File: unary.f

package info (click to toggle)
sparskit 2.0.0-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, sid
  • size: 4,348 kB
  • sloc: fortran: 15,253; makefile: 260; sh: 136; ansic: 76
file content (3141 lines) | stat: -rw-r--r-- 108,893 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
c----------------------------------------------------------------------c
c                          S P A R S K I T                             c
c----------------------------------------------------------------------c
c                     UNARY SUBROUTINES MODULE                         c
c----------------------------------------------------------------------c
c contents:                                                            c
c----------                                                            c
c submat : extracts a submatrix from a sparse matrix.                  c
c filter : filters elements from a matrix according to their magnitude.c
c filterm: same as above, but for the MSR format                       c
c csort  : sorts the elements in increasing order of columns           c
c clncsr : clean up the CSR format matrix, remove duplicate entry, etc c
c transp : in-place transposition routine (see also csrcsc in formats) c
c copmat : copy of a matrix into another matrix (both stored csr)      c
c msrcop : copies a matrix in MSR format into a matrix in MSR format   c
c getelm : returns a(i,j) for any (i,j) from a CSR-stored matrix.      c
c getdia : extracts a specified diagonal from a matrix.                c
c getl   : extracts lower triangular part                              c
c getu   : extracts upper triangular part                              c
c levels : gets the level scheduling structure for lower triangular    c
c          matrices.                                                   c
c amask  : extracts     C = A mask M                                   c
c rperm  : permutes the rows of a matrix (B = P A)                     c
c cperm  : permutes the columns of a matrix (B = A Q)                  c
c dperm  : permutes both the rows and columns of a matrix (B = P A Q ) c
c dperm1 : general extractiob routine (extracts arbitrary rows)        c
c dperm2 : general submatrix permutation/extraction routine            c
c dmperm : symmetric permutation of row and column (B=PAP') in MSR fmt c
c dvperm : permutes a real vector (in-place)                           c
c ivperm : permutes an integer vector (in-place)                       c
c retmx  : returns the max absolute value in each row of the matrix    c
c diapos : returns the positions of the diagonal elements in A.        c
c extbdg : extracts the main diagonal blocks of a matrix.              c
c getbwd : returns the bandwidth information on a matrix.              c
c blkfnd : finds the block-size of a matrix.                           c
c blkchk : checks whether a given integer is the block size of A.      c
c infdia : obtains information on the diagonals of A.                  c
c amubdg : gets number of nonzeros in each row of A*B (as well as NNZ) c 
c aplbdg : gets number of nonzeros in each row of A+B (as well as NNZ) c
c rnrms  : computes the norms of the rows of A                         c
c cnrms  : computes the norms of the columns of A                      c
c roscal : scales the rows of a matrix by their norms.                 c
c coscal : scales the columns of a matrix by their norms.              c
c addblk : Adds a matrix B into a block of A.                          c
c get1up : Collects the first elements of each row of the upper        c
c          triangular portion of the matrix.                           c
c xtrows : extracts given rows from a matrix in CSR format.            c
c csrkvstr:  Finds block row partitioning of matrix in CSR format      c
c csrkvstc:  Finds block column partitioning of matrix in CSR format   c
c kvstmerge: Merges block partitionings, for conformal row/col pattern c
c----------------------------------------------------------------------c
      subroutine submat (n,job,i1,i2,j1,j2,a,ja,ia,nr,nc,ao,jao,iao)
      integer n,job,i1,i2,j1,j2,nr,nc,ia(*),ja(*),jao(*),iao(*)
      real*8 a(*),ao(*) 
c-----------------------------------------------------------------------
c extracts the submatrix A(i1:i2,j1:j2) and puts the result in 
c matrix ao,iao,jao
c---- In place: ao,jao,iao may be the same as a,ja,ia.
c-------------- 
c on input
c---------
c n	= row dimension of the matrix 
c i1,i2 = two integers with i2 .ge. i1 indicating the range of rows to be
c          extracted. 
c j1,j2 = two integers with j2 .ge. j1 indicating the range of columns 
c         to be extracted.
c         * There is no checking whether the input values for i1, i2, j1,
c           j2 are between 1 and n. 
c a,
c ja,
c ia    = matrix in compressed sparse row format. 
c
c job	= job indicator: if job .ne. 1 then the real values in a are NOT
c         extracted, only the column indices (i.e. data structure) are.
c         otherwise values as well as column indices are extracted...
c         
c on output
c-------------- 
c nr	= number of rows of submatrix 
c nc	= number of columns of submatrix 
c	  * if either of nr or nc is nonpositive the code will quit.
c
c ao,
c jao,iao = extracted matrix in general sparse format with jao containing
c	the column indices,and iao being the pointer to the beginning 
c	of the row,in arrays a,ja.
c----------------------------------------------------------------------c
c           Y. Saad, Sep. 21 1989                                      c
c----------------------------------------------------------------------c
      nr = i2-i1+1
      nc = j2-j1+1
c     
      if ( nr .le. 0 .or. nc .le. 0) return
c     
      klen = 0
c     
c     simple procedure. proceeds row-wise...
c     
      do 100 i = 1,nr
         ii = i1+i-1
         k1 = ia(ii)
         k2 = ia(ii+1)-1
         iao(i) = klen+1
c-----------------------------------------------------------------------
         do 60 k=k1,k2
            j = ja(k)
            if (j .ge. j1 .and. j .le. j2) then
               klen = klen+1
               if (job .eq. 1) ao(klen) = a(k)
               jao(klen) = j - j1+1
            endif
 60      continue
 100  continue
      iao(nr+1) = klen+1
      return
c------------end-of submat---------------------------------------------- 
c----------------------------------------------------------------------- 
      end
c-----------------------------------------------------------------------
      subroutine filter(n,job,drptol,a,ja,ia,b,jb,ib,len,ierr)
      real*8 a(*),b(*),drptol
      integer ja(*),jb(*),ia(*),ib(*),n,job,len,ierr
c-----------------------------------------------------------------------
c     This module removes any elements whose absolute value
c     is small from an input matrix A and puts the resulting
c     matrix in B.  The input parameter job selects a definition
c     of small.
c-----------------------------------------------------------------------
c on entry:
c---------
c  n	 = integer. row dimension of matrix
c  job   = integer. used to determine strategy chosen by caller to
c         drop elements from matrix A. 
c          job = 1  
c              Elements whose absolute value is less than the
c              drop tolerance are removed.
c          job = 2
c              Elements whose absolute value is less than the 
c              product of the drop tolerance and the Euclidean
c              norm of the row are removed. 
c          job = 3
c              Elements whose absolute value is less that the
c              product of the drop tolerance and the largest
c              element in the row are removed.
c 
c drptol = real. drop tolerance used for dropping strategy.
c a	
c ja
c ia     = input matrix in compressed sparse format
c len	 = integer. the amount of space available in arrays b and jb.
c
c on return:
c---------- 
c b	
c jb
c ib    = resulting matrix in compressed sparse format. 
c 
c ierr	= integer. containing error message.
c         ierr .eq. 0 indicates normal return
c         ierr .gt. 0 indicates that there is'nt enough
c         space is a and ja to store the resulting matrix.
c         ierr then contains the row number where filter stopped.
c note:
c------ This module is in place. (b,jb,ib can ne the same as 
c       a, ja, ia in which case the result will be overwritten).
c----------------------------------------------------------------------c
c           contributed by David Day,  Sep 19, 1989.                   c
c----------------------------------------------------------------------c
c local variables
      real*8 norm,loctol
      integer index,row,k,k1,k2 
c
      index = 1
      do 10 row= 1,n
         k1 = ia(row)
         k2 = ia(row+1) - 1
         ib(row) = index
	 goto (100,200,300) job
 100     norm = 1.0d0
         goto 400
 200     norm = 0.0d0
         do 22 k = k1,k2
            norm = norm + a(k) * a(k)
 22      continue
         norm = sqrt(norm)
         goto 400
 300     norm = 0.0d0
         do 23 k = k1,k2
            if( abs(a(k))  .gt. norm) then
               norm = abs(a(k))
            endif
 23      continue
 400     loctol = drptol * norm
	 do 30 k = k1,k2
	    if( abs(a(k)) .gt. loctol)then 
               if (index .gt. len) then
               ierr = row 
               return
            endif
            b(index) =  a(k)
            jb(index) = ja(k)
            index = index + 1
         endif
 30   continue
 10   continue
      ib(n+1) = index
      return
c--------------------end-of-filter -------------------------------------
c-----------------------------------------------------------------------
      end
c-----------------------------------------------------------------------
      subroutine filterm (n,job,drop,a,ja,b,jb,len,ierr)
      real*8 a(*),b(*),drop
      integer ja(*),jb(*),n,job,len,ierr
c-----------------------------------------------------------------------
c     This subroutine removes any elements whose absolute value
c     is small from an input matrix A. Same as filter but
c     uses the MSR format.
c-----------------------------------------------------------------------
c on entry:
c---------
c  n	 = integer. row dimension of matrix
c  job   = integer. used to determine strategy chosen by caller to
c         drop elements from matrix A. 
c          job = 1  
c              Elements whose absolute value is less than the
c              drop tolerance are removed.
c          job = 2
c              Elements whose absolute value is less than the 
c              product of the drop tolerance and the Euclidean
c              norm of the row are removed. 
c          job = 3
c              Elements whose absolute value is less that the
c              product of the drop tolerance and the largest
c              element in the row are removed.
c 
c drop = real. drop tolerance used for dropping strategy.
c a	
c ja     = input matrix in Modifief Sparse Row format
c len	 = integer. the amount of space in arrays b and jb.
c
c on return:
c---------- 
c
c b, jb = resulting matrix in Modifief Sparse Row format
c 
c ierr	= integer. containing error message.
c         ierr .eq. 0 indicates normal return
c         ierr .gt. 0 indicates that there is'nt enough
c         space is a and ja to store the resulting matrix.
c         ierr then contains the row number where filter stopped.
c note:
c------ This module is in place. (b,jb can ne the same as 
c       a, ja in which case the result will be overwritten).
c----------------------------------------------------------------------c
c           contributed by David Day,  Sep 19, 1989.                   c
c----------------------------------------------------------------------c
c local variables
c
      real*8 norm,loctol
      integer index,row,k,k1,k2 
c
      index = n+2
      do 10 row= 1,n
         k1 = ja(row)
         k2 = ja(row+1) - 1
         jb(row) = index
	 goto (100,200,300) job
 100     norm = 1.0d0
         goto 400
 200     norm = a(row)**2 
         do 22 k = k1,k2
            norm = norm + a(k) * a(k)
 22      continue
         norm = sqrt(norm)
         goto 400
 300     norm = abs(a(row)) 
         do 23 k = k1,k2
            norm = max(abs(a(k)),norm) 
 23      continue
 400     loctol = drop * norm
	 do 30 k = k1,k2
	    if( abs(a(k)) .gt. loctol)then 
               if (index .gt. len) then
                  ierr = row 
                  return
               endif
               b(index) =  a(k)
               jb(index) = ja(k)
               index = index + 1
            endif
 30      continue
 10   continue
      jb(n+1) = index
      return
c--------------------end-of-filterm-------------------------------------
c-----------------------------------------------------------------------
      end
c-----------------------------------------------------------------------
      subroutine csort (n,a,ja,ia,iwork,values) 
      logical values
      integer n, ja(*), ia(n+1), iwork(*) 
      real*8 a(*) 
c-----------------------------------------------------------------------
c This routine sorts the elements of  a matrix (stored in Compressed
c Sparse Row Format) in increasing order of their column indices within 
c each row. It uses a form of bucket sort with a cost of O(nnz) where
c nnz = number of nonzero elements. 
c requires an integer work array of length 2*nnz.  
c-----------------------------------------------------------------------
c on entry:
c--------- 
c n     = the row dimension of the matrix
c a     = the matrix A in compressed sparse row format.
c ja    = the array of column indices of the elements in array a.
c ia    = the array of pointers to the rows. 
c iwork = integer work array of length max ( m+1, 2*nnz ) 
c         where m   = column dimension of the matrix
c               nnz = (ia(n+1)-ia(1))
c values= logical indicating whether or not the real values a(*) must 
c         also be permuted. if (.not. values) then the array a is not
c         touched by csort and can be a dummy array. 
c 
c on return:
c----------
c the matrix stored in the structure a, ja, ia is permuted in such a
c way that the column indices are in increasing order within each row.
c iwork(1:nnz) contains the permutation used  to rearrange the elements.
c----------------------------------------------------------------------- 
c Y. Saad - Feb. 1, 1991.
c L. M. Baker - Oct. 15, 2009.  Correct computation of column pointers
c                               for rectangular matrices 
c-----------------------------------------------------------------------
c local variables
      integer i, k, j, m, ifirst, nnz, next  
c
c count the number of elements in each column
c
      m = 0
      do 11 i=1, n
         do 1 k=ia(i), ia(i+1)-1 
            m = max( m, ja(k) )
 1       continue 
 11   continue
      do 2 j=1,m
         iwork(j+1) = 0
 2    continue
      do 33 i=1, n
         do 3 k=ia(i), ia(i+1)-1 
            j = ja(k)
            iwork(j+1) = iwork(j+1)+1
 3       continue 
 33   continue
c
c compute pointers from lengths. 
c
      iwork(1) = 1
      do 4 i=1,m
         iwork(i+1) = iwork(i) + iwork(i+1)
 4    continue
c 
c get the positions of the nonzero elements in order of columns.
c
      ifirst = ia(1) 
      nnz = ia(n+1)-ifirst
      do 5 i=1,n
         do 51 k=ia(i),ia(i+1)-1 
            j = ja(k) 
            next = iwork(j)
            iwork(nnz+next) = k
            iwork(j) = next+1
 51      continue
 5    continue
c
c convert to coordinate format
c 
      do 6 i=1, n
         do 61 k=ia(i), ia(i+1)-1 
            iwork(k) = i
 61      continue
 6    continue
c
c loop to find permutation: for each element find the correct 
c position in (sorted) arrays a, ja. Record this in iwork. 
c 
      do 7 k=1, nnz
         ko = iwork(nnz+k) 
         irow = iwork(ko)
         next = ia(irow)
c
c the current element should go in next position in row. iwork
c records this position. 
c 
         iwork(ko) = next
         ia(irow)  = next+1
 7       continue
c
c perform an in-place permutation of the  arrays.
c 
         call ivperm (nnz, ja(ifirst), iwork) 
         if (values) call dvperm (nnz, a(ifirst), iwork) 
c
c reshift the pointers of the original matrix back.
c 
      do 8 i=n,1,-1
         ia(i+1) = ia(i)
 8    continue
      ia(1) = ifirst 
c
      return 
c---------------end-of-csort-------------------------------------------- 
c-----------------------------------------------------------------------
      end


c-----------------------------------------------------------------------
      subroutine clncsr(job,value2,nrow,a,ja,ia,indu,iwk)
c     .. Scalar Arguments ..
      integer job, nrow, value2
c     ..
c     .. Array Arguments ..
      integer ia(nrow+1),indu(nrow),iwk(nrow+1),ja(*)
      real*8  a(*)
c     ..
c
c     This routine performs two tasks to clean up a CSR matrix
c     -- remove duplicate/zero entries,
c     -- perform a partial ordering, new order lower triangular part,
c        main diagonal, upper triangular part.
c
c     On entry:
c
c     job   = options
c         0 -- nothing is done
c         1 -- eliminate duplicate entries, zero entries.
c         2 -- eliminate duplicate entries and perform partial ordering.
c         3 -- eliminate duplicate entries, sort the entries in the
c              increasing order of clumn indices.
c
c     value2  -- 0 the matrix is pattern only (a is not touched)
c                1 matrix has values too.
c     nrow    -- row dimension of the matrix
c     a,ja,ia -- input matrix in CSR format
c
c     On return:
c     a,ja,ia -- cleaned matrix
c     indu    -- pointers to the beginning of the upper triangular
c                portion if job > 1
c
c     Work space:
c     iwk     -- integer work space of size nrow+1
c
c     .. Local Scalars ..
      integer i,j,k,ko,ipos,kfirst,klast
      real*8  tmp
c     ..
c
      if (job.le.0) return
c
c     .. eliminate duplicate entries --
c     array INDU is used as marker for existing indices, it is also the
c     location of the entry.
c     IWK is used to stored the old IA array.
c     matrix is copied to squeeze out the space taken by the duplicated
c     entries.
c
      do 90 i = 1, nrow
         indu(i) = 0
         iwk(i) = ia(i)
 90   continue
      iwk(nrow+1) = ia(nrow+1)
      k = 1
      do 120 i = 1, nrow
         ia(i) = k
         ipos = iwk(i)
         klast = iwk(i+1)
 100     if (ipos.lt.klast) then
            j = ja(ipos)
            if (indu(j).eq.0) then
c     .. new entry ..
               if (value2.ne.0) then
                  if (a(ipos) .ne. 0.0D0) then
                     indu(j) = k
                     ja(k) = ja(ipos)
                     a(k) = a(ipos)
                     k = k + 1
                  endif
               else
                  indu(j) = k
                  ja(k) = ja(ipos)
                  k = k + 1
               endif
            else if (value2.ne.0) then
c     .. duplicate entry ..
               a(indu(j)) = a(indu(j)) + a(ipos)
            endif
            ipos = ipos + 1
            go to 100
         endif
c     .. remove marks before working on the next row ..
         do 110 ipos = ia(i), k - 1
            indu(ja(ipos)) = 0
 110     continue
 120  continue
      ia(nrow+1) = k
      if (job.le.1) return
c
c     .. partial ordering ..
c     split the matrix into strict upper/lower triangular
c     parts, INDU points to the the beginning of the upper part.
c
      do 140 i = 1, nrow
         klast = ia(i+1) - 1
         kfirst = ia(i)
 130     if (klast.gt.kfirst) then
            if (ja(klast).lt.i .and. ja(kfirst).ge.i) then
c     .. swap klast with kfirst ..
               j = ja(klast)
               ja(klast) = ja(kfirst)
               ja(kfirst) = j
               if (value2.ne.0) then
                  tmp = a(klast)
                  a(klast) = a(kfirst)
                  a(kfirst) = tmp
               endif
            endif
            if (ja(klast).ge.i)
     &         klast = klast - 1
            if (ja(kfirst).lt.i)
     &         kfirst = kfirst + 1
            go to 130
         endif
c
         if (ja(klast).lt.i) then
            indu(i) = klast + 1
         else
            indu(i) = klast
         endif
 140  continue
      if (job.le.2) return
c
c     .. order the entries according to column indices
c     burble-sort is used
c
      do 190 i = 1, nrow
         do 160 ipos = ia(i), indu(i)-1
            do 150 j = indu(i)-1, ipos+1, -1
               k = j - 1
               if (ja(k).gt.ja(j)) then
                  ko = ja(k)
                  ja(k) = ja(j)
                  ja(j) = ko
                  if (value2.ne.0) then
                     tmp = a(k)
                     a(k) = a(j)
                     a(j) = tmp
                  endif
               endif
 150        continue
 160     continue
         do 180 ipos = indu(i), ia(i+1)-1
            do 170 j = ia(i+1)-1, ipos+1, -1
               k = j - 1
               if (ja(k).gt.ja(j)) then
                  ko = ja(k)
                  ja(k) = ja(j)
                  ja(j) = ko
                  if (value2.ne.0) then
                     tmp = a(k)
                     a(k) = a(j)
                     a(j) = tmp
                  endif
               endif
 170        continue
 180     continue
 190  continue
      return
c---- end of clncsr ----------------------------------------------------
c-----------------------------------------------------------------------
      end
c----------------------------------------------------------------------- 
      subroutine copmat (nrow,a,ja,ia,ao,jao,iao,ipos,job) 
      real*8 a(*),ao(*) 
      integer nrow, ia(*),ja(*),jao(*),iao(*), ipos, job 
c----------------------------------------------------------------------
c copies the matrix a, ja, ia, into the matrix ao, jao, iao. 
c----------------------------------------------------------------------
c on entry:
c---------
c nrow	= row dimension of the matrix 
c a,
c ja,
c ia    = input matrix in compressed sparse row format. 
c ipos  = integer. indicates the position in the array ao, jao
c         where the first element should be copied. Thus 
c         iao(1) = ipos on return. 
c job   = job indicator. if (job .ne. 1) the values are not copies 
c         (i.e., pattern only is copied in the form of arrays ja, ia).
c
c on return:
c----------
c ao,
c jao,
c iao   = output matrix containing the same data as a, ja, ia.
c-----------------------------------------------------------------------
c           Y. Saad, March 1990. 
c-----------------------------------------------------------------------
c local variables
      integer kst, i, k 
c
      kst    = ipos -ia(1) 
      do 100 i = 1, nrow+1
         iao(i) = ia(i) + kst
 100  continue
c     
      do 200 k=ia(1), ia(nrow+1)-1
         jao(kst+k)= ja(k)
 200  continue
c
      if (job .ne. 1) return
      do 201 k=ia(1), ia(nrow+1)-1
         ao(kst+k) = a(k)
 201  continue
c
      return
c--------end-of-copmat -------------------------------------------------
c-----------------------------------------------------------------------
      end
c-----------------------------------------------------------------------
      subroutine msrcop (nrow,a,ja,ao,jao,job) 
      real*8 a(*),ao(*) 
      integer nrow, ja(*),jao(*), job 
c----------------------------------------------------------------------
c copies the MSR matrix a, ja, into the MSR matrix ao, jao 
c----------------------------------------------------------------------
c on entry:
c---------
c nrow	= row dimension of the matrix 
c a,ja  = input matrix in Modified compressed sparse row format. 
c job   = job indicator. Values are not copied if job .ne. 1 
c       
c on return:
c----------
c ao, jao   = output matrix containing the same data as a, ja.
c-----------------------------------------------------------------------
c           Y. Saad, 
c-----------------------------------------------------------------------
c local variables
      integer i, k 
c
      do 100 i = 1, nrow+1
         jao(i) = ja(i) 
 100  continue
c     
      do 200 k=ja(1), ja(nrow+1)-1
         jao(k)= ja(k)
 200  continue
c
      if (job .ne. 1) return
      do 201 k=ja(1), ja(nrow+1)-1
         ao(k) = a(k)
 201  continue
      do 202 k=1,nrow
         ao(k) = a(k)
 202  continue
c
      return
c--------end-of-msrcop -------------------------------------------------
c-----------------------------------------------------------------------
      end
c----------------------------------------------------------------------- 
      double precision function getelm (i,j,a,ja,ia,iadd,sorted) 
c-----------------------------------------------------------------------
c     purpose:
c     -------- 
c     this function returns the element a(i,j) of a matrix a, 
c     for any pair (i,j).  the matrix is assumed to be stored 
c     in compressed sparse row (csr) format. getelm performs a
c     binary search in the case where it is known that the elements 
c     are sorted so that the column indices are in increasing order. 
c     also returns (in iadd) the address of the element a(i,j) in 
c     arrays a and ja when the search is successsful (zero if not).
c----- 
c     first contributed by noel nachtigal (mit). 
c     recoded jan. 20, 1991, by y. saad [in particular
c     added handling of the non-sorted case + the iadd output] 
c-----------------------------------------------------------------------
c     parameters:
c     ----------- 
c on entry: 
c---------- 
c     i      = the row index of the element sought (input).
c     j      = the column index of the element sought (input).
c     a      = the matrix a in compressed sparse row format (input).
c     ja     = the array of column indices (input).
c     ia     = the array of pointers to the rows' data (input).
c     sorted = logical indicating whether the matrix is knonw to 
c              have its column indices sorted in increasing order 
c              (sorted=.true.) or not (sorted=.false.).
c              (input). 
c on return:
c----------- 
c     getelm = value of a(i,j). 
c     iadd   = address of element a(i,j) in arrays a, ja if found,
c              zero if not found. (output) 
c
c     note: the inputs i and j are not checked for validity. 
c-----------------------------------------------------------------------
c     noel m. nachtigal october 28, 1990 -- youcef saad jan 20, 1991.
c----------------------------------------------------------------------- 
      integer i, ia(*), iadd, j, ja(*)
      double precision a(*)
      logical sorted 
c
c     local variables.
c
      integer ibeg, iend, imid, k
c
c     initialization 
c
      iadd = 0 
      getelm = 0.0
      ibeg = ia(i)
      iend = ia(i+1)-1
c
c     case where matrix is not necessarily sorted
c     
      if (.not. sorted) then 
c
c scan the row - exit as soon as a(i,j) is found
c
         do 5  k=ibeg, iend
            if (ja(k) .eq.  j) then
               iadd = k 
               goto 20 
            endif
 5       continue
c     
c     end unsorted case. begin sorted case
c     
      else
c     
c     begin binary search.   compute the middle index.
c     
 10      imid = ( ibeg + iend ) / 2
c     
c     test if  found
c     
         if (ja(imid).eq.j) then
            iadd = imid 
            goto 20
         endif
         if (ibeg .ge. iend) goto 20
c     
c     else     update the interval bounds. 
c     
         if (ja(imid).gt.j) then
            iend = imid -1
         else 
            ibeg = imid +1
         endif
         goto 10  
c     
c     end both cases
c     
      endif
c     
 20   if (iadd .ne. 0) getelm = a(iadd) 
c
      return
c--------end-of-getelm--------------------------------------------------
c-----------------------------------------------------------------------
      end 
c-----------------------------------------------------------------------
      subroutine getdia (nrow,ncol,job,a,ja,ia,len,diag,idiag,ioff)
      real*8 diag(*),a(*)
      integer nrow, ncol, job, len, ioff, ia(*), ja(*), idiag(*)
c-----------------------------------------------------------------------
c this subroutine extracts a given diagonal from a matrix stored in csr 
c format. the output matrix may be transformed with the diagonal removed
c from it if desired (as indicated by job.) 
c----------------------------------------------------------------------- 
c our definition of a diagonal of matrix is a vector of length nrow
c (always) which contains the elements in rows 1 to nrow of
c the matrix that are contained in the diagonal offset by ioff
c with respect to the main diagonal. if the diagonal element
c falls outside the matrix then it is defined as a zero entry.
c thus the proper definition of diag(*) with offset ioff is 
c
c     diag(i) = a(i,ioff+i) i=1,2,...,nrow
c     with elements falling outside the matrix being defined as zero.
c 
c----------------------------------------------------------------------- 
c 
c on entry:
c---------- 
c
c nrow	= integer. the row dimension of the matrix a.
c ncol	= integer. the column dimension of the matrix a.
c job   = integer. job indicator.  if job = 0 then
c         the matrix a, ja, ia, is not altered on return.
c         if job.ne.0  then getdia will remove the entries
c         collected in diag from the original matrix.
c         this is done in place.
c
c a,ja,
c    ia = matrix stored in compressed sparse row a,ja,ia,format
c ioff  = integer,containing the offset of the wanted diagonal
c	  the diagonal extracted is the one corresponding to the
c	  entries a(i,j) with j-i = ioff.
c	  thus ioff = 0 means the main diagonal
c
c on return:
c----------- 
c len   = number of nonzero elements found in diag.
c         (len .le. min(nrow,ncol-ioff)-max(1,1-ioff) + 1 )
c
c diag  = real*8 array of length nrow containing the wanted diagonal.
c	  diag contains the diagonal (a(i,j),j-i = ioff ) as defined 
c         above. 
c
c idiag = integer array of  length len, containing the poisitions 
c         in the original arrays a and ja of the diagonal elements
c         collected in diag. a zero entry in idiag(i) means that 
c         there was no entry found in row i belonging to the diagonal.
c         
c a, ja,
c    ia = if job .ne. 0 the matrix is unchanged. otherwise the nonzero
c         diagonal entries collected in diag are removed from the 
c         matrix and therefore the arrays a, ja, ia will change.
c	  (the matrix a, ja, ia will contain len fewer elements) 
c 
c----------------------------------------------------------------------c
c     Y. Saad, sep. 21 1989 - modified and retested Feb 17, 1996.      c 
c----------------------------------------------------------------------c
c     local variables
      integer istart, max, iend, i, kold, k, kdiag, ko
c     
      istart = max(0,-ioff)
      iend = min(nrow,ncol-ioff)
      len = 0
      do 1 i=1,nrow
         idiag(i) = 0
	 diag(i) = 0.0d0 
 1    continue
c     
c     extract  diagonal elements
c     
      do 6 i=istart+1, iend
         do 51 k= ia(i),ia(i+1) -1
            if (ja(k)-i .eq. ioff) then
               diag(i)= a(k)
               idiag(i) = k
               len = len+1
               goto 6
            endif
 51      continue
 6    continue
      if (job .eq. 0 .or. len .eq.0) return
c
c     remove diagonal elements and rewind structure
c 
      ko = 0
      do  7 i=1, nrow 
         kold = ko
         kdiag = idiag(i) 
         do 71 k= ia(i), ia(i+1)-1 
            if (k .ne. kdiag) then
               ko = ko+1
               a(ko) = a(k)
               ja(ko) = ja(k)
            endif
 71      continue
         ia(i) = kold+1
 7    continue
c
c     redefine ia(nrow+1)
c
      ia(nrow+1) = ko+1
      return
c------------end-of-getdia----------------------------------------------
c-----------------------------------------------------------------------
      end
c-----------------------------------------------------------------------
      subroutine transp (nrow,ncol,a,ja,ia,iwk,ierr)
      integer nrow, ncol, ia(*), ja(*), iwk(*), ierr
      real*8 a(*) 
c------------------------------------------------------------------------
c In-place transposition routine.
c------------------------------------------------------------------------
c this subroutine transposes a matrix stored in compressed sparse row 
c format. the transposition is done in place in that the arrays a,ja,ia
c of the transpose are overwritten onto the original arrays.
c------------------------------------------------------------------------
c on entry:
c--------- 
c nrow	= integer. The row dimension of A.
c ncol	= integer. The column dimension of A.
c a	= real array of size nnz (number of nonzero elements in A).
c         containing the nonzero elements 
c ja	= integer array of length nnz containing the column positions
c 	  of the corresponding elements in a.
c ia	= integer of size n+1, where n = max(nrow,ncol). On entry
c         ia(k) contains the position in a,ja of  the beginning of 
c         the k-th row.
c
c iwk	= integer work array of same length as ja.
c
c on return:
c----------
c
c ncol	= actual row dimension of the transpose of the input matrix.
c         Note that this may be .le. the input value for ncol, in
c         case some of the last columns of the input matrix are zero
c         columns. In the case where the actual number of rows found
c         in transp(A) exceeds the input value of ncol, transp will
c         return without completing the transposition. see ierr.
c a,
c ja,
c ia	= contains the transposed matrix in compressed sparse
c         row format. The row dimension of a, ja, ia is now ncol.
c
c ierr	= integer. error message. If the number of rows for the
c         transposed matrix exceeds the input value of ncol,
c         then ierr is  set to that number and transp quits.
c         Otherwise ierr is set to 0 (normal return).
c
c Note: 
c----- 1) If you do not need the transposition to be done in place
c         it is preferrable to use the conversion routine csrcsc 
c         (see conversion routines in formats).
c      2) the entries of the output matrix are not sorted (the column
c         indices in each are not in increasing order) use csrcsc
c         if you want them sorted.
c----------------------------------------------------------------------c
c           Y. Saad, Sep. 21 1989                                      c
c  modified Oct. 11, 1989.                                             c
c----------------------------------------------------------------------c
c local variables
      real*8 t, t1
      ierr = 0
      nnz = ia(nrow+1)-1
c
c     determine column dimension
c
      jcol = 0
      do 1 k=1, nnz
         jcol = max(jcol,ja(k))
 1    continue
      if (jcol .gt. ncol) then
         ierr = jcol
         return
      endif
c     
c     convert to coordinate format. use iwk for row indices.
c     
      ncol = jcol
c     
      do 3 i=1,nrow
         do 2 k=ia(i),ia(i+1)-1
            iwk(k) = i
 2       continue 
 3    continue
c     find pointer array for transpose. 
      do 35 i=1,ncol+1
         ia(i) = 0
 35   continue
      do 4 k=1,nnz
         i = ja(k)
         ia(i+1) = ia(i+1)+1
 4    continue 
      ia(1) = 1 
c------------------------------------------------------------------------
      do 44 i=1,ncol
         ia(i+1) = ia(i) + ia(i+1)
 44   continue 
c     
c     loop for a cycle in chasing process. 
c     
      init = 1
      k = 0
 5    t = a(init)
      i = ja(init)
      j = iwk(init)
      iwk(init) = -1
c------------------------------------------------------------------------
 6    k = k+1 		
c     current row number is i.  determine  where to go. 
      l = ia(i)
c     save the chased element. 
      t1 = a(l)
      inext = ja(l)
c     then occupy its location.
      a(l)  = t
      ja(l) = j
c     update pointer information for next element to be put in row i. 
      ia(i) = l+1
c     determine  next element to be chased
      if (iwk(l) .lt. 0) goto 65
      t = t1
      i = inext
      j = iwk(l)
      iwk(l) = -1
      if (k .lt. nnz) goto 6
      goto 70
 65   init = init+1
      if (init .gt. nnz) goto 70
      if (iwk(init) .lt. 0) goto 65
c     restart chasing --	
      goto 5
 70   continue
      do 80 i=ncol,1,-1 
         ia(i+1) = ia(i)
 80   continue
      ia(1) = 1
c
      return
c------------------end-of-transp ----------------------------------------
c------------------------------------------------------------------------
      end 
c------------------------------------------------------------------------ 
      subroutine getl (n,a,ja,ia,ao,jao,iao)
      integer n, ia(*), ja(*), iao(*), jao(*)
      real*8 a(*), ao(*)
c------------------------------------------------------------------------
c this subroutine extracts the lower triangular part of a matrix 
c and writes the result ao, jao, iao. The routine is in place in
c that ao, jao, iao can be the same as a, ja, ia if desired.
c-----------
c on input:
c
c n     = dimension of the matrix a.
c a, ja, 
c    ia = matrix stored in compressed sparse row format.
c On return:
c ao, jao, 
c    iao = lower triangular matrix (lower part of a) 
c	stored in a, ja, ia, format
c note: the diagonal element is the last element in each row.
c i.e. in  a(ia(i+1)-1 ) 
c ao, jao, iao may be the same as a, ja, ia on entry -- in which case
c getl will overwrite the result on a, ja, ia.
c
c------------------------------------------------------------------------
c local variables
      real*8 t
      integer ko, kold, kdiag, k, i
c
c inititialize ko (pointer for output matrix)
c
      ko = 0
      do  7 i=1, n
         kold = ko
         kdiag = 0
         do 71 k = ia(i), ia(i+1) -1
            if (ja(k)  .gt. i) goto 71
            ko = ko+1
            ao(ko) = a(k)
            jao(ko) = ja(k)
            if (ja(k)  .eq. i) kdiag = ko
 71      continue
         if (kdiag .eq. 0 .or. kdiag .eq. ko) goto 72
c
c     exchange
c
         t = ao(kdiag)
         ao(kdiag) = ao(ko)
         ao(ko) = t
c     
         k = jao(kdiag)
         jao(kdiag) = jao(ko)
         jao(ko) = k
 72      iao(i) = kold+1
 7    continue
c     redefine iao(n+1)
      iao(n+1) = ko+1
      return
c----------end-of-getl ------------------------------------------------- 
c-----------------------------------------------------------------------
      end
c-----------------------------------------------------------------------
      subroutine getu (n,a,ja,ia,ao,jao,iao)
      integer n, ia(*), ja(*), iao(*), jao(*)
      real*8 a(*), ao(*)
c------------------------------------------------------------------------
c this subroutine extracts the upper triangular part of a matrix 
c and writes the result ao, jao, iao. The routine is in place in
c that ao, jao, iao can be the same as a, ja, ia if desired.
c-----------
c on input:
c
c n     = dimension of the matrix a.
c a, ja, 
c    ia = matrix stored in a, ja, ia, format
c On return:
c ao, jao, 
c    iao = upper triangular matrix (upper part of a) 
c	stored in compressed sparse row format
c note: the diagonal element is the last element in each row.
c i.e. in  a(ia(i+1)-1 ) 
c ao, jao, iao may be the same as a, ja, ia on entry -- in which case
c getu will overwrite the result on a, ja, ia.
c
c------------------------------------------------------------------------
c local variables
      real*8 t 
      integer ko, k, i, kdiag, kfirst 
      ko = 0
      do  7 i=1, n
         kfirst = ko+1
         kdiag = 0
         do 71 k = ia(i), ia(i+1) -1
            if (ja(k)  .lt. i) goto 71
            ko = ko+1
            ao(ko) = a(k)
            jao(ko) = ja(k)
            if (ja(k)  .eq. i) kdiag = ko
 71      continue
         if (kdiag .eq. 0 .or. kdiag .eq. kfirst) goto 72
c     exchange
         t = ao(kdiag)
         ao(kdiag) = ao(kfirst)
         ao(kfirst) = t
c     
         k = jao(kdiag)
         jao(kdiag) = jao(kfirst)
         jao(kfirst) = k
 72      iao(i) = kfirst
 7    continue
c     redefine iao(n+1)
      iao(n+1) = ko+1
      return
c----------end-of-getu ------------------------------------------------- 
c-----------------------------------------------------------------------
      end
c----------------------------------------------------------------------- 
      subroutine levels (n, jal, ial, nlev, lev, ilev, levnum)
      integer jal(*),ial(*), levnum(*), ilev(*), lev(*) 
c-----------------------------------------------------------------------
c levels gets the level structure of a lower triangular matrix 
c for level scheduling in the parallel solution of triangular systems
c strict lower matrices (e.g. unit) as well matrices with their main 
c diagonal are accepted. 
c-----------------------------------------------------------------------
c on entry:
c----------
c n        = integer. The row dimension of the matrix
c jal, ial = 
c 
c on return:
c-----------
c nlev     = integer. number of levels found
c lev      = integer array of length n containing the level
c            scheduling permutation.
c ilev     = integer array. pointer to beginning of levels in lev.
c            the numbers lev(i) to lev(i+1)-1 contain the row numbers
c            that belong to level number i, in the level scheduling
c            ordering. The equations of the same level can be solved
c            in parallel, once those of all the previous levels have
c            been solved.
c work arrays:
c-------------
c levnum   = integer array of length n (containing the level numbers
c            of each unknown on return)
c-----------------------------------------------------------------------
      do 10 i = 1, n
         levnum(i) = 0
 10   continue
c
c     compute level of each node --
c
      nlev = 0
      do 20 i = 1, n
         levi = 0
         do 15 j = ial(i), ial(i+1) - 1
            levi = max (levi, levnum(jal(j)))
 15      continue
         levi = levi+1 
         levnum(i) = levi 
         nlev = max(nlev,levi) 
 20   continue
c-------------set data structure  --------------------------------------
      do 21 j=1, nlev+1
         ilev(j) = 0
 21   continue
c------count  number   of elements in each level ----------------------- 
      do 22 j=1, n
         i = levnum(j)+1
         ilev(i) = ilev(i)+1
 22   continue
c---- set up pointer for  each  level ---------------------------------- 
      ilev(1) = 1
      do 23 j=1, nlev
         ilev(j+1) = ilev(j)+ilev(j+1)
 23   continue
c-----determine elements of each level -------------------------------- 
      do 30 j=1,n
         i = levnum(j)
         lev(ilev(i)) = j
         ilev(i) = ilev(i)+1
 30   continue
c     reset pointers backwards
      do 35 j=nlev, 1, -1
         ilev(j+1) = ilev(j) 
 35   continue
      ilev(1) = 1
      return
c----------end-of-levels------------------------------------------------ 
C-----------------------------------------------------------------------
      end
c-----------------------------------------------------------------------
      subroutine amask (nrow,ncol,a,ja,ia,jmask,imask,
     *                  c,jc,ic,iw,nzmax,ierr)
c---------------------------------------------------------------------
      real*8 a(*),c(*) 
      integer ia(nrow+1),ja(*),jc(*),ic(nrow+1),jmask(*),imask(nrow+1) 
      logical iw(ncol)
c-----------------------------------------------------------------------
c This subroutine builds a sparse matrix from an input matrix by 
c extracting only elements in positions defined by the mask jmask, imask
c-----------------------------------------------------------------------
c On entry:
c---------
c nrow  = integer. row dimension of input matrix 
c ncol	= integer. Column dimension of input matrix.
c
c a,
c ja,
c ia	= matrix in Compressed Sparse Row format
c
c jmask,
c imask = matrix defining mask (pattern only) stored in compressed
c         sparse row format.
c
c nzmax = length of arrays c and jc. see ierr.
c 
c On return:
c-----------
c
c a, ja, ia and jmask, imask are unchanged.
c
c c
c jc, 
c ic	= the output matrix in Compressed Sparse Row format.
c 
c ierr  = integer. serving as error message.c
c         ierr = 1  means normal return
c         ierr .gt. 1 means that amask stopped when processing
c         row number ierr, because there was not enough space in
c         c, jc according to the value of nzmax.
c
c work arrays:
c------------- 
c iw	= logical work array of length ncol.
c
c note: 
c------ the  algorithm is in place: c, jc, ic can be the same as 
c a, ja, ia in which cas the code will overwrite the matrix c
c on a, ja, ia
c
c-----------------------------------------------------------------------
      ierr = 0
      len = 0
      do 1 j=1, ncol
         iw(j) = .false.
 1    continue
c     unpack the mask for row ii in iw
      do 100 ii=1, nrow
c     save pointer in order to be able to do things in place
         do 2 k=imask(ii), imask(ii+1)-1
            iw(jmask(k)) = .true.
 2       continue
c     add umasked elemnts of row ii
         k1 = ia(ii)
         k2 = ia(ii+1)-1
         ic(ii) = len+1
         do 200 k=k1,k2 
            j = ja(k)
            if (iw(j)) then
               len = len+1
               if (len .gt. nzmax) then
                  ierr = ii
                  return
               endif
               jc(len) = j
               c(len) = a(k)
            endif
 200     continue	      
c     
         do 3 k=imask(ii), imask(ii+1)-1
            iw(jmask(k)) = .false.
 3       continue
 100  continue	  
      ic(nrow+1)=len+1
c
      return
c-----end-of-amask -----------------------------------------------------
c-----------------------------------------------------------------------
      end
c----------------------------------------------------------------------- 
      subroutine rperm (nrow,a,ja,ia,ao,jao,iao,perm,job)
      integer nrow,ja(*),ia(nrow+1),jao(*),iao(nrow+1),perm(nrow),job
      real*8 a(*),ao(*) 
c-----------------------------------------------------------------------
c this subroutine permutes the rows of a matrix in CSR format. 
c rperm  computes B = P A  where P is a permutation matrix.  
c the permutation P is defined through the array perm: for each j, 
c perm(j) represents the destination row number of row number j. 
c Youcef Saad -- recoded Jan 28, 1991.
c-----------------------------------------------------------------------
c on entry:
c----------
c n 	= dimension of the matrix
c a, ja, ia = input matrix in csr format
c perm 	= integer array of length nrow containing the permutation arrays
c	  for the rows: perm(i) is the destination of row i in the
c         permuted matrix. 
c         ---> a(i,j) in the original matrix becomes a(perm(i),j) 
c         in the output  matrix.
c
c job	= integer indicating the work to be done:
c 		job = 1	permute a, ja, ia into ao, jao, iao 
c                       (including the copying of real values ao and
c                       the array iao).
c 		job .ne. 1 :  ignore real values.
c                     (in which case arrays a and ao are not needed nor
c                      used).
c
c------------
c on return: 
c------------ 
c ao, jao, iao = input matrix in a, ja, ia format
c note : 
c        if (job.ne.1)  then the arrays a and ao are not used.
c----------------------------------------------------------------------c
c           Y. Saad, May  2, 1990                                      c
c----------------------------------------------------------------------c
      logical values
      values = (job .eq. 1) 
c     
c     determine pointers for output matix. 
c     
      do 50 j=1,nrow
         i = perm(j)
         iao(i+1) = ia(j+1) - ia(j)
 50   continue
c
c get pointers from lengths
c
      iao(1) = 1
      do 51 j=1,nrow
         iao(j+1)=iao(j+1)+iao(j)
 51   continue
c
c copying 
c
      do 100 ii=1,nrow
c
c old row = ii  -- new row = iperm(ii) -- ko = new pointer
c        
         ko = iao(perm(ii)) 
         do 60 k=ia(ii), ia(ii+1)-1 
            jao(ko) = ja(k) 
            if (values) ao(ko) = a(k)
            ko = ko+1
 60      continue
 100  continue
c
      return
c---------end-of-rperm ------------------------------------------------- 
c-----------------------------------------------------------------------
      end
c-----------------------------------------------------------------------
      subroutine cperm (nrow,a,ja,ia,ao,jao,iao,perm,job) 
      integer nrow,ja(*),ia(nrow+1),jao(*),iao(nrow+1),perm(*), job
      real*8 a(*), ao(*) 
c-----------------------------------------------------------------------
c this subroutine permutes the columns of a matrix a, ja, ia.
c the result is written in the output matrix  ao, jao, iao.
c cperm computes B = A P, where  P is a permutation matrix
c that maps column j into column perm(j), i.e., on return 
c      a(i,j) becomes a(i,perm(j)) in new matrix 
c Y. Saad, May 2, 1990 / modified Jan. 28, 1991. 
c-----------------------------------------------------------------------
c on entry:
c----------
c nrow 	= row dimension of the matrix
c
c a, ja, ia = input matrix in csr format. 
c
c perm	= integer array of length ncol (number of columns of A
c         containing the permutation array  the columns: 
c         a(i,j) in the original matrix becomes a(i,perm(j))
c         in the output matrix.
c
c job	= integer indicating the work to be done:
c 		job = 1	permute a, ja, ia into ao, jao, iao 
c                       (including the copying of real values ao and
c                       the array iao).
c 		job .ne. 1 :  ignore real values ao and ignore iao.
c
c------------
c on return: 
c------------ 
c ao, jao, iao = input matrix in a, ja, ia format (array ao not needed)
c
c Notes:
c------- 
c 1. if job=1 then ao, iao are not used.
c 2. This routine is in place: ja, jao can be the same. 
c 3. If the matrix is initially sorted (by increasing column number) 
c    then ao,jao,iao  may not be on return. 
c 
c----------------------------------------------------------------------c
c local parameters:
      integer k, i, nnz
c
      nnz = ia(nrow+1)-1
      do 100 k=1,nnz
         jao(k) = perm(ja(k)) 
 100  continue
c
c     done with ja array. return if no need to touch values.
c
      if (job .ne. 1) return
c
c else get new pointers -- and copy values too.
c 
      do 1 i=1, nrow+1
         iao(i) = ia(i)
 1    continue
c
      do 2 k=1, nnz
         ao(k) = a(k)
 2    continue
c
      return
c---------end-of-cperm-------------------------------------------------- 
c-----------------------------------------------------------------------
      end
c----------------------------------------------------------------------- 
      subroutine dperm (nrow,a,ja,ia,ao,jao,iao,perm,qperm,job)
      integer nrow,ja(*),ia(nrow+1),jao(*),iao(nrow+1),perm(nrow),
     +        qperm(*),job
      real*8 a(*),ao(*) 
c-----------------------------------------------------------------------
c This routine permutes the rows and columns of a matrix stored in CSR
c format. i.e., it computes P A Q, where P, Q are permutation matrices. 
c P maps row i into row perm(i) and Q maps column j into column qperm(j): 
c      a(i,j)    becomes   a(perm(i),qperm(j)) in new matrix
c In the particular case where Q is the transpose of P (symmetric 
c permutation of A) then qperm is not needed. 
c note that qperm should be of length ncol (number of columns) but this
c is not checked. 
c-----------------------------------------------------------------------
c Y. Saad, Sep. 21 1989 / recoded Jan. 28 1991. 
c-----------------------------------------------------------------------
c on entry: 
c---------- 
c n 	= dimension of the matrix
c a, ja, 
c    ia = input matrix in a, ja, ia format
c perm 	= integer array of length n containing the permutation arrays
c	  for the rows: perm(i) is the destination of row i in the
c         permuted matrix -- also the destination of column i in case
c         permutation is symmetric (job .le. 2) 
c
c qperm	= same thing for the columns. This should be provided only
c         if job=3 or job=4, i.e., only in the case of a nonsymmetric
c	  permutation of rows and columns. Otherwise qperm is a dummy
c
c job	= integer indicating the work to be done:
c * job = 1,2 permutation is symmetric  Ao :== P * A * transp(P)
c 		job = 1	permute a, ja, ia into ao, jao, iao 
c 		job = 2 permute matrix ignoring real values.
c * job = 3,4 permutation is non-symmetric  Ao :== P * A * Q 
c 		job = 3	permute a, ja, ia into ao, jao, iao 
c 		job = 4 permute matrix ignoring real values.
c		
c on return: 
c-----------
c ao, jao, iao = input matrix in a, ja, ia format
c
c in case job .eq. 2 or job .eq. 4, a and ao are never referred to 
c and can be dummy arguments. 
c Notes:
c------- 
c  1) algorithm is in place 
c  2) column indices may not be sorted on return even  though they may be 
c     on entry.
c----------------------------------------------------------------------c
c local variables 
      integer locjob, mod
c
c     locjob indicates whether or not real values must be copied. 
c     
      locjob = mod(job,2) 
c
c permute rows first 
c 
      call rperm (nrow,a,ja,ia,ao,jao,iao,perm,locjob)
c
c then permute columns
c
      locjob = 0
c
      if (job .le. 2) then
         call cperm (nrow,ao,jao,iao,ao,jao,iao,perm,locjob) 
      else 
         call cperm (nrow,ao,jao,iao,ao,jao,iao,qperm,locjob) 
      endif 
c     
      return
c-------end-of-dperm----------------------------------------------------
c-----------------------------------------------------------------------
      end
c-----------------------------------------------------------------------
      subroutine dperm1 (i1,i2,a,ja,ia,b,jb,ib,perm,ipos,job)
      integer i1,i2,job,ja(*),ia(*),jb(*),ib(*),perm(*)
      real*8 a(*),b(*)
c----------------------------------------------------------------------- 
c     general submatrix extraction routine.
c----------------------------------------------------------------------- 
c     extracts rows perm(i1), perm(i1+1), ..., perm(i2) (in this order) 
c     from a matrix (doing nothing in the column indices.) The resulting 
c     submatrix is constructed in b, jb, ib. A pointer ipos to the
c     beginning of arrays b,jb,is also allowed (i.e., nonzero elements
c     are accumulated starting in position ipos of b, jb). 
c-----------------------------------------------------------------------
c Y. Saad,Sep. 21 1989 / recoded Jan. 28 1991 / modified for PSPARSLIB 
c Sept. 1997.. 
c-----------------------------------------------------------------------
c on entry: 
c---------- 
c n 	= dimension of the matrix
c a,ja,
c   ia  = input matrix in CSR format
c perm 	= integer array of length n containing the indices of the rows
c         to be extracted. 
c
c job   = job indicator. if (job .ne.1) values are not copied (i.e.,
c         only pattern is copied).
c
c on return: 
c-----------
c b,ja,
c ib   = matrix in csr format. b(ipos:ipos+nnz-1),jb(ipos:ipos+nnz-1) 
c     contain the value and column indices respectively of the nnz
c     nonzero elements of the permuted matrix. thus ib(1)=ipos.
c
c Notes:
c------- 
c  algorithm is NOT in place 
c----------------------------------------------------------------------- 
c local variables
c
      integer ko,irow,k 
      logical values
c-----------------------------------------------------------------------
      values = (job .eq. 1) 
      ko = ipos 
      ib(1) = ko
      do 900 i=i1,i2
         irow = perm(i) 
         do 800 k=ia(irow),ia(irow+1)-1
            if (values) b(ko) = a(k)
            jb(ko) = ja(k)
            ko=ko+1
 800     continue
         ib(i-i1+2) = ko
 900  continue
      return
c--------end-of-dperm1--------------------------------------------------
c-----------------------------------------------------------------------
      end
c-----------------------------------------------------------------------
      subroutine dperm2 (i1,i2,a,ja,ia,b,jb,ib,cperm,rperm,istart,
     *        ipos,job)
      integer i1,i2,job,istart,ja(*),ia(*),jb(*),ib(*),cperm(*),rperm(*) 
      real*8 a(*),b(*)
c----------------------------------------------------------------------- 
c     general submatrix permutation/ extraction routine.
c----------------------------------------------------------------------- 
c     extracts rows rperm(i1), rperm(i1+1), ..., rperm(i2) and does an
c     associated column permutation (using array cperm). The resulting
c     submatrix is constructed in b, jb, ib. For added flexibility, the
c     extracted elements are put in sequence starting from row 'istart' 
c     of B. In addition a pointer ipos to the beginning of arrays b,jb,
c     is also allowed (i.e., nonzero elements are accumulated starting in
c     position ipos of b, jb). In most applications istart and ipos are 
c     equal to one. However, the generality adds substantial flexiblity.
c     EXPLE: (1) to permute msr to msr (excluding diagonals) 
c     call dperm2 (1,n,a,ja,ja,b,jb,jb,rperm,rperm,1,n+2) 
c            (2) To extract rows 1 to 10: define rperm and cperm to be
c     identity permutations (rperm(i)=i, i=1,n) and then
c            call dperm2 (1,10,a,ja,ia,b,jb,ib,rperm,rperm,1,1) 
c            (3) to achieve a symmetric permutation as defined by perm: 
c            call dperm2 (1,10,a,ja,ia,b,jb,ib,perm,perm,1,1) 
c            (4) to get a symmetric permutation of A and append the
c            resulting data structure to A's data structure (useful!) 
c            call dperm2 (1,10,a,ja,ia,a,ja,ia(n+1),perm,perm,1,ia(n+1))
c-----------------------------------------------------------------------
c Y. Saad,Sep. 21 1989 / recoded Jan. 28 1991. 
c-----------------------------------------------------------------------
c on entry: 
c---------- 
c n 	= dimension of the matrix
c i1,i2 = extract rows rperm(i1) to rperm(i2) of A, with i1<i2.
c
c a,ja,
c   ia  = input matrix in CSR format
c cperm = integer array of length n containing the permutation arrays
c	  for the columns: cperm(i) is the destination of column j, 
c         i.e., any column index ja(k) is transformed into cperm(ja(k)) 
c
c rperm	=  permutation array for the rows. rperm(i) = origin (in A) of
c          row i in B. This is the reverse permutation relative to the
c          ones used in routines cperm, dperm,.... 
c          rows rperm(i1), rperm(i1)+1, ... rperm(i2) are 
c          extracted from A and stacked into B, starting in row istart
c          of B. 
c istart= starting row for B where extracted matrix is to be added.
c         this is also only a pointer of the be beginning address for
c         ib , on return. 
c ipos  = beginning position in arrays b and jb where to start copying 
c         elements. Thus, ib(istart) = ipos. 
c
c job   = job indicator. if (job .ne.1) values are not copied (i.e.,
c         only pattern is copied).
c
c on return: 
c-----------
c b,ja,
c ib   = matrix in csr format. positions 1,2,...,istart-1 of ib 
c     are not touched. b(ipos:ipos+nnz-1),jb(ipos:ipos+nnz-1) 
c     contain the value and column indices respectively of the nnz
c     nonzero elements of the permuted matrix. thus ib(istart)=ipos.
c
c Notes:
c------- 
c  1) algorithm is NOT in place 
c  2) column indices may not be sorted on return even  though they 
c     may be on entry.
c----------------------------------------------------------------------- 
c local variables
c
      integer ko,irow,k 
      logical values
c-----------------------------------------------------------------------
      values = (job .eq. 1) 
      ko = ipos 
      ib(istart) = ko
      do 900 i=i1,i2
         irow = rperm(i) 
         do 800 k=ia(irow),ia(irow+1)-1
            if (values) b(ko) = a(k)
            jb(ko) = cperm(ja(k))
            ko=ko+1
 800     continue
         ib(istart+i-i1+1) = ko
 900  continue
      return
c--------end-of-dperm2--------------------------------------------------
c-----------------------------------------------------------------------
      end 
c-----------------------------------------------------------------------
      subroutine dmperm (nrow,a,ja,ao,jao,perm,job)
      integer nrow,ja(*),jao(*),perm(nrow),job
      real*8 a(*),ao(*) 
c-----------------------------------------------------------------------
c This routine performs a symmetric permutation of the rows and 
c columns of a matrix stored in MSR format. i.e., it computes 
c B = P A transp(P), where P, is  a permutation matrix. 
c P maps row i into row perm(i) and column j into column perm(j): 
c      a(i,j)    becomes   a(perm(i),perm(j)) in new matrix
c (i.e.  ao(perm(i),perm(j)) = a(i,j) ) 
c calls dperm. 
c-----------------------------------------------------------------------
c Y. Saad, Nov 15, 1991. 
c-----------------------------------------------------------------------
c on entry: 
c---------- 
c n 	= dimension of the matrix
c a, ja = input matrix in MSR format. 
c perm 	= integer array of length n containing the permutation arrays
c	  for the rows: perm(i) is the destination of row i in the
c         permuted matrix -- also the destination of column i in case
c         permutation is symmetric (job .le. 2) 
c
c job	= integer indicating the work to be done:
c 		job = 1	permute a, ja, ia into ao, jao, iao 
c 		job = 2 permute matrix ignoring real values.
c		
c on return: 
c-----------
c ao, jao = output matrix in MSR. 
c
c in case job .eq. 2 a and ao are never referred to and can be dummy 
c arguments. 
c
c Notes:
c------- 
c  1) algorithm is NOT in place 
c  2) column indices may not be sorted on return even  though they may be 
c     on entry.
c----------------------------------------------------------------------c
c     local variables
c     
      integer n1, n2
      n1 = nrow+1
      n2 = n1+1
c      
      call dperm (nrow,a,ja,ja,ao(n2),jao(n2),jao,perm,perm,job) 
c     
      jao(1) = n2
      do 101 j=1, nrow 
         ao(perm(j)) = a(j) 
         jao(j+1) = jao(j+1)+n1
 101  continue
c
c done
c     
      return
c-----------------------------------------------------------------------
c--------end-of-dmperm--------------------------------------------------
      end
c----------------------------------------------------------------------- 
      subroutine dvperm (n, x, perm) 
      integer n, perm(n) 
      real*8 x(n)
c-----------------------------------------------------------------------
c this subroutine performs an in-place permutation of a real vector x 
c according to the permutation array perm(*), i.e., on return, 
c the vector x satisfies,
c
c	x(perm(j)) :== x(j), j=1,2,.., n
c
c-----------------------------------------------------------------------
c on entry:
c---------
c n 	= length of vector x.
c perm 	= integer array of length n containing the permutation  array.
c x	= input vector
c
c on return:
c---------- 
c x	= vector x permuted according to x(perm(*)) :=  x(*)
c
c----------------------------------------------------------------------c
c           Y. Saad, Sep. 21 1989                                      c
c----------------------------------------------------------------------c
c local variables 
      real*8 tmp, tmp1
c
      init      = 1
      tmp	= x(init)	
      ii        = perm(init)
      perm(init)= -perm(init)
      k         = 0
c     
c loop
c 
 6    k = k+1
c
c save the chased element --
c 
      tmp1	  = x(ii) 
      x(ii)     = tmp
      next	  = perm(ii) 
      if (next .lt. 0 ) goto 65
c     
c test for end 
c
      if (k .gt. n) goto 101
      tmp       = tmp1
      perm(ii)  = - perm(ii)
      ii        = next 
c
c end loop 
c
      goto 6
c
c reinitilaize cycle --
c
 65   init      = init+1
      if (init .gt. n) goto 101
      if (perm(init) .lt. 0) goto 65
      tmp	= x(init)
      ii	= perm(init)
      perm(init)=-perm(init)
      goto 6
c     
 101  continue
      do 200 j=1, n
         perm(j) = -perm(j)
 200  continue 
c     
      return
c-------------------end-of-dvperm--------------------------------------- 
c-----------------------------------------------------------------------
      end
c-----------------------------------------------------------------------
      subroutine ivperm (n, ix, perm) 
      integer n, perm(n), ix(n)
c-----------------------------------------------------------------------
c this subroutine performs an in-place permutation of an integer vector 
c ix according to the permutation array perm(*), i.e., on return, 
c the vector x satisfies,
c
c	ix(perm(j)) :== ix(j), j=1,2,.., n
c
c-----------------------------------------------------------------------
c on entry:
c---------
c n 	= length of vector x.
c perm 	= integer array of length n containing the permutation  array.
c ix	= input vector
c
c on return:
c---------- 
c ix	= vector x permuted according to ix(perm(*)) :=  ix(*)
c
c----------------------------------------------------------------------c
c           Y. Saad, Sep. 21 1989                                      c
c----------------------------------------------------------------------c
c local variables
      integer tmp, tmp1
c
      init      = 1
      tmp	= ix(init)	
      ii        = perm(init)
      perm(init)= -perm(init)
      k         = 0
c     
c loop
c 
 6    k = k+1
c
c save the chased element --
c 
      tmp1	  = ix(ii) 
      ix(ii)     = tmp
      next	  = perm(ii) 
      if (next .lt. 0 ) goto 65
c     
c test for end 
c
      if (k .gt. n) goto 101
      tmp       = tmp1
      perm(ii)  = - perm(ii)
      ii        = next 
c
c end loop 
c
      goto 6
c
c reinitilaize cycle --
c
 65   init      = init+1
      if (init .gt. n) goto 101
      if (perm(init) .lt. 0) goto 65
      tmp	= ix(init)
      ii	= perm(init)
      perm(init)=-perm(init)
      goto 6
c     
 101  continue
      do 200 j=1, n
         perm(j) = -perm(j)
 200  continue 
c     
      return
c-------------------end-of-ivperm--------------------------------------- 
c-----------------------------------------------------------------------
      end
c-----------------------------------------------------------------------  
      subroutine retmx (n,a,ja,ia,dd)
      real*8 a(*),dd(*)
      integer n,ia(*),ja(*)
c-----------------------------------------------------------------------
c returns in dd(*) the max absolute value of elements in row *.
c used for scaling purposes. superseded by rnrms  .
c
c on entry:
c n	= dimension of A
c a,ja,ia
c	= matrix stored in compressed sparse row format
c dd	= real*8 array of length n. On output,entry dd(i) contains
c	  the element of row i that has the largest absolute value.
c	  Moreover the sign of dd is modified such that it is the
c	  same as that of the diagonal element in row i.
c----------------------------------------------------------------------c
c           Y. Saad, Sep. 21 1989                                      c
c----------------------------------------------------------------------c
c local variables
      integer k2, i, k1, k
      real*8 t, t1, t2
c
c initialize 
c
      k2 = 1
      do 11 i=1,n
         k1 = k2
         k2 = ia(i+1) - 1
         t = 0.0d0
         do 101  k=k1,k2
            t1 = abs(a(k))
            if (t1 .gt. t) t = t1
            if (ja(k) .eq. i) then 
               if (a(k) .ge. 0.0) then 
                  t2 = a(k) 
               else 
                  t2 = - a(k)
               endif
            endif
 101     continue		
         dd(i) =  t2*t
c     we do not invert diag
 11   continue
      return
c---------end of retmx -------------------------------------------------
c-----------------------------------------------------------------------
      end
c----------------------------------------------------------------------- 
      subroutine diapos  (n,ja,ia,idiag) 
      integer ia(n+1), ja(*), idiag(n) 
c-----------------------------------------------------------------------
c this subroutine returns the positions of the diagonal elements of a
c sparse matrix a, ja, ia, in the array idiag.
c-----------------------------------------------------------------------
c on entry:
c---------- 
c
c n	= integer. row dimension of the matrix a.
c a,ja,
c    ia = matrix stored compressed sparse row format. a array skipped.
c
c on return:
c-----------
c idiag  = integer array of length n. The i-th entry of idiag 
c          points to the diagonal element a(i,i) in the arrays
c          a, ja. (i.e., a(idiag(i)) = element A(i,i) of matrix A)
c          if no diagonal element is found the entry is set to 0.
c----------------------------------------------------------------------c
c           Y. Saad, March, 1990
c----------------------------------------------------------------------c
      do 1 i=1, n 
         idiag(i) = 0
 1    continue
c     
c     sweep through data structure. 
c     
      do  6 i=1,n
         do 51 k= ia(i),ia(i+1) -1
            if (ja(k) .eq. i) idiag(i) = k
 51      continue
 6    continue
c----------- -end-of-diapos---------------------------------------------
c-----------------------------------------------------------------------
      return
      end
c-----------------------------------------------------------------------
      subroutine dscaldg (n,a,ja,ia,diag,job)
      real*8 a(*), diag(*),t
      integer ia(*),ja(*)
c----------------------------------------------------------------------- 
c scales rows by diag where diag is either given (job=0)
c or to be computed:
c  job = 1 ,scale row i by  by  +/- max |a(i,j) | and put inverse of 
c       scaling factor in diag(i),where +/- is the sign of a(i,i).
c  job = 2 scale by 2-norm of each row..
c if diag(i) = 0,then diag(i) is replaced by one
c (no scaling)..
c----------------------------------------------------------------------c
c           Y. Saad, Sep. 21 1989                                      c
c----------------------------------------------------------------------c
      goto (12,11,10) job+1
 10   do 110 j=1,n
         k1= ia(j)
         k2 = ia(j+1)-1
         t = 0.0d0
         do 111 k = k1,k2
 111        t = t+a(k)*a(k)
 110        diag(j) = sqrt(t)
            goto 12
 11   continue
      call retmx (n,a,ja,ia,diag)
c------
 12   do 1 j=1,n
         if (diag(j) .ne. 0.0d0) then 
            diag(j) = 1.0d0/diag(j)
         else 
            diag(j) = 1.0d0
         endif
 1    continue
      do 2 i=1,n
         t = diag(i)
         do 21 k=ia(i),ia(i+1) -1
            a(k) = a(k)*t
 21      continue
 2    continue
      return 
c--------end of dscaldg -----------------------------------------------
c-----------------------------------------------------------------------
      end
c-----------------------------------------------------------------------
      subroutine extbdg (n,a,ja,ia,bdiag,nblk,ao,jao,iao)
      implicit real*8 (a-h,o-z)
      real*8 bdiag(*),a(*),ao(*)
      integer ia(*),ja(*),jao(*),iao(*) 
c-----------------------------------------------------------------------
c this subroutine extracts the main diagonal blocks of a 
c matrix stored in compressed sparse row format and puts the result
c into the array bdiag and the remainder in ao,jao,iao.
c-----------------------------------------------------------------------
c on entry:
c----------
c n	= integer. The row dimension of the matrix a.
c a,
c ja,
c ia    = matrix stored in csr format
c nblk  = dimension of each diagonal block. The diagonal blocks are
c         stored in compressed format rowwise,i.e.,we store in 
c	  succession the i nonzeros of the i-th row after those of
c	  row number i-1..
c
c on return:
c----------
c bdiag = real*8 array of size (n x nblk) containing the diagonal
c	  blocks of A on return
c ao,
c jao,
C iao   = remainder of the matrix stored in csr format.
c----------------------------------------------------------------------c
c           Y. Saad, Sep. 21 1989                                      c
c----------------------------------------------------------------------c
      m = 1 + (n-1)/nblk
c this version is sequential -- there is a more parallel version
c that goes through the structure twice ....
      ltr =  ((nblk-1)*nblk)/2 
      l = m * ltr
      do 1 i=1,l
         bdiag(i) = 0.0d0
 1    continue
      ko = 0
      kb = 1
      iao(1) = 1
c-------------------------
      do 11 jj = 1,m
         j1 = (jj-1)*nblk+1
         j2 =  min0 (n,j1+nblk-1)
         do 12 j=j1,j2
            do 13 i=ia(j),ia(j+1) -1
               k = ja(i)
               if (k .lt. j1) then
                  ko = ko+1
                  ao(ko) = a(i)
                  jao(ko) = k
               else if (k .lt. j) then
c     kb = (jj-1)*ltr+((j-j1)*(j-j1-1))/2+k-j1+1
c     bdiag(kb) = a(i)
                  bdiag(kb+k-j1) = a(i)
               endif
 13         continue 	
            kb = kb + j-j1
            iao(j+1) = ko+1
 12      continue
 11   continue
      return
c---------end-of-extbdg------------------------------------------------- 
c----------------------------------------------------------------------- 
      end
c----------------------------------------------------------------------- 
      subroutine getbwd(n,a,ja,ia,ml,mu)
c-----------------------------------------------------------------------
c gets the bandwidth of lower part and upper part of A.
c does not assume that A is sorted.
c-----------------------------------------------------------------------
c on entry:
c----------
c n	= integer = the row dimension of the matrix
c a, ja,
c    ia = matrix in compressed sparse row format.
c 
c on return:
c----------- 
c ml	= integer. The bandwidth of the strict lower part of A
c mu	= integer. The bandwidth of the strict upper part of A 
c
c Notes:
c ===== ml and mu are allowed to be negative or return. This may be 
c       useful since it will tell us whether a band is confined 
c       in the strict  upper/lower triangular part. 
c       indeed the definitions of ml and mu are
c
c       ml = max ( (i-j)  s.t. a(i,j) .ne. 0  )
c       mu = max ( (j-i)  s.t. a(i,j) .ne. 0  )
c----------------------------------------------------------------------c
c Y. Saad, Sep. 21 1989                                                c
c----------------------------------------------------------------------c
      real*8 a(*) 
      integer ja(*),ia(n+1),ml,mu,ldist,i,k 
      ml = - n
      mu = - n
      do 3 i=1,n
         do 31 k=ia(i),ia(i+1)-1 
            ldist = i-ja(k)
            ml = max(ml,ldist)
            mu = max(mu,-ldist)
 31      continue
 3    continue
      return
c---------------end-of-getbwd ------------------------------------------ 
c----------------------------------------------------------------------- 
      end
c----------------------------------------------------------------------- 
      subroutine blkfnd (nrow,ja,ia,nblk)
c-----------------------------------------------------------------------
c This routine attemptps to determine whether or not  the input
c matrix has a block structure and finds the blocks size
c if it does. A block matrix is one which is
c comprised of small square dense blocks. If there are zero
c elements within the square blocks and the original data structure
c takes these zeros into account then blkchk may fail to find the
c correct block size. 
c----------------------------------------------------------------------- 
c on entry
c---------
c nrow	= integer equal to the row dimension of the matrix.  
c ja    = integer array containing the column indices of the entries 
c         nonzero entries of the matrix stored by row.
c ia    = integer array of length nrow + 1 containing the pointers 
c         beginning of each row in array ja.
c		
c nblk  = integer containing the assumed value of nblk if job = 0
c         
c on return
c---------- 
c nblk  = integer containing the value found for nblk when job = 1.
c         if imsg .ne. 0 this value is meaningless however.
c
c----------------------------------------------------------------------c
c           Y. Saad, Sep. 21 1989                                      c
c----------------------------------------------------------------------c
      integer ia(nrow+1),ja(*) 
c----------------------------------------------------------------------- 
c first part of code will find candidate block sizes.
c criterion used here is a simple one: scan rows and  determine groups 
c of rows that have the same length and such that the first column 
c number and the last column number are identical. 
c----------------------------------------------------------------------- 
      minlen = ia(2)-ia(1)
      irow   = 1
      do 1 i=2,nrow
         len = ia(i+1)-ia(i)
         if (len .lt. minlen) then
            minlen = len 
            irow = i
         endif
 1    continue
c     
c     ---- candidates are all dividers of minlen
c
      nblk = 1
      if (minlen .le. 1) return
c     
      do 99 iblk = minlen, 1, -1
         if (mod(minlen,iblk) .ne. 0) goto 99
         len = ia(2) - ia(1)
         len0 = len
         jfirst = ja(1) 
         jlast = ja(ia(2)-1)
         do 10 jrow = irow+1,irow+nblk-1
            i1 = ia(jrow)
            i2 = ia(jrow+1)-1
            len = i2+1-i1
            jf = ja(i1)
            jl = ja(i2) 
            if (len .ne. len0 .or. jf .ne. jfirst .or. 
     *           jl .ne. jlast) goto 99
 10      continue
c     
c     check for this candidate ----
c     
         call blkchk (nrow,ja,ia,iblk,imsg)	       
         if (imsg .eq. 0) then 
c     
c     block size found
c     
            nblk = iblk
            return
         endif 
 99   continue	       
c--------end-of-blkfnd ------------------------------------------------- 
c-----------------------------------------------------------------------
      end
c-----------------------------------------------------------------------
      subroutine blkchk (nrow,ja,ia,nblk,imsg)
c----------------------------------------------------------------------- 
c This routine checks whether the input matrix is a block
c matrix with block size of nblk. A block matrix is one which is
c comprised of small square dense blocks. If there are zero
c elements within the square blocks and the data structure
c takes them into account then blkchk may fail to find the
c correct block size. 
c----------------------------------------------------------------------- 
c on entry
c---------
c nrow	= integer equal to the row dimension of the matrix.  
c ja    = integer array containing the column indices of the entries 
c         nonzero entries of the matrix stored by row.
c ia    = integer array of length nrow + 1 containing the pointers 
c         beginning of each row in array ja.
c
c nblk  = integer containing the value of nblk to be checked. 
c         
c on return
c---------- 
c
c imsg  = integer containing a message  with the following meaning.
c          imsg = 0 means that the output value of nblk is a correct
c                   block size. nblk .lt. 0 means nblk not correct 
c                   block size.
c          imsg = -1 : nblk does not divide nrow 
c          imsg = -2 : a starting element in a row is at wrong position
c             (j .ne. mult*nblk +1 )
c          imsg = -3 : nblk does divide a row length - 
c          imsg = -4 : an element is isolated outside a block or
c             two rows in same group have different lengths
c----------------------------------------------------------------------c
c           Y. Saad, Sep. 21 1989                                      c
c----------------------------------------------------------------------c
      integer ia(nrow+1),ja(*) 
c---------------------------------------------------------------------- 
c first part of code will find candidate block sizes.
c this is not guaranteed to work . so a check is done at the end
c the criterion used here is a simple one:
c scan rows and determine groups of rows that have the same length
c and such that the first column number and the last column number 
c are identical. 
c---------------------------------------------------------------------- 
      imsg = 0
      if (nblk .le. 1) return
      nr = nrow/nblk
      if (nr*nblk .ne. nrow) goto 101
c--   main loop --------------------------------------------------------- 
      irow = 1
      do 20 ii=1, nr
c     i1= starting position for group of nblk rows in original matrix
         i1 = ia(irow)
         j2 = i1
c     lena = length of each row in that group  in the original matrix
         lena = ia(irow+1)-i1
c     len = length of each block-row in that group in the output matrix
         len = lena/nblk
         if (len* nblk .ne. lena) goto 103
c     
c     for each row
c     
         do 6 i = 1, nblk
            irow = irow + 1
            if (ia(irow)-ia(irow-1) .ne. lena ) goto 104
c     
c     for each block
c     
            do 7 k=0, len-1
               jstart = ja(i1+nblk*k)-1
               if ( (jstart/nblk)*nblk .ne. jstart) goto 102
c     
c     for each column
c     
               do 5 j=1, nblk
                  if (jstart+j .ne. ja(j2) )  goto 104
                  j2 = j2+1 
 5             continue
 7          continue
 6       continue
 20   continue
c     went through all loops successfully:
      return
 101  imsg = -1
      return
 102  imsg = -2
      return
 103  imsg = -3
      return
 104  imsg = -4
c----------------end of chkblk ----------------------------------------- 
c-----------------------------------------------------------------------
      return
      end
c-----------------------------------------------------------------------
      subroutine infdia (n,ja,ia,ind,idiag) 
      integer ia(*), ind(*), ja(*)
c-----------------------------------------------------------------------
c     obtains information on the diagonals of A. 
c----------------------------------------------------------------------- 
c this subroutine finds the lengths of each of the 2*n-1 diagonals of A
c it also outputs the number of nonzero diagonals found. 
c----------------------------------------------------------------------- 
c on entry:
c---------- 
c n	= dimension of the matrix a.
c
c a,    ..... not needed here.
c ja, 			
c ia    = matrix stored in csr format
c
c on return:
c----------- 
c
c idiag = integer. number of nonzero diagonals found. 
c 
c ind   = integer array of length at least 2*n-1. The k-th entry in
c         ind contains the number of nonzero elements in the diagonal
c         number k, the numbering beeing from the lowermost diagonal
c         (bottom-left). In other words ind(k) = length of diagonal
c         whose offset wrt the main diagonal is = - n + k.
c----------------------------------------------------------------------c
c           Y. Saad, Sep. 21 1989                                      c
c----------------------------------------------------------------------c
      n2= n+n-1
      do 1 i=1,n2
         ind(i) = 0
 1    continue
      do 3 i=1, n
         do 2 k=ia(i),ia(i+1)-1
            j = ja(k)
            ind(n+j-i) = ind(n+j-i) +1
 2       continue 
 3    continue
c     count the nonzero ones.
      idiag = 0 
      do 41 k=1, n2
         if (ind(k) .ne. 0) idiag = idiag+1
 41   continue
      return
c done
c------end-of-infdia ---------------------------------------------------
c-----------------------------------------------------------------------
      end
c----------------------------------------------------------------------- 
      subroutine amubdg (nrow,ncol,ncolb,ja,ia,jb,ib,ndegr,nnz,iw) 
      integer ja(*),jb(*),ia(nrow+1),ib(ncol+1),ndegr(nrow),iw(ncolb) 
c-----------------------------------------------------------------------
c gets the number of nonzero elements in each row of A*B and the total 
c number of nonzero elements in A*B. 
c-----------------------------------------------------------------------
c on entry:
c -------- 
c
c nrow  = integer.  row dimension of matrix A
c ncol  = integer.  column dimension of matrix A = row dimension of 
c                   matrix B.
c ncolb = integer. the colum dimension of the matrix B.
c
c ja, ia= row structure of input matrix A: ja = column indices of
c         the nonzero elements of A stored by rows.
c         ia = pointer to beginning of each row  in ja.
c 
c jb, ib= row structure of input matrix B: jb = column indices of
c         the nonzero elements of A stored by rows.
c         ib = pointer to beginning of each row  in jb.
c 
c on return:
c ---------
c ndegr	= integer array of length nrow containing the degrees (i.e., 
c         the number of nonzeros in  each row of the matrix A * B 
c				
c nnz   = total number of nonzero elements found in A * B
c
c work arrays:
c-------------
c iw	= integer work array of length ncolb. 
c-----------------------------------------------------------------------
      do 1 k=1, ncolb 
         iw(k) = 0 
 1    continue
      
      do 2 k=1, nrow
         ndegr(k) = 0 
 2    continue
c     
c     method used: Transp(A) * A = sum [over i=1, nrow]  a(i)^T a(i)
c     where a(i) = i-th row of  A. We must be careful not to add  the
c     elements already accounted for.
c     
c     
      do 7 ii=1,nrow 
c     
c     for each row of A
c     
         ldg = 0 
c     
c    end-of-linked list
c     
         last = -1 
         do 6 j = ia(ii),ia(ii+1)-1 
c     
c     row number to be added:
c     
            jr = ja(j) 
            do 5 k=ib(jr),ib(jr+1)-1
               jc = jb(k) 
               if (iw(jc) .eq. 0) then 
c     
c     add one element to the linked list 
c     
                  ldg = ldg + 1
                  iw(jc) = last 
                  last = jc
               endif
 5          continue
 6       continue
         ndegr(ii) = ldg
c     
c     reset iw to zero
c     
         do 61 k=1,ldg 
            j = iw(last) 
            iw(last) = 0
            last = j
 61      continue
c-----------------------------------------------------------------------
 7    continue
c     
      nnz = 0
      do 8 ii=1, nrow 
         nnz = nnz+ndegr(ii) 
 8    continue
c     
      return
c---------------end-of-amubdg ------------------------------------------
c-----------------------------------------------------------------------
      end
c----------------------------------------------------------------------- 
      subroutine aplbdg (nrow,ncol,ja,ia,jb,ib,ndegr,nnz,iw) 
      integer ja(*),jb(*),ia(nrow+1),ib(nrow+1),iw(ncol),ndegr(nrow) 
c-----------------------------------------------------------------------
c gets the number of nonzero elements in each row of A+B and the total 
c number of nonzero elements in A+B. 
c-----------------------------------------------------------------------
c on entry:
c ---------
c nrow	= integer. The row dimension of A and B
c ncol  = integer. The column dimension of A and B.
c
c a,
c ja,
c ia   = Matrix A in compressed sparse row format.
c 
c b, 
c jb, 
c ib	=  Matrix B in compressed sparse row format.
c
c on return:
c----------
c ndegr	= integer array of length nrow containing the degrees (i.e., 
c         the number of nonzeros in  each row of the matrix A + B.
c				
c nnz   = total number of nonzero elements found in A * B
c
c work arrays:
c------------
c iw	= integer work array of length equal to ncol. 
c
c-----------------------------------------------------------------------
      do 1 k=1, ncol 
         iw(k) = 0 
 1    continue
c
      do 2 k=1, nrow
         ndegr(k) = 0 
 2    continue
c
      do 7 ii=1,nrow 
         ldg = 0 
c     
c    end-of-linked list
c     
         last = -1 
c     
c     row of A
c     
         do 5 j = ia(ii),ia(ii+1)-1 
            jr = ja(j) 
c     
c     add element to the linked list 
c     
            ldg = ldg + 1
            iw(jr) = last 
            last = jr
 5       continue
c     
c     row of B
c     
         do 6 j=ib(ii),ib(ii+1)-1
            jc = jb(j)
            if (iw(jc) .eq. 0) then 
c     
c     add one element to the linked list 
c     
               ldg = ldg + 1
               iw(jc) = last 
               last = jc
            endif
 6       continue
c     done with row ii. 
         ndegr(ii) = ldg
c     
c     reset iw to zero
c     
         do 61 k=1,ldg 
            j = iw(last) 
            iw(last) = 0
            last = j
 61      continue
c-----------------------------------------------------------------------
 7    continue
c     
      nnz = 0
      do 8 ii=1, nrow 
         nnz = nnz+ndegr(ii) 
 8    continue
      return
c----------------end-of-aplbdg -----------------------------------------
c-----------------------------------------------------------------------
      end
c-----------------------------------------------------------------------
      subroutine rnrms   (nrow, nrm, a, ja, ia, diag) 
      real*8 a(*), diag(nrow), scal 
      integer ja(*), ia(nrow+1) 
c-----------------------------------------------------------------------
c gets the norms of each row of A. (choice of three norms)
c-----------------------------------------------------------------------
c on entry:
c ---------
c nrow	= integer. The row dimension of A
c
c nrm   = integer. norm indicator. nrm = 1, means 1-norm, nrm =2
c                  means the 2-nrm, nrm = 0 means max norm
c
c a,
c ja,
c ia   = Matrix A in compressed sparse row format.
c 
c on return:
c----------
c
c diag = real vector of length nrow containing the norms
c
c-----------------------------------------------------------------
      do 1 ii=1,nrow
c
c     compute the norm if each element.
c     
         scal = 0.0d0
         k1 = ia(ii)
         k2 = ia(ii+1)-1
         if (nrm .eq. 0) then
            do 2 k=k1, k2
               scal = max(scal,abs(a(k) ) ) 
 2          continue
         elseif (nrm .eq. 1) then
            do 3 k=k1, k2
               scal = scal + abs(a(k) ) 
 3          continue
         else
            do 4 k=k1, k2
               scal = scal+a(k)**2
 4          continue
         endif 
         if (nrm .eq. 2) scal = sqrt(scal) 
         diag(ii) = scal
 1    continue
      return
c-----------------------------------------------------------------------
c-------------end-of-rnrms----------------------------------------------
      end 
c----------------------------------------------------------------------- 
      subroutine cnrms   (nrow, nrm, a, ja, ia, diag) 
      real*8 a(*), diag(nrow) 
      integer ja(*), ia(nrow+1) 
c-----------------------------------------------------------------------
c gets the norms of each column of A. (choice of three norms)
c-----------------------------------------------------------------------
c on entry:
c ---------
c nrow	= integer. The row dimension of A
c
c nrm   = integer. norm indicator. nrm = 1, means 1-norm, nrm =2
c                  means the 2-nrm, nrm = 0 means max norm
c
c a,
c ja,
c ia   = Matrix A in compressed sparse row format.
c 
c on return:
c----------
c
c diag = real vector of length nrow containing the norms
c NOTE: this is designed for square matrices. For the case 
c nrow .ne. ncol -- diag must be of size max(nrow,ncol) even
c though only the ncol first entries will be filled.. 
c [report E. Canot 10/20/05 ] 
c-----------------------------------------------------------------
      do 10 k=1, nrow 
         diag(k) = 0.0d0
 10   continue
      do 1 ii=1,nrow
         k1 = ia(ii)
         k2 = ia(ii+1)-1
         do 2 k=k1, k2
            j = ja(k) 
c     update the norm of each column
            if (nrm .eq. 0) then
               diag(j) = max(diag(j),abs(a(k) ) ) 
            elseif (nrm .eq. 1) then
               diag(j) = diag(j) + abs(a(k) ) 
            else
               diag(j) = diag(j)+a(k)**2
            endif 
 2       continue
 1    continue
      if (nrm .ne. 2) return
      do 3 k=1, nrow
         diag(k) = sqrt(diag(k))
 3    continue
      return
c-----------------------------------------------------------------------
c------------end-of-cnrms-----------------------------------------------
      end 
c----------------------------------------------------------------------- 
      subroutine roscal(nrow,job,nrm,a,ja,ia,diag,b,jb,ib,ierr) 
      real*8 a(*), b(*), diag(nrow) 
      integer nrow,job,nrm,ja(*),jb(*),ia(nrow+1),ib(nrow+1),ierr 
c-----------------------------------------------------------------------
c scales the rows of A such that their norms are one on return
c 3 choices of norms: 1-norm, 2-norm, max-norm.
c-----------------------------------------------------------------------
c on entry:
c ---------
c nrow	= integer. The row dimension of A
c
c job   = integer. job indicator. Job=0 means get array b only
c         job = 1 means get b, and the integer arrays ib, jb.
c
c nrm   = integer. norm indicator. nrm = 1, means 1-norm, nrm =2
c                  means the 2-nrm, nrm = 0 means max norm
c
c a,
c ja,
c ia   = Matrix A in compressed sparse row format.
c 
c on return:
c----------
c
c diag = diagonal matrix stored as a vector containing the matrix
c        by which the rows have been scaled, i.e., on return 
c        we have B = Diag*A.
c
c b, 
c jb, 
c ib	= resulting matrix B in compressed sparse row sparse format.
c	    
c ierr  = error message. ierr=0     : Normal return 
c                        ierr=i > 0 : Row number i is a zero row.
c Notes:
c-------
c 1)        The column dimension of A is not needed. 
c 2)        algorithm in place (B can take the place of A).
c-----------------------------------------------------------------
      call rnrms (nrow,nrm,a,ja,ia,diag)
      ierr = 0
      do 1 j=1, nrow
         if (diag(j) .eq. 0.0d0) then
            ierr = j 
            return
         else
            diag(j) = 1.0d0/diag(j)
         endif
 1    continue
      call diamua(nrow,job,a,ja,ia,diag,b,jb,ib)
      return
c-------end-of-roscal---------------------------------------------------
c-----------------------------------------------------------------------
      end
c-----------------------------------------------------------------------
      subroutine coscal(nrow,job,nrm,a,ja,ia,diag,b,jb,ib,ierr) 
c----------------------------------------------------------------------- 
      real*8 a(*),b(*),diag(nrow) 
      integer nrow,job,ja(*),jb(*),ia(nrow+1),ib(nrow+1),ierr 
c-----------------------------------------------------------------------
c scales the columns of A such that their norms are one on return
c result matrix written on b, or overwritten on A.
c 3 choices of norms: 1-norm, 2-norm, max-norm. in place.
c-----------------------------------------------------------------------
c on entry:
c ---------
c nrow	= integer. The row dimension of A
c
c job   = integer. job indicator. Job=0 means get array b only
c         job = 1 means get b, and the integer arrays ib, jb.
c
c nrm   = integer. norm indicator. nrm = 1, means 1-norm, nrm =2
c                  means the 2-nrm, nrm = 0 means max norm
c
c a,
c ja,
c ia   = Matrix A in compressed sparse row format.
c 
c on return:
c----------
c
c diag = diagonal matrix stored as a vector containing the matrix
c        by which the columns have been scaled, i.e., on return 
c        we have B = A * Diag
c
c b, 
c jb, 
c ib	= resulting matrix B in compressed sparse row sparse format.
c
c ierr  = error message. ierr=0     : Normal return 
c                        ierr=i > 0 : Column number i is a zero row.
c Notes:
c-------
c 1)     The column dimension of A is not needed. 
c 2)     algorithm in place (B can take the place of A).
c-----------------------------------------------------------------
      call cnrms (nrow,nrm,a,ja,ia,diag)
      ierr = 0
      do 1 j=1, nrow
         if (diag(j) .eq. 0.0) then
            ierr = j 
            return
         else
            diag(j) = 1.0d0/diag(j)
         endif
 1    continue
      call amudia (nrow,job,a,ja,ia,diag,b,jb,ib)
      return
c--------end-of-coscal-------------------------------------------------- 
c-----------------------------------------------------------------------
      end
c-----------------------------------------------------------------------
      subroutine addblk(nrowa, ncola, a, ja, ia, ipos, jpos, job,
     & nrowb, ncolb, b, jb, ib, nrowc, ncolc, c, jc, ic, nzmx, ierr)
c      implicit none
      integer nrowa, nrowb, nrowc, ncola, ncolb, ncolc, ipos, jpos
      integer nzmx, ierr, job
      integer ja(1:*), ia(1:*), jb(1:*), ib(1:*), jc(1:*), ic(1:*)
      real*8 a(1:*), b(1:*), c(1:*)
c-----------------------------------------------------------------------
c     This subroutine adds a matrix B into a submatrix of A whose 
c     (1,1) element is located in the starting position (ipos, jpos). 
c     The resulting matrix is allowed to be larger than A (and B), 
c     and the resulting dimensions nrowc, ncolc will be redefined 
c     accordingly upon return.  
c     The input matrices are assumed to be sorted, i.e. in each row
c     the column indices appear in ascending order in the CSR format.
c-----------------------------------------------------------------------
c on entry:
c ---------
c nrowa    = number of rows in A.
c bcola    = number of columns in A.
c a,ja,ia  = Matrix A in compressed sparse row format with entries sorted
c nrowb    = number of rows in B.
c ncolb    = number of columns in B.
c b,jb,ib  = Matrix B in compressed sparse row format with entries sorted
c
c nzmax	   = integer. The  length of the arrays c and jc. addblk will 
c            stop if the number of nonzero elements in the matrix C
c            exceeds nzmax. See ierr.
c 
c on return:
c----------
c nrowc    = number of rows in C.
c ncolc    = number of columns in C.
c c,jc,ic  = resulting matrix C in compressed sparse row sparse format
c            with entries sorted ascendly in each row. 
c	    
c ierr	   = integer. serving as error message. 
c         ierr = 0 means normal return,
c         ierr .gt. 0 means that addblk stopped while computing the
c         i-th row  of C with i=ierr, because the number 
c         of elements in C exceeds nzmax.
c
c Notes: 
c-------
c     this will not work if any of the two input matrices is not sorted
c-----------------------------------------------------------------------
      logical values
      integer i,j1,j2,ka,kb,kc,kamax,kbmax
      values = (job .ne. 0) 
      ierr = 0
      nrowc = max(nrowa, nrowb+ipos-1)
      ncolc = max(ncola, ncolb+jpos-1)
      kc = 1
      kbmax = 0
      ic(1) = kc
c
      do 10 i=1, nrowc
         if (i.le.nrowa) then
            ka = ia(i)
            kamax = ia(i+1)-1
         else
            ka = ia(nrowa+1)
         end if
         if ((i.ge.ipos).and.((i-ipos).le.nrowb)) then
            kb = ib(i-ipos+1)
            kbmax = ib(i-ipos+2)-1 
         else
            kb = ib(nrowb+1)
         end if
c
c     a do-while type loop -- goes through all the elements in a row.
c
 20      continue 
         if (ka .le. kamax) then
            j1 = ja(ka)
         else
            j1 = ncolc+1
         endif
         if (kb .le. kbmax) then 
            j2 = jb(kb) + jpos - 1
         else 
            j2 = ncolc+1
         endif
c
c     if there are more elements to be added.
c
         if ((ka .le. kamax .or. kb .le. kbmax) .and.
     &        (j1 .le. ncolc .or. j2 .le. ncolc)) then
c
c     three cases
c
            if (j1 .eq. j2) then 
               if (values) c(kc) = a(ka)+b(kb)
               jc(kc) = j1
               ka = ka+1
               kb = kb+1
               kc = kc+1
            else if (j1 .lt. j2) then
               jc(kc) = j1
               if (values) c(kc) = a(ka)
               ka = ka+1
               kc = kc+1
            else if (j1 .gt. j2) then
               jc(kc) = j2
               if (values) c(kc) = b(kb)
               kb = kb+1
               kc = kc+1
            endif
            if (kc .gt. nzmx) goto 999
            goto 20
         end if
         ic(i+1) = kc
 10   continue
      return
 999  ierr = i 
      return
c---------end-of-addblk------------------------------------------------- 
      end
c----------------------------------------------------------------------- 
      subroutine get1up (n,ja,ia,ju)
      integer  n, ja(*),ia(*),ju(*)
c----------------------------------------------------------------------
c obtains the first element of each row of the upper triangular part
c of a matrix. Assumes that the matrix is already sorted.
c-----------------------------------------------------------------------
c parameters
c input
c ----- 
c ja      = integer array containing the column indices of aij
c ia      = pointer array. ia(j) contains the position of the 
c           beginning of row j in ja
c 
c output 
c ------ 
c ju      = integer array of length n. ju(i) is the address in ja 
c           of the first element of the uper triangular part of
c           of A (including rthe diagonal. Thus if row i does have
c           a nonzero diagonal element then ju(i) will point to it.
c           This is a more general version of diapos.
c-----------------------------------------------------------------------
c local vAriables
      integer i, k 
c     
      do 5 i=1, n
         ju(i) = 0
         k = ia(i) 
c
 1       continue
         if (ja(k) .ge. i) then
            ju(i) = k
            goto 5
         elseif (k .lt. ia(i+1) -1) then
            k=k+1
c 
c go try next element in row 
c 
            goto 1
         endif 
 5    continue
      return
c-----end-of-get1up-----------------------------------------------------
      end 
c----------------------------------------------------------------------
      subroutine xtrows (i1,i2,a,ja,ia,ao,jao,iao,iperm,job)
      integer i1,i2,ja(*),ia(*),jao(*),iao(*),iperm(*),job
      real*8 a(*),ao(*) 
c-----------------------------------------------------------------------
c this subroutine extracts given rows from a matrix in CSR format. 
c Specifically, rows number iperm(i1), iperm(i1+1), ...., iperm(i2)
c are extracted and put in the output matrix ao, jao, iao, in CSR
c format.  NOT in place. 
c Youcef Saad -- coded Feb 15, 1992. 
c-----------------------------------------------------------------------
c on entry:
c----------
c i1,i2   = two integers indicating the rows to be extracted.
c           xtrows will extract rows iperm(i1), iperm(i1+1),..,iperm(i2),
c           from original matrix and stack them in output matrix 
c           ao, jao, iao in csr format
c
c a, ja, ia = input matrix in csr format
c
c iperm	= integer array of length nrow containing the reverse permutation 
c         array for the rows. row number iperm(j) in permuted matrix PA
c         used to be row number j in unpermuted matrix.
c         ---> a(i,j) in the permuted matrix was a(iperm(i),j) 
c         in the inout matrix.
c
c job	= integer indicating the work to be done:
c 		job .ne. 1 : get structure only of output matrix,,
c               i.e., ignore real values. (in which case arrays a 
c               and ao are not used nor accessed).
c 		job = 1	get complete data structure of output matrix. 
c               (i.e., including arrays ao and iao).
c------------
c on return: 
c------------ 
c ao, jao, iao = input matrix in a, ja, ia format
c note : 
c        if (job.ne.1)  then the arrays a and ao are not used.
c----------------------------------------------------------------------c
c           Y. Saad, revised May  2, 1990                              c
c----------------------------------------------------------------------c
      logical values
      values = (job .eq. 1) 
c
c copying 
c
      ko = 1
      iao(1) = ko
      do 100 j=i1,i2 
c
c ii=iperm(j) is the index of old row to be copied.
c        
         ii = iperm(j) 
         do 60 k=ia(ii), ia(ii+1)-1 
            jao(ko) = ja(k) 
            if (values) ao(ko) = a(k)
            ko = ko+1
 60      continue
         iao(j-i1+2) = ko
 100  continue
c
      return
c---------end-of-xtrows------------------------------------------------- 
c-----------------------------------------------------------------------
      end
c-----------------------------------------------------------------------
      subroutine csrkvstr(n, ia, ja, nr, kvstr)
c-----------------------------------------------------------------------
      integer n, ia(n+1), ja(*), nr, kvstr(*)
c-----------------------------------------------------------------------
c     Finds block row partitioning of matrix in CSR format.
c-----------------------------------------------------------------------
c     On entry:
c--------------
c     n       = number of matrix scalar rows
c     ia,ja   = input matrix sparsity structure in CSR format
c
c     On return:
c---------------
c     nr      = number of block rows
c     kvstr   = first row number for each block row
c
c     Notes:
c-----------
c     Assumes that the matrix is sorted by columns.
c     This routine does not need any workspace.
c
c-----------------------------------------------------------------------
c     local variables
      integer i, j, jdiff
c-----------------------------------------------------------------------
      nr = 1
      kvstr(1) = 1
c---------------------------------
      do i = 2, n
         jdiff = ia(i+1)-ia(i)
         if (jdiff .eq. ia(i)-ia(i-1)) then
            do j = ia(i), ia(i+1)-1
               if (ja(j) .ne. ja(j-jdiff)) then
                  nr = nr + 1
                  kvstr(nr) = i
                  goto 299
               endif
            enddo
 299        continue
         else
 300        nr = nr + 1
            kvstr(nr) = i
         endif
      enddo
      kvstr(nr+1) = n+1
c---------------------------------
      return
      end
c-----------------------------------------------------------------------
c------------------------end-of-csrkvstr--------------------------------
      subroutine csrkvstc(n, ia, ja, nc, kvstc, iwk)
c-----------------------------------------------------------------------
      integer n, ia(n+1), ja(*), nc, kvstc(*), iwk(*)
c-----------------------------------------------------------------------
c     Finds block column partitioning of matrix in CSR format.
c-----------------------------------------------------------------------
c     On entry:
c--------------
c     n       = number of matrix scalar rows
c     ia,ja   = input matrix sparsity structure in CSR format
c
c     On return:
c---------------
c     nc      = number of block columns
c     kvstc   = first column number for each block column
c
c     Work space:
c----------------
c     iwk(*) of size equal to the number of scalar columns plus one.
c        Assumed initialized to 0, and left initialized on return.
c
c     Notes:
c-----------
c     Assumes that the matrix is sorted by columns.
c
c-----------------------------------------------------------------------
c     local variables
      integer i, j, k, ncol
c
c-----------------------------------------------------------------------
c-----use ncol to find maximum scalar column number
      ncol = 0
c-----mark the beginning position of the blocks in iwk
      do i = 1, n
         if (ia(i) .lt. ia(i+1)) then
            j = ja(ia(i))
            iwk(j) = 1
            do k = ia(i)+1, ia(i+1)-1
               j = ja(k)
               if (ja(k-1).ne.j-1) then
                  iwk(j) = 1
                  iwk(ja(k-1)+1) = 1
               endif
            enddo
            iwk(j+1) = 1
            ncol = max0(ncol, j)
         endif
      enddo
c---------------------------------
      nc = 1
      kvstc(1) = 1
      do i = 2, ncol+1
         if (iwk(i).ne.0) then
            nc = nc + 1
            kvstc(nc) = i
            iwk(i) = 0
         endif
      enddo
      nc = nc - 1
c---------------------------------
      return
      end
c-----------------------------------------------------------------------
c------------------------end-of-csrkvstc--------------------------------
c-----------------------------------------------------------------------
      subroutine kvstmerge(nr, kvstr, nc, kvstc, n, kvst)
c-----------------------------------------------------------------------
      integer nr, kvstr(nr+1), nc, kvstc(nc+1), n, kvst(*)
c-----------------------------------------------------------------------
c     Merges block partitionings, for conformal row/col pattern.
c-----------------------------------------------------------------------
c     On entry:
c--------------
c     nr,nc   = matrix block row and block column dimension
c     kvstr   = first row number for each block row
c     kvstc   = first column number for each block column
c
c     On return:
c---------------
c     n       = conformal row/col matrix block dimension
c     kvst    = conformal row/col block partitioning
c
c     Notes:
c-----------
c     If matrix is not square, this routine returns without warning.
c
c-----------------------------------------------------------------------
c-----local variables
      integer i,j
c---------------------------------
      if (kvstr(nr+1) .ne. kvstc(nc+1)) return
      i = 1
      j = 1
      n = 1
  200 if (i .gt. nr+1) then
         kvst(n) = kvstc(j)
         j = j + 1
      elseif (j .gt. nc+1) then
         kvst(n) = kvstr(i)
         i = i + 1
      elseif (kvstc(j) .eq. kvstr(i)) then
         kvst(n) = kvstc(j)
         j = j + 1
         i = i + 1
      elseif (kvstc(j) .lt. kvstr(i)) then
         kvst(n) = kvstc(j)
         j = j + 1
      else
         kvst(n) = kvstr(i)
         i = i + 1
      endif
      n = n + 1
      if (i.le.nr+1 .or. j.le.nc+1) goto 200
      n = n - 2
c---------------------------------
      return
c------------------------end-of-kvstmerge-------------------------------
      end