxnew .gt. nxmax) goto 800
c-------
x(nxnew) = (x(k1) + x(k2))*0.5
y(nxnew) = (y(k1) + y(k2))*0.5
midnode(ii) = nxnew
c
c update nodcode information -- normally min0(nodcode(k1),nodcode(k2))
c
nodcode(nxnew) = min0(1,nodcode(k1),nodcode(k2))
c
c update parents and children's lists
c
iparnts(1,nxnew) = k1
iparnts(2,nxnew) = k2
c
last = last+1
ichild(last,k1) = nxnew
ichild(1,k1) = last
c
last = ichild(1,k2)+1
ichild(last,k2) = nxnew
ichild(1,k2) = last
c
80 continue
c
c------- replace current element by new one
c
do 81 i=1,node
jnod = midnode(i)
ijk(i,nel) = jnod
81 continue
c-------create new elements
do 82 ii=1, node
nelxnew = nelxnew+1
if (nelxnew .gt. nelmax) goto 900
ijk(1,nelxnew) = inod(ii)
k = ii
do jj=2,node
ijk(jj,nelxnew) = midnode(k)
k = k+2
if (k .gt. node) k = k-node
enddo
82 continue
c------ done !
100 continue
nx = nxnew
nelx = nelxnew
return
800 ierr = 1
return
900 ierr = 2
return
end
c
subroutine checkref(nx,nelx,ijk,node,nodcode,
* nbound, nxnew,nelxnew)
c-------------------------------------------------------------
c returns the expected the new number of nodes and
c elemnts of refall is applied to current grid once.
c
c nx = number of nodes at input
c nelx = number of elements at input
c ijk = connectivity matrix: for node k, ijk(*,k) point to the
c nodes of element k.
c nbound = number of boundary points on entry - enter zero if
c unknown
c
c nodcode= boundary information list for each node with the
c following meaning:
c nodcode(i) = 0 --> node i is internal
c nodcode(i) = 1 --> node i is a boundary but not a corner point
c nodcode(i) = 2 --> node i is a corner point.
c
c nxnew = new number of nodes if refall were to be applied
c nelxnew = same for nelx.
c--------------------------------------------------------------
integer ijk(node,1),nodcode(nx)
c
nelxnew = nelx*4
c
c count the number of boundary nodes
c
if (nbound .ne. 0) goto 2
do 1 j=1, nx
if (nodcode(j) .ge. 1) nbound = nbound+1
1 continue
c number of edges=[3*(number of elmts) + number of bound nodes ]/ 2
2 continue
nxnew = nx + (3*nelx+nbound)/2
nbound = 2*nbound
return
end
c-----------------------------------------------------------------------
subroutine unassbl (a,na,f,nx,nelx,ijk,nodcode,
* node,x,y,ierr,xyk)
c-----------------------------------------------------------------------
c a = un-assembled matrix on output
c na = 1-st dimension of a. a(na,node,node)
c
c f = right hand side (global load vector) in un-assembled form
c nx = number of nodes at input
c nelx = number of elements at input
c ijk = connectivity matrix: for node k, ijk(*,k) point to the
c nodes of element k.
c node = total number of nodal points in each element
c also second dimension of a.
c
c nodcode= boundary information list for each node with the
c following meaning:
c nodcode(i) = 0 --> node i is internal
c nodcode(i) = 1 --> node i is a boundary but not a corner point
c nodcode(i) = 2 --> node i is a corner point (corner points
c
c x,y = real*8 arrays containing the $x$ and $y$ coordinates
c resp. of the nodes.
c K11, K22, and K12 at that element.
c ierr = error message integer .
c ierr = 0 --> normal return
c ierr = 1 --> negative area encountered (due to bad
c numbering of nodes of an element)
c
c xyk = subroutine defining the material properties at each
c element. Form:
c call xyk(nel,xyke,x,y,ijk,node)
c--------------------------------------------------------------
implicit real*8 (a-h,o-z)
dimension a(na,node,node),ijk(node,1),x(1),y(1),f(node,1),
* ske(3,3),fe(3),xe(3),ye(3),xyke(2,2)
integer nodcode(1)
external xyk
c--------------------------------------------------------------
c initialize
c--------------------------------------------------------------
do 100 i=1, node
do 100 j=1, nx
f(i,j) = 0.0d0
100 continue
c---------------------------------------------------
c main loop
c---------------------------------------------------
do 102 nel=1, nelx
c
c get coordinetes of nodal points
c
do 104 i=1, node
j = ijk(i,nel)
xe(i) = x(j)
ye(i) = y(j)
104 continue
c
c compute determinant
c
det=xe(2)*(ye(3)-ye(1))+xe(3)*(ye(1)-ye(2))+xe(1)*(ye(2)-ye(3))
if ( det .le. 0.) then
print *, 'nel', nel, ' det = ' , det
print *, xe(1), xe(2), xe(3)
print *, ye(1), ye(2), ye(3)
end if
c
c set material properties
c
call xyk(xyke,x,y)
c
c construct element stiffness matrix
c
ierr = 0
call estif3(nel,ske,fe,det,xe,ye,xyke,ierr)
if (ierr .ne. 0) then
write (*,*) 'ERROR: estif3 gave an error',ierr
return
endif
c write (8,'(9f8.4)') ((ske(i,j),j=1,3),i=1,3)
c assemble: add element stiffness matrix to global matrix
c
do 120 ka=1, node
f(ka,nel) = fe(ka)
do 108 kb = 1,node
a(nel,ka,kb) = ske(ka,kb)
108 continue
120 continue
102 continue
return
end
c-----------------------------------------------------------------------
subroutine unassbl_lstif(a, na, f, nx, nelx, ijk, nodcode,
* node, x, y, ierr, xyk, funb, func, fung)
c-----------------------------------------------------------------------
c a = un-assembled matrix on output
c
c na = 1-st dimension of a. a(na,node,node)
c
c f = right hand side (global load vector) in un-assembled form
c
c nx = number of nodes at input
c
c nelx = number of elements at input
c
c ijk = connectivity matrix: for node k, ijk(*,k) point to the
c nodes of element k.
c
c nodcode= boundary information list for each node with the
c following meaning:
c nodcode(i) = 0 --> node i is internal
c nodcode(i) = 1 --> node i is a boundary but not a corner point
c nodcode(i) = 2 --> node i is a corner point (corner points
c
c node = total number of nodal points in each element
c also second dimension of a.
c
c x,y = real*8 arrays containing the $x$ and $y$ coordinates
c resp. of the nodes.
c K11, K22, and K12 at that element.
c
c ierr = error message integer .
c ierr = 0 --> normal return
c ierr = 1 --> negative area encountered (due to bad
c numbering of nodes of an element)
c
c xyk = subroutine defining the material properties at each
c element. Form: call xyk(xyke,x,y)
c
c funb, = functions needed for the definition of lstif3 problem
c func,
c fung
c--------------------------------------------------------------
c moulitsa@cs.umn.edu : It uses lstif3 problem
c--------------------------------------------------------------
implicit real*8 (a-h,o-z)
dimension a(na,node,node), ijk(node,1), x(1), y(1), f(node,1),
& ske(3,3), fe(3), xe(3), ye(3)
integer nodcode(1)
external xyk, funb, func, fung
c--------------------------------------------------------------
c initialize
c--------------------------------------------------------------
do i=1, node
do j=1, nx
f(i,j) = 0.0d0
end do
end do
c---------------------------------------------------
c main loop
c---------------------------------------------------
do nel=1, nelx
c
c get coordinetes of nodal points
c
do i=1, node
j = ijk(i,nel)
xe(i) = x(j)
ye(i) = y(j)
end do
c
c compute determinant
c
c det=xe(2)*(ye(3)-ye(1))+xe(3)*(ye(1)-ye(2))+xe(1)*(ye(2)-ye(3))
c if ( det .le. 0.) then
c print *, 'nel', nel, ' det = ' , det
c print *, xe(1), xe(2), xe(3)
c print *, ye(1), ye(2), ye(3)
c end if
c
c construct element stiffness matrix
c
ierr = 0
call lstif3(ske, fe, xe, ye, xyk, funb, func, fung)
c write (8,'(9f8.4)') ((ske(i,j),j=1,3),i=1,3)
c
c assemble: add element stiffness matrix to global matrix
c
do ka=1, node
f(ka,nel) = fe(ka)
do kb = 1,node
a(nel,ka,kb) = ske(ka,kb)
end do
end do
end do
return
end
c-----------------------------------------------------------------------
subroutine assmbo (nx, nelx, node, ijk, nodcode, x, y, a, ja,
* ia, f, iwk, jwk, ierr, xyk, funb, func, fung)
c-----------------------------------------------------------------------
c nx = number of nodes at input
c
c nelx = number of elements at input
c
c node = total number of nodal points in each element
c
c ijk = connectivity matrix: for node k, ijk(*,k) point to the
c nodes of element k.
c
c nodcode= boundary information list for each node with the
c following meaning:
c nodcode(i) = 0 --> node i is internal
c nodcode(i) = 1 --> node i is a boundary but not a corner point
c nodcode(i) = 2 --> node i is a corner point (corner points
c
c x,y = real arrays containing the $x$ and $y$ coordinates
c resp. of the nodes.
c
c a,ja,ia= assembled matrix on output
c
c f = right hand side (global load vector)
c
c iwk,jwk = two integer work arrays.
c
c ierr = error message integer .
c ierr = 0 --> normal return
c ierr = 1 --> negative area encountered (due to bad
c numbering of nodes of an element)
c
c xyk = subroutine defining the material properties at each
c element. Form:
c call xyk(nel,xyke,x,y,ijk,node) with on return
c xyke = material constant matrices.
c for each element nel, xyke(1,nel),xyke(2,nel)
c and xyke(3,nel) represent the constants
c K11, K22, and K12 at that element.
c--------------------------------------------------------------
c moulitsa@cs.umn.edu : It has been modified so as to handle
c more types of domains/meshes i.e. |\ /|
c | X |
c |/ \|
c--------------------------------------------------------------
implicit real*8 (a-h,o-z)
dimension a(*),ijk(node,1),x(1),y(1),f(1),ske(3,3),fe(3),
* xe(3),ye(3),iwk(1),jwk(1)
integer ia(1), ja(*), nodcode(1)
external xyk, funb, func, fung
c--------------------------------------------------------------
c initialize
c--------------------------------------------------------------
do i=1,nx
f(i) = 0.0
end do
c initialize pointer arrays.
do k=1,nx+1
ia(k) = 1
jwk(k) = 0
end do
do k=1,nelx
do j=1,node
knod = ijk(j,k)
ia(knod) = ia(knod) + 2
end do
end do
c---------------------------------------------------
do k=1, nx
if (nodcode(k) .ge.1 ) ia(k)=ia(k)+1
end do
c
ksav = ia(1)
ia(1) = 1
do j=2, nx+1
ksavn = ia(j)
ia(j) = ia(j-1) + ksav
iwk(j-1) = ia(j-1)-1
ksav = ksavn
end do
c-----------------
c main loop
c-----------------
do nel=1, nelx
c
c get coordinates of nodal points
c
do i=1, node
j = ijk(i,nel)
xe(i) = x(j)
ye(i) = y(j)
end do
c
c compute determinant
c
c det=xe(2)*(ye(3)-ye(1))+xe(3)*(ye(1)-ye(2))+xe(1)*(ye(2)-ye(3))
c
c set material properties
c
c call xyk(nel,xyke,x,y,ijk,node)
c
c construct element stiffness matrix
c
ierr = 0
c
c call evalg(nel, fe, xe, ye, fung, ierr)
c call estif3(nel,ske,fe,det,xe,ye,xyke,ierr)
call lstif3(ske, fe, xe, ye, xyk, funb, func, fung)
if (ierr .ne. 0) return
c
c assemble: add element stiffness matrix to global matrix
c
do ka=1, node
ii = ijk(ka,nel)
f(ii) = f(ii) + fe(ka)
c
c unpack row into jwk1
c
irowst = ia(ii)
ilast = iwk(ii)
do k=irowst,ilast
jwk(ja(k)) = k
end do
c
do kb = 1,node
c
c column number = jj
c
jj = ijk(kb,nel)
k = jwk(jj)
if (k .eq. 0) then
ilast = ilast+1
jwk(jj) = ilast
ja(ilast) = jj
a(ilast) = ske(ka,kb)
else
a(k) = a(k) + ske(ka,kb)
endif
end do
c refresh jwk
do k=irowst,ilast
jwk(ja(k)) = 0
end do
iwk(ii) = ilast
end do
c
end do
c squeeze away the zero entries
c added so as to handle more type of domains/meshes
do i=1, nx
ista=ia(i)
isto=ia(i+1)-1
do j=ista, isto
if (ja(j) .EQ. 0) then
iwk(i)=j-ista
go to 200
end if
end do
200 continue
end do
do i=2, nx
ksav=ia(i)
ia(i)=ia(i-1)+iwk(i-1)
ksavn=ia(i)
do j=0, iwk(i)-1
ja(ksavn+j)=ja(ksav+j)
a(ksavn+j) = a(ksav+j)
end do
end do
ia(nx+1)=ia(nx)+iwk(nx)
return
end
c-----------------------------------------------------------------------
subroutine assmbo2 (nx, nelx, node, ijk, nodcode, x, y, a, ja,
* ia, f, iwk, jwk, ierr, xyk, funb, func, fung)
c-----------------------------------------------------------------------
c nx = number of nodes at input
c
c nelx = number of elements at input
c
c node = total number of nodal points in each element
c
c ijk = connectivity matrix: for node k, ijk(*,k) point to the
c nodes of element k.
c
c nodcode= boundary information list for each node with the
c following meaning:
c nodcode(i) = 0 --> node i is internal
c nodcode(i) = 1 --> node i is a boundary but not a corner point
c nodcode(i) = 2 --> node i is a corner point (corner points
c
c x,y = real arrays containing the $x$ and $y$ coordinates
c resp. of the nodes.
c
c a,ja,ia= assembled matrix on output
c
c f = right hand side (global load vector)
c
c iwk,jwk = two integer work arrays.
c
c ierr = error message integer .
c ierr = 0 --> normal return
c ierr = 1 --> negative area encountered (due to bad
c numbering of nodes of an element)
c
c xyk = subroutine defining the material properties at each
c element. Form:
c call xyk(nel,xyke,x,y,ijk,node) with on return
c xyke = material constant matrices.
c for each element nel, xyke(1,nel),xyke(2,nel)
c and xyke(3,nel) represent the constants
c K11, K22, and K12 at that element.
c--------------------------------------------------------------
c
c moulitsa@cs.umn.edu : This routine yields the same results
c as assmbo. It differs in that it constructs the ia array
c by creating a list with the adjacent nodes for each node
c
c--------------------------------------------------------------
implicit real*8 (a-h,o-z)
dimension a(*),ijk(node,1),x(1),y(1),f(1),ske(3,3),fe(3),
* xe(3),ye(3),iwk(1),jwk(1), kwk(500)
integer ia(1), ja(*), nodcode(1)
external xyk, funb, func, fung
c--------------------------------------------------------------
c initialize
c--------------------------------------------------------------
do i=1,nx
f(i) = 0.0
iwk(i) = 0
kwk(i) = 0
end do
c iwk : how many elements a node belongs to
do k=1,nelx
do j=1,node
knod = ijk(j,k)
iwk(knod) = iwk(knod) + 1
end do
end do
c
c iwk : prepare for csr like format
ksav=iwk(1)
iwk(1)=1
do j=2, nx+1
ksavn = iwk(j)
iwk(j) = iwk(j-1) + ksav
ksav = ksavn
end do
c
c jwk : list of elements a node belongs to
k=1
do i=1,nelx
do j=1,node
knod = ijk(j,i)
k=iwk(knod)
jwk(k)=i
iwk(knod)=iwk(knod)+1
end do
end do
c iwk : transform iwk back to what it was
do i=nx+1,2,-1
iwk(i)=iwk(i-1)
end do
iwk(1)=1
c kwk : mark edges that a node is associated with
nedges=1
ia(1)=1
do i=1,nx
kwk(i)=i
do j=iwk(i), iwk(i+1)-1
do k=1, node
knod = ijk(k,jwk(j))
if ( kwk(knod) .NE. i) then
kwk(knod) = i
nedges=nedges+1
end if
end do
end do
ia(i+1)=nedges
end do
do i=2,nx+1
ia(i)=ia(i)+i-1
iwk(i-1)=ia(i-1)-1
jwk(i)=0
end do
jwk(1)=0
c-----------------
c main loop
c-----------------
do nel=1, nelx
c
c get coordinates of nodal points
c
do i=1, node
j = ijk(i,nel)
xe(i) = x(j)
ye(i) = y(j)
end do
c
c compute determinant
c
c det=xe(2)*(ye(3)-ye(1))+xe(3)*(ye(1)-ye(2))+xe(1)*(ye(2)-ye(3))
c
c set material properties
c
c call xyk(nel,xyke,x,y,ijk,node)
c
c construct element stiffness matrix
c
ierr = 0
c
c call evalg(nel, fe, xe, ye, fung, ierr)
c call estif3(nel,ske,fe,det,xe,ye,xyke,ierr)
call lstif3(ske, fe, xe, ye, xyk, funb, func, fung)
if (ierr .ne. 0) return
c
c assemble: add element stiffness matrix to global matrix
c
do ka=1, node
ii = ijk(ka,nel)
f(ii) = f(ii) + fe(ka)
c
c unpack row into jwk1
c
irowst = ia(ii)
ilast = iwk(ii)
do k=irowst,ilast
jwk(ja(k)) = k
end do
c
do kb = 1,node
c
c column number = jj
c
jj = ijk(kb,nel)
k = jwk(jj)
if (k .eq. 0) then
ilast = ilast+1
jwk(jj) = ilast
ja(ilast) = jj
a(ilast) = ske(ka,kb)
else
a(k) = a(k) + ske(ka,kb)
endif
end do
c refresh jwk
do k=irowst,ilast
jwk(ja(k)) = 0
end do
iwk(ii) = ilast
end do
c
end do
return
end
c-----------------------------------------------------------------------
subroutine chkelmt (nx, x, y, nelx, ijk, node)
implicit real*8 (a-h,o-z)
dimension ijk(node,1),x(1),y(1)
c-----------------------------------------------------------------------
c this subsourine checks the labeling within each elment and reorders
c the nodes in they ar not correctly ordered.
c-----------------------------------------------------------------------
do 1 nel =1, nelx
det = x(ijk(2,nel))*(y(ijk(3,nel))-y(ijk(1,nel)))+
* x(ijk(3,nel))*(y(ijk(1,nel))-y(ijk(2,nel)))+
* x(ijk(1,nel))*(y(ijk(2,nel))-y(ijk(3,nel)))
c
c if determinant negative exchange last two nodes of elements.
c
if (det .lt. 0.0d0) then
j = ijk(2,nel)
ijk(2,nel) = ijk(3,nel)
ijk(3,nel) = j
endif
1 continue
c
return
end
c-----------------------------------------------------------------------
SUBROUTINE DLAUNY(X,Y,NODES,ELMNTS,NEMAX,NELMNT)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
c
C code written by P.K. Sweby
c simple delauney triangulation routine (non optimal)
c
C ******************************************************************
C * *
C * Performs a Delaunay triangularisation of a region given a set *
C * of mesh points. *
C * X,Y :- 1D arrays holding coordinates of mesh points. *
C * dimensioned AT LEAST NODES+3. *
C * NODES :- number of mesh points. *
C * ELMNTS :- INTEGER array, dimensioned NEMAX x 3, which on exit*
C * contains the index of global nodes associated with *
C * each element. *
C * NELMNT :- on exit contains the number of elements in the *
C * triangularisation. *
C * *
C * P.K.Sweby *
C * *
C ******************************************************************
C
INTEGER ELMNTS
DIMENSION X(NODES),Y(NODES),ELMNTS(NEMAX,3)
C
PI=4.0*ATAN(1.0)
C
C Calculate artificial nodes NODES+i i=1,2,3,4 and construct first
C two (artificial) elements.
C
XMIN=X(1)
XMAX=X(1)
YMIN=Y(1)
YMAX=Y(1)
DO 10 I=2,NODES
XMIN=MIN(XMIN,X(I))
XMAX=MAX(XMAX,X(I))
YMIN=MIN(YMIN,Y(I))
YMAX=MAX(YMAX,Y(I))
10 CONTINUE
DX=XMAX-XMIN
DY=YMAX-YMIN
XL=XMIN-4.0*DX
XR=XMAX+4.0*DX
YL=YMIN-4.0*DY
YR=YMAX+4.0*DY
X(NODES+1)=XL
Y(NODES+1)=YL
X(NODES+2)=XL
Y(NODES+2)=YR
X(NODES+3)=XR
Y(NODES+3)=YR
X(NODES+4)=XR
Y(NODES+4)=YL
ELMNTS(1,1)=NODES+1
ELMNTS(1,2)=NODES+2
ELMNTS(1,3)=NODES+3
ELMNTS(2,1)=NODES+3
ELMNTS(2,2)=NODES+4
ELMNTS(2,3)=NODES+1
NELMNT=2
DO 90 IN=1,NODES
C
C Add one mesh point at a time and remesh locally if necessary
C
NDEL=0
NEWEL=0
DO 40 IE=1,NELMNT
C
C Is point IN insided circumcircle of element IE ?
C
I1=ELMNTS(IE,1)
I2=ELMNTS(IE,2)
I3=ELMNTS(IE,3)
X2=X(I2)-X(I1)
X3=X(I3)-X(I1)
Y2=Y(I2)-Y(I1)
Y3=Y(I3)-Y(I1)
Z=(X2*(X2-X3)+Y2*(Y2-Y3))/(Y2*X3-Y3*X2)
CX=0.5*(X3-Z*Y3)
CY=0.5*(Y3+Z*X3)
R2=CX**2+CY**2
RN2=((X(IN)-X(I1)-CX)**2+(Y(IN)-Y(I1)-CY)**2)
IF(RN2.GT.R2)GOTO 40
C
C Yes it is inside,create new elements and mark old for deletion.
C
DO 30 J=1,3
DO 20 K=1,3
ELMNTS(NELMNT+NEWEL+J,K)=ELMNTS(IE,K)
20 CONTINUE
ELMNTS(NELMNT+NEWEL+J,J)=IN
30 CONTINUE
NEWEL=NEWEL+3
ELMNTS(IE,1)=0
NDEL=NDEL+1
C
40 CONTINUE
C
C If IN was inside circumcircle of more than 1 element then will
C have created 2 identical new elements: delete them both.
C
IF(NDEL.GT.1)THEN
DO 60 IE=NELMNT+1,NELMNT+NEWEL-1
DO 60 JE=IE+1,NELMNT+NEWEL
MATCH=0
DO 50 K=1,3
DO 50 L=1,3
IF(ELMNTS(IE,K).EQ.ELMNTS(JE,L))MATCH=MATCH+1
50 CONTINUE
IF(MATCH.EQ.3)THEN
ELMNTS(IE,1)=0
ELMNTS(JE,1)=0
NDEL=NDEL+2
ENDIF
60 CONTINUE
ENDIF
C
C Delete any elements
C
NN=NELMNT+NEWEL
IE=1
70 CONTINUE
IF(ELMNTS(IE,1).EQ.0)THEN
DO 80 J=IE,NN-1
DO 80 K=1,3
ELMNTS(J,K)=ELMNTS(J+1,K)
80 CONTINUE
NN=NN-1
IE=IE-1
ENDIF
IE=IE+1
IF(IE.LE.NN)GOTO 70
NELMNT=NN
90 CONTINUE
C
C Finally remove elements containing artificial nodes
C
IE=1
100 CONTINUE
NART=0
DO 110 L=1,3
IF(ELMNTS(IE,L).GT.NODES)NART=NART+1
110 CONTINUE
IF(NART.GT.0)THEN
DO 120 J=IE,NN-1
DO 120 K=1,3
ELMNTS(J,K)=ELMNTS(J+1,K)
120 CONTINUE
NELMNT=NELMNT-1
IE=IE-1
ENDIF
IE=IE+1
IF(IE.LE.NELMNT)GOTO 100
RETURN
END
c-----------------------------------------------------------------------
subroutine estif3(nel,ske,fe,det,xe,ye,xyke,ierr)
c-----------------------------------------------------------------------
c this subroutine constructs the element stiffness matrix for heat
c condution problem
c
c - Div ( K(x,y) Grad u ) = f
c u = 0 on boundary
c
c using 3-node triangular elements arguments:
c nel = element number
c ske = element stiffness matrix
c fe = element load vector
c det = 2*area of the triangle
c xy, ye= coordinates of the three nodal points in an element.
c xyke = material constants (kxx, kxy, kyx, kyy)
c
c------------------------------------------------------------------------
implicit real*8 (a-h,o-z)
dimension ske(3,3), fe(3), xe(3), ye(3), dn(3,2),xyke(2,2)
c
c initialize
c
area = 0.5*det
c
do 200 i=1,3
do 200 j=1,3
ske(i,j) = 0.0d0
200 continue
c
c get first gradient of shape function
c
call gradi3(nel,xe,ye,dn,det,ierr)
if (ierr .ne. 0) return
c
do 100 i=1,3
do 100 j=1,3
t = 0.0d0
do 102 k=1,2
do 102 l=1,2
102 t = t+xyke(k,l)*dn(i,k)*dn(j,l)
100 ske(i,j) = t*area
c
return
end
c-------------------------------------------------------
subroutine gradi3(nel, xe, ye, dn, det,ierr)
c-------------------------------------------------------
c constructs the first derivative of the shape functions.
c arguments:
c nel = element nuumber
c xy, ye= coordinates of the three nodal points in an element.
c dn = gradients (1-st derivatives) of the shape functions.
c area = area of the triangle
c
c-------------------------------------------------------
implicit real*8 (a-h,o-z)
dimension xe(3), ye(3), dn(3,2)
data eps/1.d-17/
c compute area
ierr = 0
if (det .le. eps) goto 100
c
dn(1,1) = (ye(2)-ye(3))/det
dn(2,1) = (ye(3)-ye(1))/det
dn(3,1) = (ye(1)-ye(2))/det
dn(1,2) = (xe(3)-xe(2))/det
dn(2,2) = (xe(1)-xe(3))/det
dn(3,2) = (xe(2)-xe(1))/det
c
return
c
100 continue
ierr = 3
write(iout,*) 'ERROR:negative area encountered at elmt: ',nel
c write(iout,*) det,(xe(i),ye(i),i=1,3)
return
end
c-----------------------------------------------------------------------
subroutine hsourc (indic,nx,nelx,node,x,y,ijk,fs,f)
implicit real*8 (a-h,o-z)
real*8 x(*),y(*),fs(*),f(*),xe(3),ye(3),det,areao3
integer ijk(node,*)
c
c generates the load vector f in assembled/unassembled form from the
c the element contributions fs.
c indic = indicates if f is to be assembled (1) or not (zero)
c note: f(*) not initilazed. because might use values from boundary
c conditions.
c
jnod = 0
do 130 nel = 1,nelx
c
c get coordinates of nodal points
c
do 104 i=1, node
j = ijk(i,nel)
xe(i) = x(j)
ye(i) = y(j)
104 continue
c
c compute determinant
c
det=xe(2)*(ye(3)-ye(1))+xe(3)*(ye(1)-ye(2))+xe(1)*(ye(2)-ye(3))
c area3 = area/3
areao3 = det/6.0
c
c contributions to nodes in the element
c
if (indic .eq. 0) then
do 115 ka=1,node
jnod = jnod+1
f(jnod) = fs(nel)*areao3
115 continue
else
do 120 ka=1, node
ii = ijk(ka,nel)
f(ii) = f(ii) + fs(nel)*areao3
120 continue
endif
c
130 continue
return
end
c----- end of hsourc ---------------------------------------------------
c-----------------------------------------------------------------------
subroutine bound (nx,nelx,ijk,nodcode,node,nint,iperm,
* x,y,wk,iwk)
c-----------------------------------------------------------------------
c this routine counts the number of boundary points and
c reorders the points in such a way that the boundary nodes
c are last.
c
c nx, nelx, ijk, nodcode, node: see other subroutines
c iperm = permutation array from old orderin to new ordering,
c iwk = reverse permutation array or return.
c wk = real work array
c On return
c x, y, nodecode, are permuted
c ijk is updated according to new oerdering.
c nint = number of interior points.
c
c-----------------------------------------------------------------------
implicit real*8 (a-h,o-z)
dimension ijk(node,1),x(1),y(1),wk(1),iwk(1),iperm(1),
* nodcode(1)
c put all boundary points at the end, backwards
nint = 1
nbound = nx
do 1 j=1, nx
if (nodcode(j) .eq. 0) then
iperm(nint) = j
nint = nint+1
else
iperm(nbound) = j
nbound = nbound-1
endif
1 continue
c-------------------------------------------------------------------
nint = nint-1
c
c permute x's
c
do 2 k=1, nx
wk(k) = x(k)
2 continue
do 3 k=1,nx
x(k) = wk(iperm(k))
3 continue
c
c permute the y's
c
do 4 k=1, nx
wk(k) = y(k)
4 continue
do 5 k=1, nx
y(k) = wk(iperm(k))
5 continue
c
c permute the boundary information
c
do 6 k=1, nx
iwk(k) = nodcode(k)
6 continue
do 7 k=1,nx
nodcode(k) = iwk(iperm(k))
7 continue
c
c get reverse permutation
c
do 8 k=1, nx
iwk(iperm(k)) = k
8 continue
c
c update the elements connectivity matrix
c
do 10 nel = 1, nelx
do 9 j=1, node
knod = ijk(j,nel)
ijk(j,nel) = iwk(knod)
9 continue
10 continue
return
end
c-----------------------------------------------------------------------
subroutine symbound (nx,nelx,ijk,nodcode,node,nint,
* iperm,wk,iwk)
c-----------------------------------------------------------------------
c this routine is a symbolic version of routine bound.
c
c nx, nelx, ijk, nodcode, node: see other subroutines
c iperm = permutation array from old orderin to new ordering,
c iwk = reverse permutation array or return.
c wk = real work array
c On return
c ijk = is updated according to new oerdering.
c nint = number of interior points.
c
c-----------------------------------------------------------------------
implicit real*8 (a-h,o-z)
dimension ijk(node,1),wk(1),iwk(1),iperm(1),
* nodcode(1)
c put all boundary points at the end, backwards
nint = 1
nbound = nx
do 1 j=1, nx
if (nodcode(j) .eq. 0) then
iperm(nint) = j
nint = nint+1
else
iperm(nbound) = j
nbound = nbound-1
endif
1 continue
c-------------------------------------------------------------------
nint = nint-1
c
c permute the boundary information
c
do 6 k=1, nx
iwk(k) = nodcode(k)
6 continue
do 7 k=1,nx
nodcode(k) = iwk(iperm(k))
7 continue
c
c get reverse permutation
c
do 8 k=1, nx
iwk(iperm(k)) = k
8 continue
c
c update the elements connectivity matrix
c
do 10 nel = 1, nelx
do 9 j=1, node
knod = ijk(j,nel)
ijk(j,nel) = iwk(knod)
9 continue
10 continue
return
end
c-----------------------------------------------------------------------
subroutine diric (nx,nint,a,ja,ia, f)
c--------------------------------------------------------------
c this routine takes into account the boundary conditions
c and removes the unnecessary boundary points.
c--------------------------------------------------------------
implicit real*8 (a-h,o-z)
dimension a(*),ia(*),ja(*),f(*)
c call extract from UNARY
call submat (nx,1,1,nint,1,nint,a,ja,ia,nr,nc,a,ja,ia)
write (*,*) 'nr=',nr,'nc=',nc
return
c----------- end of diric -------------------------------------
end
c-----------------------------------------------------------------------
subroutine symdiric (nx,nint,a,ja,ia, f)
c--------------------------------------------------------------
c this routine takes into account the boundary conditions
c and removes the unnecessary boundary points.
c--------------------------------------------------------------
implicit real*8 (a-h,o-z)
dimension a(*),ia(*),ja(*),f(*)
c call submat from UNARY, with job = 0,
c meaning no movement of real values.
call submat (nx,0,1,nint,1,nint,a,ja,ia,nr,nc,a,ja,ia)
return
c----------- end of symdiric -------------------------------------
end
c-----------------------------------------------------------------------
subroutine cleannods (nx,x,y,nelx,ijk,node,nodcode,iperm)
c implicit none
integer nx,nelx,node,ijk(node,nelx),nodcode(*),iperm(nx)
real*8 x(nx),y(nx)
c-----------------------------------------------------------------------
c this routine removes the nodes that do not belong to any element
c (spurious points) and relabels the ijk array accordingly.
c-----------------------------------------------------------------------
integer nel,i,k,j,indx
c
do j=1, nx
iperm(j) = 0
enddo
c
do nel = 1, nelx
do i=1,node
k = ijk(i,nel)
iperm(k) = nel
enddo
enddo
c
indx = 0
do j =1, nx
if (iperm(j) .ne. 0) then
indx = indx+1
iperm(indx) = j
x(indx) = x(j)
y(indx) = y(j)
nodcode(indx) = nodcode(j)
endif
enddo
c
c update nx
c
nx = indx
c
c old number to new numbers
c
do j =1, nx
iperm(nx+iperm(j)) = j
enddo
c
c
c change all node numbers in ijk
c
do nel = 1, nelx
do i=1,node
k = ijk(i,nel)
k = iperm(nx+k)
ijk(i,nel) = k
enddo
enddo
return
c-----------------------------------------------------------------------
c-----end-of-cleannod---------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine cleanel (nelx,ijk,node,nodcode,nodexc)
c implicit none
integer nelx,node,nodexc,ijk(node,nelx),nodcode(*)
c-----------------------------------------------------------------------
c this routine remove certain types of elements from the mesh
c An element whose nodes are all labelled by the same label
c nodexc are removed. nelx is changed accordingly on return.
c-----------------------------------------------------------------------
logical exclude
integer nel, i,k
nel = 1
1 continue
exclude = .true.
do i=1,node
k = ijk(i,nel)
exclude = (exclude .and. nodcode(k).eq. nodexc)
enddo
c
if (exclude) then
do i=1,node
ijk(i,nel) = ijk(i,nelx)
enddo
nelx = nelx - 1
else
nel = nel+1
endif
if (nel .le. nelx) goto 1
return
c-----------------------------------------------------------------------
c-----end-of-cleanel----------------------------------------------------
end
subroutine lstif3(ske, fe, xe, ye,
1 xyk, funb, func, fung)
c---------------------------------------------------------------------------
c
c This subroutine computes the local stiffness matrix for the
c Diffusion-Convection Equation with the
c variable cofficients, 'K(x,y), B(x,y), C(x,y) '
c
c -Div( K(x,y) T(x,y)) + B(x,y) Tx + C(x,y) Ty = G
c
c Here K(x,y) is a 2x2 Matrix, where each entry is a function of x and y.
c
c K, B, C and G need to be supplied by user.
c They need to be defined as externals in the calling routines.
c
c PSI(i,x,y) : i-th shape fucntions on the standard triangle N, i=1, 2, 3
c where N is the following.
c
c (-1,1)
c .
c . .
c . .
c . .
c . . . . . . (1,-1)
c (-1,-1)
c
c Local stiffness matrix is obtained by integral on the current
c element. To do so, change the current coordinates to N
c by Affine mapping, sending
c
c (xe(1),ye(1)) ---> (-1,-1)
c (xe(2),ye(2)) ---> (1,-1)
c (xe(3),ye(3)) ---> (-1,1) .
c
c Then we perform the integration on N
c by Gaussian Quadrature with 9 points.
c
c---------------------------------------------------------------------------
c
c on entry
c ---------
c
c xe = x coordinates of the nodes in the current element.
c ye = y coordinates of the nodes in the current element.
c xyk = subroutine defining the function K(x,y).
c funb = function defining the function b(x,y).
c func = function defining the function c(x,y).
c fung = function defining the function g(x,y).
c
c---------------------------------------------------------------------------
c
c on return
c ---------
c
c ske : Local Stiffness Matrix.( 3x3 in this subroutine.)
c fe : Local Load Vector.
c
c---------------------------------------------------------------------------
implicit real*8(a-h,o-z)
dimension ske(3,3), fe(3), xe(3), ye(3), dn(3,2),
1 xyke(2,2), wei(9), gau1(9), gau2(9)
external xyk, funb, func, fung
c Gau1 and Gau2 are the Gaussian Quadrature Points for the Traingle N,
c and Wei, are the corresponding weights.
c
c They are derived from the 1-D case by Reiterated integrals.
c
data gau1/-0.8, -0.1127016654, 0.5745966692, -0.8872983346, -0.5,
1 -0.1127016654, -0.9745966692, -0.8872983346, -0.8 /
data gau2/3*-0.7745966692, 3*0., 3*0.7745966692 /
data wei/0.2738575107, 0.4381720172, 0.2738551072, 0.2469135803,
1 0.3950617284, 0.2469135803, 0.03478446464,
2 0.05565514341, 0.03478446464 /
npt = 9
c
c Compute the Affine mappings from the current triangle to the
c standard triangle N. Integration will be performed on that
c triangle by Gaussian quadrature.
c
c T = A X + B
c
c A11, A12, A21, A22, B1, B2 will denote the entries of
c A & B.
c
x1 = xe(1)
x2 = xe(2)
x3 = xe(3)
y1 = ye(1)
y2 = ye(2)
y3 = ye(3)
rj1 = (x3-x1)*(y2-y3) - (x2-x3)*(y3-y1)
rj2 = (x3-x1)*(y1-y2) - (x1-x2)*(y3-y1)
a11 = 2*(y1-y3)/rj1
a12 = 2*(x3-x1)/rj1
a21 = 2*(y1-y2)/rj2
a22 = 2*(x2-x1)/rj2
b1 = 1. - a11*x2 - a12*y2
b2 = -1. - a21*x2 - a22*y2
c
c Compute the first order partial derivatives of the shape functions.
c dn(i,1) and dn(i,2) are the first order partial derivativ of i-th shape function
c with respect to x and y, respectively.
c
dn(1,1) = -0.5*(a11+a21)
dn(1,2) = -0.5*(a12+a22)
dn(2,1) = 0.5*a11
dn(2,2) = 0.5*a12
dn(3,1) = 0.5*a21
dn(3,2) = 0.5*a22
c Compute the Jacobian associated with T.
Rja = a11*a22 - a12*a21
c
c Find the inverse mapping of T
c
u11 = a22/rja
u12 = -a12/Rja
u21 = -a21/rja
u22 = a11/rja
v1 = -u11*b1 - u12*b2
v2 = -u21*b1 - u22*b2
do 200 i = 1 , 3
T4 = 0.
do 220 j = 1 , 3
T1 = 0.
T2 = 0.
T3 = 0.
do 250 k = 1, npt
r = gau1(k)
s = gau2(k)
w = wei(k)
x = u11*r + u12*s + v1
y = u21*r + u22*s + v2
call xyk(xyke, x, y)
derv2 = dn(i,1)*dn(j,1)*xyke(1,1)
1 + dn(i,2)*dn(j,2)*xyke(2,2)
2 + dn(i,1)*dn(j,2)*xyke(1,2)
3 + dn(i,2)*dn(j,1)*xyke(2,1)
if(j .eq. 1) then
T4 = T4 + w*fung(x,y)*psi(i,r,s)
endif
T1 = T1 + w*derv2
T2 = T2 + w*funb(x,y)*psi(i,r,s)
T3 = T3 + w*func(x,y)*psi(i,r,s)
250 continue
ske(i,j) = (T1 + T2*dn(j,1) + T3*dn(j,2))/Rja
220 continue
fe(i) = T4/Rja
200 continue
return
end
c--- end of lstif3 ---------------------------------------------------------
c---------------------------------------------------------------------------
C Piecewise linear fucntions on triangle.
function psi(i,r,s)
implicit real*8(a-h,o-z)
goto (100,200,300) ,i
100 psi = -(r+s)/2.
return
200 psi = (r+1.)/2.
return
300 psi = (s+1.)/2.
return
end
|