File: approx.c

package info (click to toggle)
spass 3.7-2
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 5,500 kB
  • ctags: 5,981
  • sloc: ansic: 50,634; yacc: 3,038; sh: 1,072; lex: 430; perl: 407; makefile: 394
file content (1024 lines) | stat: -rw-r--r-- 39,247 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
/**************************************************************/
/* ********************************************************** */
/* *                                                        * */
/* *                  CLAUSE APPROXIMATION                  * */
/* *                                                        * */
/* *  $Module:   APPROX                                     * */ 
/* *                                                        * */
/* *  Copyright (C) 1998, 1999, 2000, 2001                  * */
/* *  MPI fuer Informatik                                   * */
/* *                                                        * */
/* *  This program is free software; you can redistribute   * */
/* *  it and/or modify it under the terms of the FreeBSD    * */
/* *  Licence.                                              * */
/* *                                                        * */
/* *  This program is distributed in the hope that it will  * */
/* *  be useful, but WITHOUT ANY WARRANTY; without even     * */
/* *  the implied warranty of MERCHANTABILITY or FITNESS    * */
/* *  FOR A PARTICULAR PURPOSE.  See the LICENCE file       * */
/* *  for more details.                                     * */
/* *                                                        * */
/* *                                                        * */
/* $Revision: 1.3 $                                         * */
/* $State: Exp $                                            * */
/* $Date: 2010-02-22 14:09:57 $                             * */
/* $Author: weidenb $                                       * */
/* *                                                        * */
/* *             Contact:                                   * */
/* *             Christoph Weidenbach                       * */
/* *             MPI fuer Informatik                        * */
/* *             Stuhlsatzenhausweg 85                      * */
/* *             66123 Saarbruecken                         * */
/* *             Email: spass@mpi-inf.mpg.de                * */
/* *             Germany                                    * */
/* *                                                        * */
/* ********************************************************** */
/**************************************************************/


/* $RCSfile: approx.c,v $ */

#include <math.h>
#include "approx.h"
#include "clause.h"

static NAT    approx_PREDICATECOUNTER; /* Used by approx_MonadicFlattenHeads */

static SYMBOL approx_TRUESYMBOL; /* Used by approx_MonadicByTermEncoding */
const  char   approx_TRUENAME[] = "True";

typedef struct {
  SYMBOL original;
  LIST   newSymbols;
} APPROX_NODE, *APPROX_TRANSLATION;

void approx_Init(void)
/**************************************************************
  INPUT:   None.
  RETURNS: Nothing.
  EFFECT:  Initialize the module's variables.
***************************************************************/
{
  approx_PREDICATECOUNTER = 0;
  approx_TRUESYMBOL = symbol_Null();
}

static void approx_DeleteTranslation(LIST Translation)
/**************************************************************
  INPUT:   A list of APPROX_TRANSLATIONs.
  RETURNS: Nothing.
  EFFECT:  All memory used by the translation is freed.
***************************************************************/
{
  for ( ; !list_Empty(Translation); Translation = list_Pop(Translation)) {
    APPROX_TRANSLATION t;
    t = list_Car(Translation);
    list_Delete(t->newSymbols);
    memory_Free(t, sizeof(APPROX_NODE));
  }
}

static APPROX_TRANSLATION approx_LookupTranslationSymbols(LIST Translation,
							  SYMBOL Symbol)
/**************************************************************
  INPUT:   A list of APPROX_TRANSLATIONs and a symbol.
  RETURNS: If the list contains a translation for the <Symbol>,
           the corresponding APPROX_TRANSLATION is returned,
           otherwise NULL is returned.
***************************************************************/
{
  APPROX_TRANSLATION trans;
  for (trans = NULL; trans == NULL && !list_Empty(Translation);
       Translation = list_Cdr(Translation)) {
    SYMBOL s = ((APPROX_TRANSLATION)list_Car(Translation))->original;
    if (symbol_Equal(Symbol, s))
      trans = list_Car(Translation);
  }
  return trans;
}


/**************************************************************/
/* Help functions for approx_MonadicByProjection              */
/**************************************************************/

static APPROX_TRANSLATION approx_CreateProjectionSymbols(SYMBOL Symbol,
							 PRECEDENCE Precedence)
/**************************************************************
  INPUT:   A n-ary predicate symbol and a precedence.
  RETURNS: An APPROX_TRANSLATION containing n new,
           unary predicate symbols.
  EFFECT:  When the symbol's name is <x> then n new predicates
           with the names <x>1, <x>2, ..., <x>n are created.
	   The precedence of the new symbols is set in <Precedence>.
***************************************************************/
{
  APPROX_TRANSLATION Result;
  SYMBOL Predicate;
  NAT    Suffix, Arity;
  int    i;

  Result = (APPROX_TRANSLATION) memory_Malloc(sizeof(APPROX_NODE));
  Result->original   = Symbol;
  Result->newSymbols = list_Nil();

  Arity = symbol_Arity(Symbol);  
  /* If <Symbol> has arity <n> create <n> new symbols */
  for (i = 1; i <= Arity; ++i) {
    char* approx_BUFFER = NULL;
    
    Suffix = i;
    /* Ensure that new symbol wasn't previously defined */      
    do {
      char* SuffixStr = string_IntToString(Suffix++);
      
      if (approx_BUFFER)
        string_StringFree(approx_BUFFER);
      approx_BUFFER = string_Conc(symbol_Name(Symbol),SuffixStr);
      
      string_StringFree(SuffixStr);
    } while (symbol_Lookup(approx_BUFFER) != 0);
    Predicate = symbol_CreatePredicate(approx_BUFFER,1,symbol_STATLEX,Precedence);
    Result->newSymbols = list_Cons((POINTER)Predicate, Result->newSymbols);
    
    string_StringFree(approx_BUFFER);
  }
  Result->newSymbols = list_NReverse(Result->newSymbols);
  return Result;
}

static LIST approx_ApplyProjection(APPROX_TRANSLATION Translation,
				   CLAUSE Clause, int LitIndex,
				   FLAGSTORE Flags, PRECEDENCE Precedence)
/**************************************************************
  INPUT:   An APPROX_TRANSLATION, a clause, a literal index
           within the clause, a flag store and a precedence.
  RETURNS: A list of new clauses generated from <Clause>.
  EFFECT:  The non-monadic literal with arity n at index <LitIndex>
           is replaced by monadic literals, resulting in n new
           clauses.
	   The flag store and the precedence are needed to create
	   the new clauses.
***************************************************************/
{
  SYMBOL Symbol;
  LIST   Result, Scan, ArgScan;
  TERM   Atom, NewAtom;
  CLAUSE NewClause;
  
  Result = list_Nil();
  Atom   = clause_GetLiteralAtom(Clause, LitIndex);
  /* Now create the new clauses */
  if (LitIndex <= clause_LastAntecedentLitIndex(Clause)) {
    /* A negative literal, so create a single clause */
    LIST Constraint, Antecedent, Succedent;
    int i;

    Constraint = clause_CopyConstraint(Clause);
    Antecedent = list_Nil();
    Succedent  = clause_CopySuccedent(Clause);
    for (i = clause_FirstAntecedentLitIndex(Clause);
	 i <= clause_LastAntecedentLitIndex(Clause); i++) {
      if (i != LitIndex) {
	NewAtom = term_Copy(clause_GetLiteralAtom(Clause, i));
	Antecedent = list_Cons(NewAtom, Antecedent);
      } else {
	for (Scan = Translation->newSymbols, ArgScan = term_ArgumentList(Atom);
	     !list_Empty(Scan);
	     Scan = list_Cdr(Scan), ArgScan = list_Cdr(ArgScan)) {
	  Symbol = (SYMBOL) list_Car(Scan);  /* The new Predicate */
	  /* Create the new monadic atom */
	  NewAtom = term_Create(Symbol, list_List(term_Copy(list_Car(ArgScan))));
	  Antecedent = list_Cons(NewAtom, Antecedent);
	}
      }
    }
    /* create the new clause */
    NewClause = clause_Create(Constraint,Antecedent,Succedent,Flags,Precedence);
    if (clause_GetFlag(Clause, CONCLAUSE))
      clause_SetFlag(NewClause, CONCLAUSE);
    clause_Normalize(NewClause);
    clause_UpdateWeight(NewClause, Flags);
    clause_UpdateMaxVar(NewClause);
    Result = list_Cons(NewClause, Result);
    /* clean up */
    list_Delete(Constraint);
    list_Delete(Antecedent);
    list_Delete(Succedent);
  } else {
    /* A positive literal, so create a set of clauses */
    for (Scan = Translation->newSymbols, ArgScan = term_ArgumentList(Atom);
	 !list_Empty(Scan);
	 Scan = list_Cdr(Scan), ArgScan = list_Cdr(ArgScan)) {
      Symbol = (SYMBOL) list_Car(Scan);  /* The new Predicate */
      /* Create the new monadic atom */
      Atom = term_Create(Symbol, list_List(term_Copy(list_Car(ArgScan))));
      NewClause = clause_Copy(Clause);
      /* Delete the old literal */
      clause_LiteralDelete(clause_GetLiteral(NewClause,LitIndex));
      /* and replace it with the new one */
      clause_SetLiteral(NewClause, LitIndex,
			clause_LiteralCreate(Atom, NewClause));
      clause_Normalize(NewClause);
      clause_UpdateWeight(NewClause, Flags);
      clause_UpdateMaxVar(NewClause);
      Result = list_Nconc(Result, list_List(NewClause));
    }
  }
  return Result;
}

static LIST approx_ApplyProjectionToList(LIST* Translation, LIST Clauses,
					 FLAGSTORE Flags, PRECEDENCE Precedence)
/**************************************************************
  INPUT:   A list of APPROX_TRANSLATIONs, a list of clauses
           that were approximated from the same "father" clause,
	   a flag store and a precedence.
  RETURNS: A list of clauses.
  EFFECT:  This recursive function is initially called with
           a one-element list containing a clause.
           It searches for a non-monadic literal in the first
           clause of the list. If there's no such literal
           the list is just returned. If a non-monadic literal
           was found, all clauses in the list are transformed
           in the same way, adding new clauses to the list.
           Finally the function is called recursively with the
           new list to check for other non-monadic literals.
	   The flag store and the precedence are needed to create
	   the new clauses.
***************************************************************/
{
  APPROX_TRANSLATION Trans;
  CLAUSE Clause;
  SYMBOL Symbol;
  LIST   Result;
  BOOL   Hit;
  NAT    i;

  /* Check whether projection is possible for the first clause */
  Clause = list_Car(Clauses);
  for (Hit = FALSE, i = clause_FirstLitIndex();
       !Hit && i <= clause_LastLitIndex(Clause); i++) {
    Symbol = term_TopSymbol(clause_GetLiteralAtom(Clause, i));
    if (!symbol_Equal(fol_Equality(),Symbol) && symbol_Arity(Symbol) > 1)
      Hit = TRUE;
  }
  --i;   /* Important! */
  /* If projection wasn't possible for the first clause, */
  /* it isn't possible for the other clauses.            */
  /* If projection was possible for the first clause,    */
  /* it's also applicable to the other clauses at the    */
  /* same literal index.                                 */
  if (!Hit) {
    return Clauses;     /* Stop recursion */
  } else {
    Symbol = term_TopSymbol(clause_GetLiteralAtom(Clause, i));
    /* Examine whether the symbol was translated earlier */
    Trans = approx_LookupTranslationSymbols(*Translation, Symbol);
    if (Trans == NULL) {  /* Symbol not found in translation list */
      Trans = approx_CreateProjectionSymbols(Symbol, Precedence);
      *Translation = list_Cons(Trans, *Translation);
    }
    /* Apply projection at literal index <i> */
    Result = list_Nil();
    for ( ; !list_Empty(Clauses); Clauses = list_Pop(Clauses)) {
      Result = list_Nconc(Result,
			  approx_ApplyProjection(Trans,list_Car(Clauses),i,
						 Flags, Precedence));
      /* Delete the old clause */
      clause_Delete(list_Car(Clauses));
    }
    /* recursion */
    return approx_ApplyProjectionToList(Translation, Result, Flags, Precedence);
  }
}
			  
LIST approx_MonadicByProjection(LIST Clauses, FLAGSTORE Flags,
				PRECEDENCE Precedence)
/**************************************************************
  INPUT:   A list of clauses, a flag store and a precedence.
  RETURNS: A list of clauses with monadic literals. If a clause
           contains a n-ary atom P(t_1,...t_n), n clause copies
	   are created where the atom in the i-th new clause is
	   replaced by Pi(t_i).
           Equality is left unchanged.
  EFFECT:  The original clauses are not changed.
           Copies are created even if no projection was applied.
	   The flag store and the precedence are needed to create
	   the new clauses.
***************************************************************/
{
  LIST Result, Translation;

  Result = Translation = list_Nil();
  for ( ; !list_Empty(Clauses); Clauses = list_Cdr(Clauses)) {
    Result = list_Nconc(Result, approx_ApplyProjectionToList(&Translation,
                list_List(clause_Copy(list_Car(Clauses))), Flags, Precedence));
  }
  approx_DeleteTranslation(Translation);
  list_Apply((void (*)(POINTER)) clause_NewNumber, Result);
  return Result;
}


/**************************************************************/
/* Help functions for approx_MonadicByTermEncoding            */
/**************************************************************/

static APPROX_TRANSLATION approx_CreateFunctionForPredicate(SYMBOL Symbol,
							    PRECEDENCE Precedence)
/**************************************************************
  INPUT:   A predicate and a precedence.
  RETURNS: A one-element list with an APPROX_TRANSLATION for
           the predicate.
  EFFECT:  If the predicate has the name "P", a function "P_f" is
           created for the predicate.
	   The precedence of the new symbol is set in <Precedence>.
***************************************************************/
{
  APPROX_TRANSLATION Result;
  SYMBOL Predicate;
  char* approx_BUFFER;
  char* base;
  int size, i;

  Result = (APPROX_TRANSLATION) memory_Malloc(sizeof(APPROX_NODE));
  Result->original   = Symbol;
  Result->newSymbols = list_Nil();

  size = strlen(symbol_Name(Symbol))+3;
  base = memory_Malloc(size*sizeof(char));
  sprintf(base,"%s_f",symbol_Name(Symbol));
  approx_BUFFER = string_StringCopy(base);
  
  /* If the predicate symbol name + "_f" is already defined, try additional numbers */
  i = 0;
  while (symbol_Lookup(approx_BUFFER) != 0) {
    char* Suffix = string_IntToString(++i);
    
    string_StringFree(approx_BUFFER);
    approx_BUFFER = string_Conc(base,Suffix);
    
    string_StringFree(Suffix);
  }
  Predicate = symbol_CreateFunction(approx_BUFFER, symbol_Arity(Symbol),
				    symbol_STATLEX, Precedence);
  Result->newSymbols = list_Cons((POINTER)Predicate, Result->newSymbols);

  string_StringFree(approx_BUFFER);
  memory_Free(base,size*sizeof(char));
  
  return Result;
}

static void approx_EncodeClause(LIST* Translation, CLAUSE Clause,
				FLAGSTORE Flags, PRECEDENCE Precedence)
/**************************************************************
  INPUT:   A clause, a list of APPROX_TRANSLATIONs, a flag store
           and a precedence.
  RETURNS: Nothing.
  EFFECT:  All non-monadic literals of the clause are transformed into
           monadic literals.
           The clause is destructively changed!
***************************************************************/
{
  APPROX_TRANSLATION Trans;
  SYMBOL Symbol;
  TERM   Atom;
  NAT    i;

  for (i = clause_FirstLitIndex(); i <= clause_LastLitIndex(Clause); ++i) {
    Symbol = term_TopSymbol(clause_GetLiteralAtom(Clause, i));
    if (!symbol_Equal(fol_Equality(),Symbol) && symbol_Arity(Symbol) > 1) {
      Trans = approx_LookupTranslationSymbols(*Translation, Symbol);
      if (Trans == NULL) {
	Trans = approx_CreateFunctionForPredicate(Symbol, Precedence);
	*Translation = list_Cons(Trans, *Translation);
      }
      Atom = clause_GetLiteralAtom(Clause, i);
      term_RplacTop(Atom, (SYMBOL)list_Car(Trans->newSymbols));
      Atom = term_Create(approx_TRUESYMBOL, list_List(Atom));
      clause_LiteralSetAtom(clause_GetLiteral(Clause, i), Atom);
    }      
  }
  /* The weight of the clause has changed */
  clause_UpdateWeight(Clause, Flags);
}

LIST approx_MonadicByTermEncoding(LIST Clauses, FLAGSTORE Flags,
				  PRECEDENCE Precedence)
/**************************************************************
  INPUT:   A list of clauses, a flag store and a precedence.
  RETURNS: A list of clauses with monadic literals. A non-monadic
           literal P(t1,t2,...) is translated to True(p(t1,t2,...))
           where p is a function with the same arity as P
           and True is a special predicate with boolean domain.
	   Equality literals are left unchanged.
  EFFECT:  The clauses are not changed.
           This transformation is satisfiability preserving.
	   The flag store and the precedence are needed to create
	   the new clauses.
***************************************************************/
{
  LIST Result, Translation;
  NAT  i;

  /* Ensure that the special predicate "True" is defined */
  if (symbol_Equal(approx_TRUESYMBOL, symbol_Null())) {
    char* approx_BUFFER;
    i = 0;
    
    approx_BUFFER = string_StringCopy(approx_TRUENAME);
        
    while (symbol_Lookup(approx_BUFFER) != 0) {
      char* Suffix = string_IntToString(++i);
      
      string_StringFree(approx_BUFFER);
      approx_BUFFER = string_Conc(approx_TRUENAME,Suffix);
      
      string_StringFree(Suffix);
    }
    approx_TRUESYMBOL = symbol_CreatePredicate(approx_BUFFER, 1, symbol_STATLEX,
					       Precedence);
               
    string_StringFree(approx_BUFFER);
  }

  Translation = list_Nil();
  Result = clause_CopyClauseList(Clauses);
  for (Clauses = Result; !list_Empty(Clauses); Clauses = list_Cdr(Clauses)) {
    approx_EncodeClause(&Translation, list_Car(Clauses), Flags, Precedence);
  }
  approx_DeleteTranslation(Translation);
  list_Apply((void (*)(POINTER)) clause_NewNumber, Result);
  return Result;
}


/**************************************************************/
/* Help functions for approx_MonadicMakeLinear                */
/**************************************************************/

static LIST approx_MakeTermLinear(TERM Term, NAT Mark)
/**************************************************************
  INPUT:   A TERM and the current term binding mark.
  RETURNS: A list of pairs (oldvar, newvar) of variable renamings.
  EFFECT:  The term is destructively changed.
           The variables within Term are made unique with
           respect to previous variable occurrences since
           the last term_StartBinding call.
***************************************************************/
{
  LIST   Scan, Result;
  SYMBOL s;

  Result = list_Nil();
  if (term_IsComplex(Term)) {
    for (Scan=term_ArgumentList(Term); !list_Empty(Scan); Scan=list_Cdr(Scan))
      Result = list_Nconc(approx_MakeTermLinear(list_Car(Scan),Mark), Result);
  } else {
    s = term_TopSymbol(Term);
    if (symbol_IsVariable(s)) {
      if (term_VarIsMarked(s, Mark)) {
	term_RplacTop(Term, symbol_CreateStandardVariable());
	Result = list_Cons(list_PairCreate((POINTER)s,(POINTER)term_TopSymbol(Term)),
			   Result);
      } else {
        term_CreateValueBinding(s, Mark, NULL);
      }
    }
  }
  return Result;
}

static CLAUSE approx_MakeClauseLinear(CLAUSE Clause, FLAGSTORE Flags,
				      PRECEDENCE Precedence)
/**************************************************************
  INPUT:   A clause with monadic positive literals, a flag store
           and a precedence
  RETURNS: The linear approximation of the clause.
  EFFECT:  The original clause is not changed.
           The flag store and the precedence are needed to create
	   the new clause.
  CAUTION: The MaxVar info of the clause must be up to date!
***************************************************************/
{
  LIST   Renamings, Scan, Constraint, Antecedent, Succedent;
  SYMBOL NewVar, OldVar;
  CLAUSE NewClause;
  TERM   Atom, NewAtom;
  NAT    Mark;
  int    i;

#ifdef DEBUG
  if (term_InBindingPhase()) {
    misc_StartErrorReport();
    misc_ErrorReport("\n In approx_makeClauseLinear: Function called inside binding phase.\n");
    misc_FinishErrorReport();
  }
#endif

  if (clause_NumOfSuccLits(Clause) == 0)
    return clause_Copy(Clause);

  for (i = clause_FirstLitIndex(); i <= clause_LastLitIndex(Clause); ++i) {
    Atom = clause_GetLiteralAtom(Clause, i);
    if (fol_IsEquality(Atom) || !term_IsDeclaration(Atom))
      return clause_Copy(Clause);
  }

  /* Ensure that all new variables don't occur in the clause */
  symbol_SetStandardVarCounter(clause_MaxVar(Clause));
  
  term_StartBinding();
  Mark = term_ActMark();

  Constraint = Antecedent = Succedent = list_Nil();
  Renamings = list_Nil();
  /* Make the positive literals linear */
  for (i = clause_LastSuccedentLitIndex(Clause);
       i >= clause_FirstSuccedentLitIndex(Clause); --i) {
    Atom = term_Copy(clause_GetLiteralAtom(Clause, i));
    Succedent = list_Cons(Atom, Succedent);
    Renamings = list_Nconc(approx_MakeTermLinear(Atom, Mark), Renamings);
  }
  term_StopBinding();

  /* Now examine the negative literals */
  for (i = clause_LastAntecedentLitIndex(Clause);
       i >= clause_FirstConstraintLitIndex(Clause); --i) {
    /* Keep a copy of the original literal */
    Atom = term_Copy(clause_GetLiteralAtom(Clause, i));
    if (i <= clause_LastConstraintLitIndex(Clause))
      Constraint = list_Cons(Atom, Constraint);
    else
      Antecedent = list_Cons(Atom, Antecedent);
    for (Scan = Renamings; !list_Empty(Scan); Scan = list_Cdr(Scan)) {
      OldVar = (SYMBOL) list_PairFirst(list_Car(Scan));
      NewVar = (SYMBOL) list_PairSecond(list_Car(Scan));
      if (term_ContainsSymbol(Atom, OldVar)) {
	NewAtom = term_Copy(Atom);
	term_ExchangeVariable(NewAtom, OldVar, NewVar);
	/* Add additional literals for renamed variables */
	if (i <= clause_LastConstraintLitIndex(Clause))
	  Constraint = list_Cons(NewAtom, Constraint);
	else
	  Antecedent = list_Cons(NewAtom, Antecedent);
      }
    }
  }
  /* Create the new clause */
  NewClause = clause_Create(Constraint,Antecedent,Succedent,Flags,Precedence);
  if (clause_GetFlag(Clause, CONCLAUSE))
    clause_SetFlag(NewClause, CONCLAUSE);
  /* clean up */
  list_Delete(Constraint);
  list_Delete(Antecedent);
  list_Delete(Succedent);
  list_DeletePairList(Renamings);
  return NewClause;
}


LIST approx_MonadicMakeLinear(LIST Clauses, FLAGSTORE Flags,
			      PRECEDENCE Precedence)
/**************************************************************
  INPUT:   A list of clauses, a flag store and a precedence.
  RETURNS: A list of copies of the clauses.
  EFFECT:  The entire succedent of a clause <c> is made linear
           if all literals of <c> are monadic.
	   The original clauses are not changed, the clauses are
	   copied even if no transformation was applied.
           For every variable renaming X -> Y, that is necessary
           to make the positive literals linear, we collect
           all negative literals P(t) containing X and add new
           negative literals P(t) where X is replaced by Y.
	   The flag store and the precedence are needed to create
	   the new clauses.
  CAUTION: The MaxVar info of the clause must be up to date!
***************************************************************/
{
  LIST Result, Scan;
  
  Result = list_Copy(Clauses);
  for (Scan = Result; !list_Empty(Scan); Scan = list_Cdr(Scan))
    list_Rplaca(Scan, approx_MakeClauseLinear(list_Car(Scan),Flags,Precedence));
  return Result;
}


/**************************************************************/
/* Help functions for approx_MonadicFlattenHeads              */
/**************************************************************/

static TERM approx_ReplaceSubterms(TERM Term, LIST Duplicates, TERM NewVarTerm)
/**************************************************************
  INPUT:   A term, a list of terms that are possibly subterms of <Term>,
           and a third term, that consists of a variable.
  RETURNS: A copy of <Term> where all subterms that are element of
           the <Duplicates> list are replaced by a copy of <NewVarTerm>.
	   Note that pointers are used to check for equality of terms.
***************************************************************/
{
  if (list_PointerMember(Duplicates, Term))
    return term_Copy(NewVarTerm);
  else {
    LIST Arguments, Scan;

    Arguments = list_Copy(term_ArgumentList(Term));
    for (Scan = Arguments; !list_Empty(Scan); Scan = list_Cdr(Scan))
      list_Rplaca(Scan, approx_ReplaceSubterms(list_Car(Scan),Duplicates,
					       NewVarTerm));
    return term_Create(term_TopSymbol(Term), Arguments);
  }
}

static LIST approx_ApplyFlattening(CLAUSE Clause, LIST Duplicates,
				   BOOL CheckNegativeLiterals, FLAGSTORE Flags,
				   PRECEDENCE Precedence)
/**************************************************************
  INPUT:   A horn clause with one positive literal, a list of terms that
           shall be replaced by some new variable, a boolean flag
	   indicating which transformation will be applied,
	   a flag store and a precedence.
	   Note that <Duplicates> contains all occurrences of a complex
	   subterm of the single positive atom of <Clause>.
  RETURNS: A list of two clauses.
  EFFECT:  The <Clause> is not changed.
           A new predicate with a name starting with "Fl"
	   is created.
	   See approx_MonadicFlattenHeads for more details.
***************************************************************/
{
  LIST   Constraint1, Antecedent1, Succedent1;  /* literals for 1st clause */
  LIST   Constraint2, Antecedent2, Succedent2;  /* literals for 2nd clause */
  LIST   VarsInTerm;
  TERM   Term, NewVarTerm;
  SYMBOL NewPredicate;
  CLAUSE Clause1, Clause2;
  int    i;
  char*  approx_BUFFER;
  const  char*  base;

  /* The set of variables of the subterm is required both for           */
  /* transformation 1) and 2) (CheckNegative=TRUE, CheckVar arbitrary). */
  if (CheckNegativeLiterals)
    VarsInTerm = term_VariableSymbols(list_Car(Duplicates));
  else
    VarsInTerm = list_Nil();
  
  Constraint1 = Antecedent1 = Succedent1 = list_Nil();
  Constraint2 = Antecedent2 = Succedent2 = list_Nil();
  for (i = clause_LastAntecedentLitIndex(Clause);
       i >= clause_FirstConstraintLitIndex(Clause); --i) {
    SYMBOL Var;

    Term = term_Copy(clause_GetLiteralAtom(Clause, i));  /* an atom */
    Var = term_TopSymbol(term_FirstArgument(Term));
    if (i <= clause_LastConstraintLitIndex(Clause)) {
      if (CheckNegativeLiterals) {
	if (list_PointerMember(VarsInTerm, (POINTER)Var))
	  Constraint2 = list_Cons(Term, Constraint2);
	else
	  Constraint1 = list_Cons(Term, Constraint1);
      } else {
	/* copy the constraint for both clauses */
	Constraint1 = list_Cons(Term, Constraint1);
	Constraint2 = list_Cons(term_Copy(Term), Constraint2);
      }
    } else {
      if (CheckNegativeLiterals) {
	if (list_PointerMember(VarsInTerm, (POINTER)Var))
	  Antecedent2 = list_Cons(Term, Antecedent2);
	else
	  Antecedent1 = list_Cons(Term, Antecedent1);
      } else {
	/* copy the antecedent for both clauses */
	Antecedent1 = list_Cons(Term, Antecedent1);
	Antecedent2 = list_Cons(term_Copy(Term), Antecedent2);
      }
    }
  }
  list_Delete(VarsInTerm);

  /* Create a new predicate */
  base = "Fl";
  approx_BUFFER = string_StringCopy(base);
  /* Ensure that new symbol wasn't previously defined */
  do {
    char* Suffix = string_IntToString(++approx_PREDICATECOUNTER);
    
    string_StringFree(approx_BUFFER);
    approx_BUFFER = string_Conc(base,Suffix);    
  
    string_StringFree(Suffix);
  } while (symbol_Lookup(approx_BUFFER) != 0);
  NewPredicate = symbol_CreatePredicate(approx_BUFFER,1,symbol_STATLEX,Precedence);
  string_StringFree(approx_BUFFER);
  /* Create a new variable not occurring in the clause */
  symbol_SetStandardVarCounter(clause_MaxVar(Clause));
  NewVarTerm = term_CreateStandardVariable();
  /* Add the new negative literal to the first clause */
  Antecedent1 = list_Cons(term_Create(NewPredicate, list_List(NewVarTerm)),
			  Antecedent1);

  /* Now create the succedent of the first result clause. To do this we have */
  /* to replace all occurrences of the subterm by the new variable.          */
  Term = clause_GetLiteralAtom(Clause, clause_FirstSuccedentLitIndex(Clause));
  Succedent1 = list_List(approx_ReplaceSubterms(Term, Duplicates, NewVarTerm));
  /* Create the succedent of the second result clause */
  Term = term_Copy(list_Car(Duplicates));
  Succedent2 = list_List(term_Create(NewPredicate, list_List(Term)));
  
  Clause1 = clause_Create(Constraint1, Antecedent1, Succedent1,Flags,Precedence);
  Clause2 = clause_Create(Constraint2, Antecedent2, Succedent2,Flags,Precedence);
  if (clause_GetFlag(Clause, CONCLAUSE)) {
    clause_SetFlag(Clause1, CONCLAUSE);
    clause_SetFlag(Clause2, CONCLAUSE);
  }
  /* cleanup */
  list_Delete(Constraint1);
  list_Delete(Antecedent1);
  list_Delete(Succedent1);
  list_Delete(Constraint2);
  list_Delete(Antecedent2);
  list_Delete(Succedent2);
  
  return list_Cons(Clause1, list_List(Clause2)); 
}

static LIST approx_GetDuplicatesAndCheckVariables(TERM Atom, TERM ComplexTerm,
						  BOOL CheckVariables)
/**************************************************************
  INPUT:   An atom, a subterm of the atom, and a boolean flag.
  RETURNS: Let <A'> be the <Atom> with all duplicates of <ComplexTerm>
           replaced by some constant.
	   This function returns the empty list if <CheckVariables> is true
	   and <A'> shares any variable with <ComplexTerm>.
	   Otherwise the list of all duplicates of <ComplexTerm>
	   in <Atom> is returned.
***************************************************************/
{
  NAT  Stack, ActMark;
  LIST Result;

#ifdef CHECK
  if (term_InBindingPhase()) {
    misc_StartErrorReport();
    misc_ErrorReport("\n In approx_CheckVariables: Called while in variable ");
    misc_ErrorReport("binding phase.");
    misc_FinishErrorReport();
  }
#endif

  term_StartBinding();

  ActMark = term_ActMark();
  Result  = list_Nil();
  Stack   = stack_Bottom();

  /* Mark all variables from <ComplexTerm> */
  term_MarkVariables(ComplexTerm, ActMark);
  term_StopBinding();

  do {
    if (term_Equal(Atom, ComplexTerm))
      Result = list_Cons(Atom, Result);
    else {
      if (CheckVariables && term_IsVariable(Atom) &&
	  term_VarIsMarked(term_TopSymbol(Atom), ActMark)) {
	/* Variable from <ComplexTerm> occurs in the rest of <Term> */
	list_Delete(Result);
	stack_SetBottom(Stack);
	return list_Nil();
      } else
	stack_Push(term_ArgumentList(Atom));
    }
    while (!stack_Empty(Stack) && list_Empty(stack_Top()))
      stack_Pop();
    if (!stack_Empty(Stack)) {
      Atom = list_Car(stack_Top());
      stack_RplacTop(list_Cdr(stack_Top()));
    }
  } while (!stack_Empty(Stack));

  return Result;
}

static LIST approx_OneFlatteningStep(CLAUSE Clause, BOOL CheckVarCondition,
				     BOOL CheckNegativeLiterals,
				     FLAGSTORE Flags, PRECEDENCE Precedence)
/**************************************************************
  INPUT:   A horn clause, two boolean flags, a flag store and a precedence.
  RETURNS: An empty list, if the clause wasn't flattened, else a list
           of clauses resulting from the flattening of the clause.
  EFFECT:  The <Clause> is not changed.
***************************************************************/
{
  TERM Atom, Term;
  LIST Result;
  NAT  Stack;

  /* Nothing to do if clause has no positive literal */
  if (clause_NumOfSuccLits(Clause) != 1)
    return list_Nil();
  /* Get the atom of the only positive literal */
  Atom = clause_GetLiteralAtom(Clause, clause_FirstSuccedentLitIndex(Clause));
  if (fol_IsEquality(Atom) || !term_IsDeclaration(Atom)) {
    /* positive literal is equality or isn't monadic */
    return list_Nil();
  }
  Term = term_FirstArgument(Atom); /* the term of the monadic literal */

  Stack   = stack_Bottom();
  /* Start with the arguments of the term, not the term itself */
  stack_Push(term_ArgumentList(Term));
  do {
    while (!stack_Empty(Stack) && list_Empty(stack_Top()))
      stack_Pop();
    if (!stack_Empty(Stack)) {
      Term = list_Car(stack_Top());
      stack_RplacTop(list_Cdr(stack_Top()));
      
      if (term_IsComplex(Term)) { /* replace only complex terms */
	LIST duplicates;
	duplicates = approx_GetDuplicatesAndCheckVariables(Atom, Term,
							   CheckVarCondition);
	if (list_Empty(duplicates))
	  /* Var condition had to be checked but was violated */
	  stack_Push(term_ArgumentList(Term));
	else {
	  /* Apply rule */
	  Result = approx_ApplyFlattening(Clause, duplicates,
					  CheckNegativeLiterals, Flags,
					  Precedence);
	  list_Delete(duplicates);
	  stack_SetBottom(Stack);
	  return Result;
	}
      }
    }
  } while (!stack_Empty(Stack));

  return list_Nil();
}


LIST approx_HornMonadicFlattenHeads(CLAUSE Clause, BOOL CheckVarCondition,
				    BOOL CheckNegativeLiterals,
				    FLAGSTORE Flags, PRECEDENCE Precedence)
/**************************************************************
  INPUT:   A clause, two boolean flags, a flag store and a precedence.
  RETURNS: An empty list, if the clause wasn't flattened,
           else the list of clauses resulting from the
           flattening of the clause.
  EFFECT:  This function implements three kinds of flattening that
           require all literals in <Clause> to be monadic and <Clause> is Horn:
           1) CheckVarCondition=TRUE, CheckNegativeLiterals=TRUE
              C || D -> P(t[s]_p)
              ---------------------------
	      Fl(x) C1 || D1 -> P(t[p/x])
	            C2 || D2 -> Fl(s) 
	      all terms in C, D are variables,
              where s is a complex term at the non-top position p,
	      Var(s) is disjoint from Var(P(t[p/c])) (where c is an arbitrary constant),
	      x is a new variable, Fl is a new predicate,
	      L\in C2 if Var(L) \subset Var(s),
	      L\in D2 if Var(L) \subset Var(s),
	      C1 and C2 are a partition of C,
	      D1 and D2 are a partition of D
	      This transformation is equivalence preserving with respect
	      to the extension of P in the minimal model.
           2) CheckVarCondition=FALSE, CheckNegativeLiterals=TRUE
	      This setting does the same transformation as above,
              but doesn't require that Var(s) is disjoint from
              Var(P(t[p/c])).
	      This transformation is an upper approximation of P. 
           3) CheckVarCondition=FALSE, CheckNegativeLiterals=FALSE
	      C || D -> P(t[s]_p)
	      ------------------
	      Fl(x) C || D -> P(t[p/x])
	            C || D -> Fl(s)
              where C and D may contain non-variable terms and
	      s and t[p/c] may share variables
	      This transformation is an upper approximation of P. 

	   These transformations are recursively applied.
           The <Clause> itself is not changed.
	   If the clause doesn't meet the requirements an empty 
	   list is returned.
  MEMORY : <Clause> is not changed, the result consists of newly
           generated clauses.
***************************************************************/
{
  LIST   Result, Queue, NewClauses;
  CLAUSE ActClause;
  TERM   Term;
  BOOL   FirstTime;
  int    i;

#ifdef DEBUG
  if (CheckVarCondition && !CheckNegativeLiterals) {
    misc_StartErrorReport();
    misc_ErrorReport("\n In approx_MonadicFlattenHeads: Illegal input parameters.\n");
    misc_FinishErrorReport();
  }
#endif

  /* Apply transformation only to clauses with a single positive literal */
  if (!clause_NumOfSuccLits(Clause) != 1)
    return list_Nil();

  /* Check the negative literals */
  for (i = clause_FirstConstraintLitIndex(Clause);
       i <= clause_LastAntecedentLitIndex(Clause); ++i) {
    Term = clause_GetLiteralAtom(Clause, i);   /* an atom */
    if (fol_IsEquality(Term) || !term_IsDeclaration(Term)) {
      /* negative literal isn't monadic */
      return list_Nil();
    }
    if (CheckNegativeLiterals && !term_IsVariable(term_FirstArgument(Term))) {
      /* negative literal hasn't simple variable as argument */
      return list_Nil();
    }
  }

  Result = list_Nil();
  FirstTime = TRUE;
  Queue = list_List(Clause);  /* Initialize the queue with the first clause */
  do {
    ActClause = list_NCar(&Queue);
    NewClauses = approx_OneFlatteningStep(ActClause, CheckVarCondition,
					  CheckNegativeLiterals, Flags,
					  Precedence);
    if (list_Empty(NewClauses)) {
      /* ActClause is finished */
      Result = list_Cons(ActClause, Result);
    } else {
      /* ActClause was transformed */
      Queue = list_Nconc(NewClauses, Queue);
      /* Delete temporary clauses */
      if (!FirstTime)  /* Avoid deletion of the initial clause */
	clause_Delete(ActClause);
    }
    FirstTime = FALSE;
  } while (!list_Empty(Queue));

  if (list_Empty(list_Cdr(Result))) {
    /* list contains only the original clause */
    list_Delete(Result);
    return list_Nil();
  } else
    return list_NReverse(Result);
}


/**************************************************************/
/* approx_MakeHorn                                            */
/**************************************************************/

LIST approx_MakeHorn(CLAUSE Clause, FLAGSTORE Flags, PRECEDENCE Precedence)
/**************************************************************
  INPUT:   A clause, a flag store and a precedence.
  RETURNS: An empty list if <Clause> is already a horn clause,
           otherwise a list of horn clauses resulting from <Clause>.
  EFFECT:  A non-horn clause with n positive literals
           is replaced by n horn clauses. The i-th horn clause
           has the i-th positive literal from <Clause> as
           only positive literal.
	   The flag store and the precedence are needed to create
	   the new clauses.
***************************************************************/
{
  LIST Result, Constraint, Antecedent, Succedent;
  int  i;
  
  Result = list_Nil();
  if (!clause_IsHornClause(Clause)) {
    Constraint = Antecedent = list_Nil();
    /* Collect constraint atoms */
    for (i = clause_LastConstraintLitIndex(Clause);
	 i >= clause_FirstConstraintLitIndex(Clause); --i)
      Constraint = list_Cons(clause_GetLiteralAtom(Clause, i), Constraint);
    /* Collect antecedent atoms */
    for (i = clause_LastAntecedentLitIndex(Clause);
	 i >= clause_FirstAntecedentLitIndex(Clause); --i)
      Antecedent = list_Cons(clause_GetLiteralAtom(Clause, i), Antecedent);
    for (i = clause_FirstSuccedentLitIndex(Clause);
	 i <= clause_LastSuccedentLitIndex(Clause); ++i) {
      CLAUSE NewClause;
      /* Copy constraint and antecedent atoms */
      term_CopyTermsInList(Constraint);
      term_CopyTermsInList(Antecedent);
      Succedent = list_List(term_Copy(clause_GetLiteralAtom(Clause, i)));
      NewClause = clause_Create(Constraint,Antecedent,Succedent,Flags,Precedence);
      if (clause_GetFlag(Clause, CONCLAUSE))
	clause_SetFlag(NewClause, CONCLAUSE);
      list_Delete(Succedent);
      Result = list_Cons(NewClause, Result);
    }
    list_Delete(Constraint);
    list_Delete(Antecedent);
  }
  return list_NReverse(Result);
}