1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
|
SUBROUTINE MATRF2(M,N,C,INDEX,ALPHA,NN,NZ,A,SNR,RNR,FEJLM)
C--------------------------------------------------------------------
C
C PURPOSE
C -------
C The subroutine generates sparse (rectangular or square) matrices.
C The dimensions of the matrix and the average number of nonzero
C elements per row can be specified by the user. Moreover, the user
C can also change the sparsity pattern and the condition number of the
C matrix. The non-zero elements of the desired matrix will be
C accumulated (in an arbitrary order) in the first NZ positions of
C array A. The column and the row numbers of the non-zero element
C stored in A(I), I=1,...,NZ, will be found in SNR(I) and RNR(I),
C respectively. The matrix generated by this subroutine is of the
C class F(M,N,C,R,ALPHA) (see reference).
C
C Note: If A is the sparse matrix of type F(M,N,C,R,ALPHA), then
C
C min|A(i,j)| = 1/ALPHA,
C
C max|A(i,j)| = max(INDEX*N - N,10*ALPHA).
C
C
C CONTRIBUTOR: Ernest E. Rothman
C Cornell Theory Center/Cornell National Supercomputer
C Facility.
C e-mail address: BITNET: eer@cornellf
C INTERNET: eer@cornellf.tn.cornell.edu
C
C minor modifications by Y. Saad. April 26, 1990.
C
C Note: This subroutine has been copied from the following reference.
C The allowable array sizes have been changed.
C
C REFERENCE: Zlatev, Zahari; Schaumburg, Kjeld; Wasniewski, Jerzy;
C "A testing Scheme for Subroutines Solving Large Linear Problems",
C Computers and Chemistry, Vol. 5, No. 2-3, pp. 91-100, 1981.
C
C
C INPUT PARAMETERS
C ----------------
C M - Integer. The number of rows in the desired matrix.
C N < M+1 < 9000001 must be specified.
C
C N - Integer. The number of columns in the desired matrix.
C 21 < N < 9000001 must be specified.
C
C C - Integer. The sparsity pattern can be changed by means of this
C parameter. 10 < C < N-10 must be specified.
C
C INDEX - Integer. The average number of non-zero elements per row in
C the matrix will be equal to INDEX.
C 1 < INDEX < N-C-8 must be specified.
C
C ALPHA - Real. The condition number of the matrix can be changed
C BY THIS PARAMETER. ALPHA > 0.0 MUST BE SPECIFIED.
C If ALPHA is approximately equal to 1.0 then the generated
C matrix is well-conditioned. Large values of ALPHA will
C usually produce ill-conditioned matrices. Note that no
C round-off errors during the computations in this subroutine
C are made if ALPHA = 2**I (where I is an arbitrary integer
C which produces numbers in the machine range).
C
C NN - Integer. The length of arrays A, RNR, and SNR (see below).
C INDEX*M+109 < NN < 9000001 must be specified.
C
C
C OUTPUT PARAMETERS
C -----------------
C NZ - Integer. The number of non-zero elements in the matrix.
C
C A(NN) - Real array. The non-zero elements of the matrix generated
C are accumulated in the first NZ locations of array A.
C
C SNR(NN) - INTEGER array. The column number of the non-zero element
C kept in A(I), I=1,...NZ, is stored in SNR(I).
C
C RNR(NN) - Integer array. The row number of the non-zero element
C kept in A(I), I=1,...NZ, is stored in RNR(I).
C
C FEJLM - Integer. FEJLM=0 indicates that the call is successful.
C Error diagnostics are given by means of positive values of
C this parameter as follows:
C FEJLM = 1 - N is out of range.
C FEJLM = 2 - M is out of range.
C FEJLM = 3 - C is out of range.
C FEJLM = 4 - INDEX is out of range.
C FEJLM = 5 - NN is out of range.
C FEJLM = 7 - ALPHA is out of range.
C
C
C
C
REAL*8 A, ALPHA, ALPHA1
INTEGER M, N, NZ, C, NN, FEJLM, M1, NZ1, RR1, RR2, RR3, K
INTEGER M2, N2
INTEGER SNR, RNR
DIMENSION A(NN), SNR(NN), RNR(NN)
M1 = M
FEJLM = 0
NZ1 = INDEX*M + 110
K = 1
ALPHA1 = ALPHA
INDEX1 = INDEX - 1
C
C Check the parameters.
C
IF(N.GE.22) GO TO 1
2 FEJLM = 1
RETURN
1 IF(N.GT.9000000) GO TO 2
IF(M.GE.N) GO TO 3
4 FEJLM = 2
RETURN
3 IF(M.GT.9000000) GO TO 4
IF(C.LT.11)GO TO 6
IF(N-C.GE.11)GO TO 5
6 FEJLM = 3
RETURN
5 IF(INDEX.LT.1) GO TO 12
IF(N-C-INDEX.GE.9)GO TO 13
12 FEJLM = 4
13 IF(NN.GE.NZ1)GO TO 7
8 FEJLM = 5
RETURN
7 IF(NN.GT.9000000)GO TO 8
IF(ALPHA.GT.0.0)GO TO 9
FEJLM = 6
RETURN
9 CONTINUE
C
C End of the error check. Begin to generate the non-zero elements of
C the required matrix.
C
DO 20 I=1,N
A(I) = 1.0d0
SNR(I) = I
20 RNR(I) = I
NZ = N
J1 = 1
IF(INDEX1.EQ.0) GO TO 81
DO 21 J = 1,INDEX1
J1 = -J1
DO 22 I=1,N
A(NZ+I) = dfloat(J1*J*I)
IF(I+C+J-1.LE.N)SNR(NZ+I) = I + C + J - 1
IF(I+C+J-1.GT.N)SNR(NZ+I) = C + I + J - 1 - N
22 RNR(NZ + I) = I
21 NZ = NZ + N
81 RR1 = 10
RR2 = NZ
RR3 = 1
25 CONTINUE
DO 26 I=1,RR1
A(RR2 + I) = ALPHA*dfloat(I)
SNR(RR2+I) = N - RR1 + I
RNR(RR2+I) = RR3
26 CONTINUE
IF(RR1.EQ.1) GO TO 27
RR2 = RR2 + RR1
RR1 = RR1 - 1
RR3 = RR3 + 1
GO TO 25
27 NZ = NZ + 55
29 M1 = M1 - N
ALPHA = 1.0d0/ALPHA
IF(M1.LE.0) GO TO 28
N2 = K*N
IF(M1.GE.N)M2 = N
IF(M1.LT.N)M2 = M1
DO 30 I=1,M2
A(NZ+I) = ALPHA*dfloat(K+1)
SNR(NZ + I) = I
30 RNR(NZ + I) = N2 + I
NZ = NZ + M2
IF(INDEX1.EQ.0) GO TO 82
J1 = 1
DO 41 J = 1,INDEX1
J1 = -J1
DO 42 I = 1,M2
A(NZ+I) = ALPHA*dFLOAT(J*J1)*(dfloat((K+1)*I)+1.0d0)
IF(I+C+J-1.LE.N)SNR(NZ+I) = I + C + J - 1
IF(I+C+J-1.GT.N)SNR(NZ+I) = C + I + J - 1 - N
42 RNR(NZ + I) = N2 + I
41 NZ = NZ +M2
82 K = K + 1
GO TO 29
28 CONTINUE
ALPHA = 1.0d0/ALPHA1
RR1 = 1
RR2 = NZ
35 CONTINUE
DO 36 I = 1,RR1
A(RR2+I) = ALPHA*dfloat(RR1+1-I)
SNR(RR2+I) = I
RNR(RR2+I) = N - 10 + RR1
36 CONTINUE
IF(RR1.EQ.10) GO TO 34
RR2 = RR2 + RR1
RR1 = RR1 + 1
GO TO 35
34 NZ = NZ + 55
ALPHA = ALPHA1
RETURN
END
SUBROUTINE DCN(AR,IA,JA,N,NE,IC,NN,IERR)
C-----------------------------------------------------------------------
C
C PURPOSE
C -------
C The subroutine generates sparse (square) matrices of the type
C D(N,C). This type of matrix has the following characteristics:
C 1's in the diagonal, three bands at the distance C above the
C diagonal (and reappearing cyclicly under it), and a 10 x 10
C triangle of elements in the upper right-hand corner.
C Different software libraries require different storage schemes.
C This subroutine generates the matrix in the storage by
C indices mode.
C
C
C Note: If A is the sparse matrix of type D(N,C), then
C
C min|A(i,j)| = 1, max|A(i,j)| = max(1000,N + 1)
C
C
C
C CONTRIBUTOR: Ernest E. Rothman
C Cornell Theory Center/Cornell National Supercomputer
C Facility.
C e-mail address: BITNET: eer@cornellf
C INTERNET: eer@cornellf.tn.cornell.edu
C
C
C REFERENCE
C ---------
C 1) Zlatev, Zahari; Schaumburg, Kjeld; Wasniewski, Jerzy;
C "A Testing Scheme for Subroutines Solving Large Linear Problems",
C Computers and Chemistry, Vol. 5, No. 2-3, pp. 91-100, 1981.
C 2) Osterby, Ole and Zletev, Zahari;
C "Direct Methods for Sparse Matrices";
C Springer-Verlag 1983.
C
C
C
C INPUT PARAMETERS
C ----------------
C N - Integer. The size of the square matrix.
C N > 13 must be specified.
C
C NN - Integer. The dimension of integer arrays IA and JA and
C real array AR. Must be at least NE.
C
C IC - Integer. The sparsity pattern can be changed by means of this
C parameter. 0 < IC < N-12 must be specified.
C
C
C OUTPUT PARAMETERS
C -----------------
C NE - Integer. The number of nonzero elements in the sparse matrix
C of the type D(N,C). NE = 4*N + 55.
C
C AR(NN) - Real array. (Double precision)
C Stored entries of a sparse matrix to be generated by this
C subroutine.
C NN is greater then or equal to, NE, the number of
C nonzeros including a mandatory diagonal entry for
C each row. Entries are stored by indices.
C
C IA(NN) - Integer array.
C Pointers to specify rows for the stored nonzero entries
C in AR.
C
C JA(NN) - Integer array.
C Pointers to specify columns for the stored nonzero entries
C in AR.
C
C IERR - Error parameter is returned as zero on successful
C execution of the subroutine.
C Error diagnostics are given by means of positive values
C of this parameter as follows:
C IERR = 1 - N is out of range.
C IERR = 2 - IC is out of range.
C IERR = 3 - NN is out of range.
C
C----------------------------------------------------------------------
C
real*8 ar(nn)
integer ia(nn), ja(nn), ierr
ierr = 0
c
c
c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Check the input parameters:
c
if(n.le.13)then
ierr = 1
return
endif
if(ic .le. 0 .or. ic .ge. n-12)then
ierr = 2
return
endif
ne = 4*n+55
if(nn.lt.ne)then
ierr = 3
return
endif
c
c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c
c Begin to generate the nonzero elements as well as the row and column
c pointers:
c
do 20 i=1,n
ar(i) = 1.0d0
ia(i) = i
ja(i) = i
20 continue
ilast = n
do 30 i=1,n-ic
it = ilast + i
ar(it) = 1.0 + dfloat(i)
ia(it) = i
ja(it) = i+ic
30 continue
ilast = ilast + n-ic
do 40 i=1,n-ic-1
it = ilast + i
ar(it) = -dfloat(i)
ia(it) = i
ja(it) = i+ic+1
40 continue
ilast = ilast + n-ic-1
do 50 i=1,n-ic-2
it = ilast + i
ar(it) = 16.0d0
ia(it) = i
ja(it) = i+ic+2
50 continue
ilast = ilast + n-ic-2
icount = 0
do 70 j=1,10
do 60 i=1,11-j
icount = icount + 1
it = ilast + icount
ar(it) = 100.0d0 * dfloat(j)
ia(it) = i
ja(it) = n-11+i+j
60 continue
70 continue
icount = 0
ilast = 55 + ilast
do 80 i=n-ic+1,n
icount = icount + 1
it = ilast + icount
ar(it) = 1.0d0 + dfloat(i)
ia(it) = i
ja(it) = i-n+ic
80 continue
ilast = ilast + ic
icount = 0
do 90 i=n-ic,n
icount = icount + 1
it = ilast + icount
ar(it) = -dfloat(i)
ia(it) = i
ja(it) = i-n+ic+1
90 continue
ilast = ilast + ic + 1
icount = 0
do 100 i=n-ic-1,n
icount = icount + 1
it = ilast + icount
ar(it) = 16.0d0
ia(it) = i
ja(it) = i-n+ic+2
100 continue
c ilast = ilast + ic + 2
c if(ilast.ne.4*n+55) then
c write(*,*)' ilast equal to ', ilast
c write(*,*)' ILAST, the number of nonzeros, should = ', 4*n + 55
c stop
c end if
c
c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
return
end
SUBROUTINE ECN(N,IC,NE,IA,JA,AR,NN,IERR)
C----------------------------------------------------------------------
C
C PURPOSE
C -------
C The subroutine generates sparse (square) matrices of the type
C E(N,C). This type of matrix has the following characteristics:
C Symmetric, positive-definite, N x N matrices with 4 in the diagonal
C and -1 in the two sidediagonal and in the two bands at the distance
C C from the diagonal. These matrices are similar to matrices obtained
C from using the five-point formula in the discretization of the
C elliptic PDE.
C
C
C Note: If A is the sparse matrix of type E(N,C), then
C
C min|A(i,j)| = 1, max|A(i,j)| = 4
C
C
C
C CONTRIBUTOR: Ernest E. Rothman
C Cornell Theory Center/Cornell National Supercomputer
C Facility.
C e-mail address: BITNET: eer@cornellf
C INTERNET: eer@cornellf.tn.cornell.edu
C
C
C REFERENCE
C ---------
C 1) Zlatev, Zahari; Schaumburg, Kjeld; Wasniewski, Jerzy;
C "A Testing Scheme for Subroutines Solving Large Linear Problems",
C Computers and Chemistry, Vol. 5, No. 2-3, pp. 91-100, 1981.
C 2) Osterby, Ole and Zletev, Zahari;
C "Direct Methods for Sparse Matrices";
C Springer-Verlag 1983.
C
C
C
C INPUT PARAMETERS
C ----------------
C N - Integer. The size of the square matrix.
C N > 2 must be specified.
C
C NN - Integer. The dimension of integer arrays IA and JA and
C real array AR. Must be at least NE.
C
C NN - Integer. The dimension of integer array JA. Must be at least
C NE.
C
C IC - Integer. The sparsity pattern can be changed by means of this
C parameter. 1 < IC < N must be specified.
C
C
C
C OUTPUT PARAMETERS
C -----------------
C NE - Integer. The number of nonzero elements in the sparse matrix
C of the type E(N,C). NE = 5*N - 2*IC - 2 .
C
C AR(NN) - Real array.
C Stored entries of the sparse matrix A.
C NE is the number of nonzeros including a mandatory
C diagonal entry for each row.
C
C IA(NN) - Integer array.(Double precision)
C Pointers to specify rows for the stored nonzero entries
C in AR.
C
C JA(NN) - Integer array.
C Pointers to specify columns for the stored nonzero entries
C in AR.
C
C IERR - Error parameter is returned as zero on successful
C execution of the subroutine.
C Error diagnostics are given by means of positive values
C of this parameter as follows:
C IERR = 1 - N is out of range.
C IERR = 2 - IC is out of range.
C IERR = 3 - NN is out of range.
C
C---------------------------------------------------------------------
C
C
real*8 ar(nn)
integer ia(nn), ja(nn), n, ne, ierr
ierr = 0
c
c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c
Check the input parameters:
c
if(n.le.2)then
ierr = 1
return
endif
if(ic.le.1.or.ic.ge.n)then
ierr = 2
return
endif
c
ne = 5*n-2*ic-2
if(nn.lt.ne)then
ierr = 3
return
endif
c
c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c
c Begin to generate the nonzero elements as well as the row and column
c pointers:
c
do 20 i=1,n
ar(i) = 4.0d0
ia(i) = i
ja(i) = i
20 continue
ilast = n
do 30 i=1,n-1
it = ilast + i
ar(it) = -1.0d0
ia(it) = i+1
ja(it) = i
30 continue
ilast = ilast + n - 1
do 40 i=1,n-1
it = ilast + i
ar(it) = -1.0d0
ia(it) = i
ja(it) = i+1
40 continue
ilast = ilast + n-1
do 50 i=1,n-ic
it = ilast + i
ar(it) = -1.0d0
ia(it) = i+ic
ja(it) = i
50 continue
ilast = ilast + n-ic
do 60 I=1,n-ic
it = ilast + i
ar(it) = -1.0d0
ia(it) = i
ja(it) = i+ic
60 continue
c ilast = ilast + n-ic
c if(ilast.ne.5*n-2*ic-2) then
c write(*,*)' ilast equal to ', ilast
c write(*,*)' ILAST, the no. of nonzeros, should = ', 5*n-2*ic-2
c stop
c end if
c
c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
return
end
|