1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
c-----------------------------------------------------------------------
c contains the functions needed for defining the PDE poroblems.
c
c first for the scalar 5-point and 7-point PDE
c-----------------------------------------------------------------------
function afun (x,y,z)
real*8 afun, x,y,z
afun = -1.0
return
end
function bfun (x,y,z)
real*8 bfun, x,y,z
bfun = -1.0
return
end
function cfun (x,y,z)
real*8 cfun, x,y,z
cfun = -1.0d0
return
end
function dfun (x,y,z)
real*8 dfun, x,y,z
dfun = 10.d0
return
end
function efun (x,y,z)
real*8 efun, x,y,z
efun = 0.0d0
return
end
function ffun (x,y,z)
real*8 ffun, x,y,z
ffun = 0.0
return
end
function gfun (x,y,z)
real*8 gfun, x,y,z
gfun = 0.0
return
end
function hfun(x, y, z)
real*8 hfun, x, y, z
hfun = 0.0
return
end
function betfun(side, x, y, z)
real*8 betfun, x, y, z
character*2 side
betfun = 1.0
return
end
function gamfun(side, x, y, z)
real*8 gamfun, x, y, z
character*2 side
if (side.eq.'x2') then
gamfun = 5.0
else if (side.eq.'y1') then
gamfun = 2.0
else if (side.eq.'y2') then
gamfun = 7.0
else
gamfun = 0.0
endif
return
end
c-----------------------------------------------------------------------
c functions for the block PDE's
c-----------------------------------------------------------------------
subroutine afunbl (nfree,x,y,z,coeff)
real*8 x, y, z, coeff(100)
do 2 j=1, nfree
do 1 i=1, nfree
coeff((j-1)*nfree+i) = 0.0d0
1 continue
coeff((j-1)*nfree+j) = -1.0d0
2 continue
return
end
subroutine bfunbl (nfree,x,y,z,coeff)
real*8 x, y, z, coeff(100)
do 2 j=1, nfree
do 1 i=1, nfree
coeff((j-1)*nfree+i) = 0.0d0
1 continue
coeff((j-1)*nfree+j) = -1.0d0
2 continue
return
end
subroutine cfunbl (nfree,x,y,z,coeff)
real*8 x, y, z, coeff(100)
do 2 j=1, nfree
do 1 i=1, nfree
coeff((j-1)*nfree+i) = 0.0d0
1 continue
coeff((j-1)*nfree+j) = -1.0d0
2 continue
return
end
subroutine dfunbl (nfree,x,y,z,coeff)
real*8 x, y, z, coeff(100)
do 2 j=1, nfree
do 1 i=1, nfree
coeff((j-1)*nfree+i) = 0.0d0
1 continue
2 continue
return
end
subroutine efunbl (nfree,x,y,z,coeff)
real*8 x, y, z, coeff(100)
do 2 j=1, nfree
do 1 i=1, nfree
coeff((j-1)*nfree+i) = 0.0d0
1 continue
2 continue
return
end
subroutine ffunbl (nfree,x,y,z,coeff)
real*8 x, y, z, coeff(100)
do 2 j=1, nfree
do 1 i=1, nfree
coeff((j-1)*nfree+i) = 0.0d0
1 continue
2 continue
return
end
subroutine gfunbl (nfree,x,y,z,coeff)
real*8 x, y, z, coeff(100)
do 2 j=1, nfree
do 1 i=1, nfree
coeff((j-1)*nfree+i) = 0.0d0
1 continue
2 continue
return
end
c-----------------------------------------------------------------------
c The material property function xyk for the
c finite element problem
c-----------------------------------------------------------------------
c subroutine xyk(nel,xyke,x,y,ijk,node)
c implicit real*8 (a-h,o-z)
c dimension xyke(2,2), x(*), y(*), ijk(node,*)
cc
cc this is the identity matrix.
cc
c xyke(1,1) = 1.0d0
c xyke(2,2) = 1.0d0
c xyke(1,2) = 0.0d0
c xyke(2,1) = 0.0d0
cc
c return
c end
c
subroutine xyk (xyke, x, y)
implicit real*8(a-h,o-z)
dimension xyke(2,2)
xyke(1,1) = 1.
xyke(1,1) = exp(x+y)
xyke(1,2) = 0.
xyke(2,1) = 0.
xyke(2,2) = 1.
xyke(2,2) = exp(x+y)
return
end
function funb(x,y)
implicit real*8(a-h,o-z)
funb = 0.
funb = 2.5
funb = 2*x
return
end
function func(x,y)
implicit real*8(a-h,o-z)
func = 0.
func = -1.5
func = -5*y
return
end
function fung(x,y)
c Right hand side corresponding to the exact solution of
c u = exp(x+y)*x*(1.-x)*y*(1.-y)
c (That exact solution is defined in the function exact)
implicit real*8(a-h,o-z)
c fung = 1. + x
c fung = 2*y*(1.-y) + 2*x*(1.-x)
c fung = 2*y*(1.-y) + 2*x*(1.-x) +2.5*(1-2*x)*y*(1-y)
c 1 - 1.5*(1.-2*y)*x*(1-x)
r = exp(x+y)
fung = r*r*((x*x+3.*x)*y*(1.-y) +
1 (y*y+3.*y)*x*(1.-x))
2 + r*(r-2.*x)*(x*x+x-1.)*y*(1.-y)
3 + r*(r+5.*y)*(y*y+y-1.)*x*(1.-x)
return
end
function exact(x,y)
C Exact Solution.
implicit real*8(a-h,o-z)
exact = exp(x+y)*x*(1.-x)*y*(1.-y)
return
end
|