File: dinfo13.f

package info (click to toggle)
sparskit 2.0.0-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, trixie
  • size: 4,348 kB
  • sloc: fortran: 15,253; makefile: 260; sh: 136; ansic: 76
file content (394 lines) | stat: -rw-r--r-- 16,736 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
       subroutine dinfo1(n,iout,a,ja,ia,valued,
     *		          title,key,type,ao,jao,iao)
	implicit real*8 (a-h,o-z)
        real*8 a(*),ao(*)
        integer ja(*),ia(n+1),jao(*),iao(n+1),nzdiag 
        character title*72,key*8,type*3 
        logical valued 
c----------------------------------------------------------------------c
c  SPARSKIT:  ELEMENTARY INFORMATION ROUTINE.                          c
c----------------------------------------------------------------------c
c info1 obtains a number of statistics on a sparse matrix and writes   c
c it into the output unit iout. The matrix is assumed                  c
c to be stored in the compressed sparse COLUMN format sparse a, ja, ia c
c----------------------------------------------------------------------c
c Modified Nov 1, 1989. 1) Assumes A is stored in column               
c format. 2) Takes symmetry into account, i.e., handles Harwell-Boeing
c            matrices correctly. 
c          ***  (Because of the recent modification the words row and 
c            column may be mixed-up at occasions... to be checked...
c
c bug-fix July 25: 'upper' 'lower' mixed up in formats 108-107.
c
c On entry :
c-----------
c n	= integer. column dimension of matrix	
c iout  = integer. unit number where the information it to be output.	
c a	= real array containing the nonzero elements of the matrix
c	  the elements are stored by columns in order 
c	  (i.e. column i comes before column i+1, but the elements
c         within each column can be disordered).
c ja	= integer array containing the row indices of elements in a
c ia	= integer array containing of length n+1 containing the 
c         pointers to the beginning of the columns in arrays a and ja.
c	  It is assumed that ia(*) = 1 and ia(n+1) = nzz+1.
c 
c valued= logical equal to .true. if values are provided and .false.
c         if only the pattern of the matrix is provided. (in that
c         case a(*) and ao(*) are dummy arrays.
c
c title = a 72-character title describing the matrix
c         NOTE: The first character in title is ignored (it is often
c         a one).
c
c key   = an 8-character key for the matrix
c type  = a 3-character string to describe the type of the matrix.
c         see harwell/Boeing documentation for more details on the 
c         above three parameters.
c 
c on return
c---------- 
c 1) elementary statistics on the matrix is written on output unit 
c    iout. See below for detailed explanation of typical output. 
c 2) the entries of a, ja, ia are sorted.
c
c---------- 
c 
c ao	= real*8 array of length nnz used as work array.
c jao	= integer work array of length max(2*n+1,nnz) 
c iao   = integer work array of length n+1
c
c Note  : title, key, type are the same paramaters as those
c         used for Harwell-Bowing matrices.
c 
c-----------------------------------------------------------------------
c Output description:
c--------------------
c *** The following info needs to be updated.
c
c + A header containing the Title, key, type of the matrix and, if values
c   are not provided a message to that effect.
c    * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c    * SYMMETRIC STRUCTURE MEDIEVAL RUSSIAN TOWNS                       
c    *                    Key = RUSSIANT , Type = SSA                   
c    * No values provided - Information of pattern only                 
c    * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c
c +  dimension n, number of nonzero elements nnz, average number of
c    nonzero elements per column, standard deviation for this average.
c +  if the matrix is upper or lower triangular a message to that effect
c    is printed. Also the number of nonzeros in the strict upper 
c    (lower) parts and the main diagonal are printed.
c +  weight of longest column. This is the largest number of nonzero 
c    elements in a column encountered. Similarly for weight of 
c    largest/smallest row.
c +  lower dandwidth as defined by
c          ml = max ( i-j, / all  a(i,j).ne. 0 ) 
c +  upper bandwidth as defined by
c          mu = max ( j-i, / all  a(i,j).ne. 0 ) 
c    NOTE that ml or mu can be negative. ml .lt. 0 would mean
c    that A is confined to the strict upper part above the diagonal 
c    number -ml. Similarly for mu.
c
c +  maximun bandwidth as defined by
c    Max (  Max [ j ; a(i,j) .ne. 0 ] - Min [ j ; a(i,j) .ne. 0 ] )
c     i  
c +  average bandwidth = average over all columns of the widths each column.
c
c +  If there are zero columns /or rows a message is printed
c    giving the number of such columns/rows.
c    
c +  matching elements in A and transp(A) :this counts the number of
c    positions (i,j) such that if a(i,j) .ne. 0 then a(j,i) .ne. 0.
c    if this number is equal to nnz then the matrix is symmetric.
c +  Relative symmetry match : this is the ratio of the previous integer
c    over nnz. If this ratio is equal to one then the matrix has a
c    symmetric structure. 
c
c +  average distance of a given element from the diagonal, standard dev.
c    the distance of a(i,j) is defined as iabs(j-i). 
c
c +  Frobenius norm of A
c    Frobenius norm of 0.5*(A + transp(A))
c    Frobenius norm of 0.5*(A - transp(A))
c    these numbers provide information on the degree of symmetry
c    of the matrix. If the norm of the nonsymmetric part is
c    zero then the matrix is symmetric.
c
c + 90% of matrix is in the band of width k, means that
c   by moving away and in a symmetric manner from the main
c   diagonal you would have to include exactly k diagonals 
c   (k is always odd), in order to include 90% of the nonzero 
c   elements of A.  The same thing is then for 80%.
c 
c + The total number of nonvoid diagonals, i.e., among the
c   2n-1 diagonals of the matrix which have at least one nonxero
c   element.
c
c +  Most important diagonals. The code selects a number of k
c    (k .le. 10) diagonals that are the most important ones, i.e.
c    that have the largest number of nonzero elements. Any diagonal
c    that has fewer than 1% of the nonzero elements of A is dropped.
c    the numbers printed are the offsets with respect to the 
c    main diagonal, going from left tp right. 
c    Thus 0 means the main diagonal -1 means the subdiagonal, and 
c    +10 means the 10th upper diagonal.
c +  The accumulated percentages in the next line represent the 
c    percentage of the nonzero elements represented by the diagonals
c    up the current one put together. 
c    Thus:
c    *  The 10 most important diagonals are (offsets)    :             *
c    *     0     1     2    24    21     4    23    22    20    19     *
c    *  The accumulated percentages they represent are   :             *
c    *  40.4  68.1  77.7  80.9  84.0  86.2  87.2  88.3  89.4  90.4     *
c    *-----------------------------------------------------------------*
c    shows the offsets of the most important  diagonals and
c    40.4 represent ratio of the number of nonzero elements in the
c    diagonal zero (main diagonal) over the total number of nonzero
c    elements. the second number indicates that the diagonal 0 and the 
c    diagonal 1 together hold 68.1% of the matrix, etc..
c
c +  Block structure:
c    if the matrix has a block structure then the block size is found
c    and printed. Otherwise the info1 will say that the matrix
c    does not have a block structure. Note that block struture has
c    a very specific meaning here. the matrix has a block structure
c    if it consists of square blocks that are dense. even if there
c    are zero elements in the blocks  they should be represented 
c    otherwise it would be possible to determine the block size.
c
c-----------------------------------------------------------------------
	real*8 dcount(20),amx
	integer ioff(20)
	character*61 tmpst
	logical sym
c-----------------------------------------------------------------------
	data ipar1 /1/
	write (iout,99) 
        write (iout,97) title(2:72), key, type
 97     format(2x,' * ',a71,' *'/,
     *         2x,' *',20x,'Key = ',a8,' , Type = ',a3,25x,' *')
	if (.not. valued) write (iout,98)
 98    format(2x,' * No values provided - Information on pattern only',
     *   23x,' *')
c---------------------------------------------------------------------
	nnz = ia(n+1)-ia(1)
	sym = ((type(2:2) .eq. 'S') .or. (type(2:2) .eq. 'Z')
     *    .or. (type(2:2) .eq. 's') .or. (type(2:2) .eq. 'z')) 
c
        write (iout, 99)
        write(iout, 100) n, nnz
	job = 0
	if (valued) job = 1
	ipos = 1
        call csrcsc(n, job, ipos, a, ja, ia, ao, jao, iao)
        call csrcsc(n, job, ipos, ao, jao, iao, a, ja, ia)
c-------------------------------------------------------------------
c computing max bandwith, max number of nonzero elements per column
c min nonzero elements per column/row, row/column diagonal dominance 
c occurences, average distance of an element from diagonal, number of 
c elemnts in lower and upper parts, ...
c------------------------------------------------------------------
c    jao will be modified later, so we call skyline here
          call skyline(n,sym,ja,ia,jao,iao,nsky)
          call nonz_lud(n,ja,ia,nlower, nupper, ndiag) 
          call avnz_col(n,ja,ia,iao, ndiag, av, st)
c------ write out info ----------------------------------------------
	  if (sym)  nupper = nlower 
          write(iout, 101) av, st
          if (nlower .eq. 0 ) write(iout, 105)
 1        if (nupper .eq. 0) write(iout, 106)
          write(iout, 107) nlower
          write(iout, 108) nupper
          write(iout, 109) ndiag
c
          call nonz(n,sym, ja, ia, iao, nzmaxc, nzminc,
     *                  nzmaxr, nzminr, nzcol, nzrow)
          write(iout, 1020) nzmaxc, nzminc
c
	  if (.not. sym) write(iout, 1021) nzmaxr, nzminr
c
	  if (nzcol .ne. 0) write(iout,116) nzcol
	  if (nzrow .ne. 0) write(iout,115) nzrow
c     
          call diag_domi(n,sym,valued,a, ja,ia,ao, jao, iao,
     *                           ddomc, ddomr)
c----------------------------------------------------------------------- 
c symmetry and near symmetry - Frobenius  norms
c-----------------------------------------------------------------------
          call frobnorm(n,sym,a,ja,ia,Fnorm)   
          call ansym(n,sym,a,ja,ia,ao,jao,iao,imatch,av,fas,fan)
          call distaij(n,nnz,sym,ja,ia,dist, std)
          amx = 0.0d0
          do 40 k=1, nnz
            amx = max(amx, abs(a(k)) )
 40       continue
          write (iout,103) imatch, av, dist, std
          write(iout,96) 
          if (valued) then
             write(iout,104) Fnorm, fas, fan, amx, ddomr, ddomc
             write (iout,96)
          endif
c-----------------------------------------------------------------------
c--------------------bandedness- main diagonals ----------------------- -
c-----------------------------------------------------------------------
	n2 = n+n-1
	do 8 i=1, n2
             jao(i) = 0
 8        continue
          do 9 i=1, n
             k1 = ia(i)
             k2 = ia(i+1) -1
             do 91 k=k1, k2
                j = ja(k)
                jao(n+i-j) = jao(n+i-j) +1
 91          continue 
 9        continue
c
          call bandwidth(n,ja, ia, ml, mu, iband, bndav)
c
c     write bandwidth information .
c     
          write(iout,117)  ml, mu, iband, bndav
c     
          write(iout,1175) nsky
c     
c         call percentage_matrix(n,nnz,ja,ia,jao,90,jb2)
c         call percentage_matrix(n,nnz,ja,ia,jao,80,jb1)
          nrow = n
          ncol = n
          call distdiag(nrow,ncol,ja,ia,jao)
          call bandpart(n,ja,ia,jao,90,jb2)
          call bandpart(n,ja,ia,jao,80,jb1)
          write (iout,112) 2*jb2+1, 2*jb1+1
c-----------------------------------------------------------------
          nzdiag = 0
          n2 = n+n-1
          do 42 i=1, n2
             if (jao(i) .ne. 0) nzdiag=nzdiag+1
 42       continue
          call n_imp_diag(n,nnz,jao,ipar1, ndiag,ioff,dcount)
          write (iout,118) nzdiag
          write (tmpst,'(10i6)') (ioff(j),j=1,ndiag)
          write (iout,110) ndiag,tmpst
          write (tmpst,'(10f6.1)')(dcount(j), j=1,ndiag)
          write (iout,111) tmpst
          write (iout, 96)
c     jump to next page -- optional //
c     write (iout,'(1h1)') 
c-----------------------------------------------------------------------
c     determine block size if matrix is a block matrix..
c-----------------------------------------------------------------------
          call blkfnd(n, ja, ia, nblk)
          if (nblk .le. 1) then 
             write(iout,113)  
          else 
             write(iout,114) nblk
          endif 
          write (iout,96)
c     
c---------- done. Next define all the formats -------------------------- 
c
 99    format (2x,38(2h *))
 96    format (6x,' *',65(1h-),'*')
c-----------------------------------------------------------------------
 100   format(
     * 6x,' *  Dimension N                                      = ',
     * i10,'  *'/
     * 6x,' *  Number of nonzero elements                       = ',
     * i10,'  *')
 101   format(
     * 6x,' *  Average number of nonzero elements/Column        = ',
     * f10.4,'  *'/
     * 6x,' *  Standard deviation for above average             = ',
     * f10.4,'  *')
c-----------------------------------------------------------------------
 1020       format(
     * 6x,' *  Weight of longest column                         = ',
     * i10,'  *'/
     * 6x,' *  Weight of shortest column                        = ',
     * i10,'  *')
 1021       format(
     * 6x,' *  Weight of longest row                            = ',
     * i10,'  *'/
     * 6x,' *  Weight of shortest row                           = ',
     * i10,'  *')
 117        format(
     * 6x,' *  Lower bandwidth  (max: i-j, a(i,j) .ne. 0)       = ',
     * i10,'  *'/
     * 6x,' *  Upper bandwidth  (max: j-i, a(i,j) .ne. 0)       = ',
     * i10,'  *'/
     * 6x,' *  Maximum Bandwidth                                = ',
     * i10,'  *'/
     * 6x,' *  Average Bandwidth                                = ',
     * e10.3,'  *')
 1175       format(
     * 6x,' *  Number of nonzeros in skyline storage            = ',
     * i10,'  *')
 103   format(
     * 6x,' *  Matching elements in symmetry                    = ',
     * i10,'  *'/
     * 6x,' *  Relative Symmetry Match (symmetry=1)             = ',
     * f10.4,'  *'/
     * 6x,' *  Average distance of a(i,j)  from diag.           = ',
     * e10.3,'  *'/
     * 6x,' *  Standard deviation for above average             = ',
     * e10.3,'  *') 
 104   format(
     * 6x,' *  Frobenius norm of A                              = ',
     * e10.3,'  *'/
     * 6x,' *  Frobenius norm of symmetric part                 = ',
     * e10.3,'  *'/
     * 6x,' *  Frobenius norm of nonsymmetric part              = ',
     * e10.3,'  *'/
     * 6x,' *  Maximum element in A                             = ',
     * e10.3,'  *'/
     * 6x,' *  Percentage of weakly diagonally dominant rows    = ',
     * e10.3,'  *'/
     * 6x,' *  Percentage of weakly diagonally dominant columns = ',
     * e10.3,'  *')
 105        format(
     * 6x,' *  The matrix is lower triangular ...       ',21x,' *')
 106        format(
     * 6x,' *  The matrix is upper triangular ...       ',21x,' *')
 107        format(
     * 6x,' *  Nonzero elements in strict lower part            = ',
     * i10,'  *')
 108       format(
     * 6x,' *  Nonzero elements in strict upper part            = ',
     * i10,'  *')
 109       format(
     * 6x,' *  Nonzero elements in main diagonal                = ',
     * i10,'  *')
 110   format(6x,' *  The ', i2, ' most important',
     *	   ' diagonals are (offsets)    : ',10x,'  *',/,  
     * 6x,' *',a61,3x,' *')
 111   format(6x,' *  The accumulated percentages they represent are ',
     * '  : ', 10x,'  *',/,
     * 6x,' *',a61,3x,' *')
c 111	format( 
c     * 6x,' *  They constitute the following % of A             = ',
c     * f8.1,' %  *') 
 112	format( 
     * 6x,' *  90% of matrix is in the band of width            = ',
     * i10,'  *',/,
     * 6x,' *  80% of matrix is in the band of width            = ',
     * i10,'  *')
 113 	format( 
     * 6x,' *  The matrix does not have a block structure ',19x,
     *    ' *')
 114 	format( 
     * 6x,' *  Block structure found with block size            = ',
     * i10,'  *')
 115 	format( 
     * 6x,' *  There are zero rows. Number of such rows         = ', 
     * i10,'  *')
 116 	format( 
     * 6x,' *  There are zero columns. Number of such columns   = ', 
     * i10,'  *')
 118 	format( 
     * 6x,' *  The total number of nonvoid diagonals is         = ', 
     * i10,'  *')
c-------------------------- end of dinfo --------------------------
        return
        end