1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
|
/**************************************************************/
/* ********************************************************** */
/* * * */
/* * SORTED REASONING * */
/* * * */
/* * $Module: SORT * */
/* * * */
/* * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001 * */
/* * MPI fuer Informatik * */
/* * * */
/* * This program is free software; you can redistribute * */
/* * it and/or modify it under the terms of the FreeBSD * */
/* * Licence. * */
/* * * */
/* * This program is distributed in the hope that it will * */
/* * be useful, but WITHOUT ANY WARRANTY; without even * */
/* * the implied warranty of MERCHANTABILITY or FITNESS * */
/* * FOR A PARTICULAR PURPOSE. See the LICENCE file * */
/* * for more details. * */
/* * * */
/* * * */
/* $Revision: 1.3 $ * */
/* $State: Exp $ * */
/* $Date: 2010-02-22 14:09:59 $ * */
/* $Author: weidenb $ * */
/* * * */
/* * Contact: * */
/* * Christoph Weidenbach * */
/* * MPI fuer Informatik * */
/* * Stuhlsatzenhausweg 85 * */
/* * 66123 Saarbruecken * */
/* * Email: spass@mpi-inf.mpg.de * */
/* * Germany * */
/* * * */
/* ********************************************************** */
/**************************************************************/
/* $RCSfile: sort.h,v $ */
#ifndef _SORT_
#define _SORT_
#include "clause.h"
#include "unify.h"
#include "hash.h"
#include "subsumption.h"
/**************************************************************/
/* Data Structures and Constants */
/**************************************************************/
/* Objects of type SORT are used to store the sort information */
/* for terms. SORT is a list of NODE's */
typedef LIST SORT;
/* List of sort nodes */
typedef LIST SOJU;
/* Pair: First Component Sort, Second Component List of Clauses */
typedef enum {SORTEQNONE=1, SORTEQDECR=2, SORTEQMANY=3} STR;
/* The overall result of an sort theory analysis with respect to equations */
typedef struct NODE_HELP {
LIST links;
NAT mark;
NAT start;
NAT extra;
LIST clauses;
SYMBOL symbol;
} NODE_NODE,*NODE;
/* This is a node from the subsort graph with outgoing links the represented */
/* sort symbol and a mark indicating whether the node is already visited,i.e, */
/* it is TRUE. Whereas start indicates whether the node was put true right */
/* from the beginning. Clauses are used to derive the subsort reletationship. */
typedef struct SLINK_HELP {
LIST input;
NODE output;
int card;
int fire;
SYMBOL var;
CLAUSE clause;
} SLINK_NODE,*SLINK;
/* This is a link in the subsort graph, with a list of input nodes that have */
/* to become true in order to fire the link and set the output node TRUE */
/* constraint, antecedent, succedent literals are the extra literals of */
/* <clause> and <var> is the subsort variable. It is always assumed that the */
/* subsort variable is the maximal variable with respect to the constraint, */
/* antecedent and succedent literals. */
typedef struct SORTTHEORY_HELP {
st_INDEX index;
NODE basesorttable[symbol__MAXSIGNATURE];
LIST suborigcls;
LIST termorigcls;
NAT mark;
} SORTTHEORY_NODE,*SORTTHEORY;
/* The index contains the term declarations mapped to their possibly */
/* approximated term declarations of inserted clauses. The subsort declarations*/
/* are handled by a specific graph initiated over the base sorts. There is */
/* one node in the graph for every base sort (basesorttable) and links */
/* correspond to subsort declaration clauses */
/* The mark is used in the subsort graph to detect already visited nodes. */
/* The lists suborigcls and termorigcls map original clauses to sort theory */
/* clauses to links/terms respectively. They contain triples of this kind */
/**************************************************************/
/* Macros */
/**************************************************************/
static __inline__ SORT sort_TopSort(void)
{
return list_Nil();
}
static __inline__ BOOL sort_IsTopSort(SORT S)
{
return list_Empty(S);
}
static __inline__ SORT sort_Copy(SORT S)
{
return list_Copy(S);
}
static __inline__ void sort_DeleteOne(SORT S)
{
list_Delete(S);
}
/* static __inline__ void sort_DeleteSecond(LIST L) */
/* { */
/* list_Delete(L); */
/* } */
static __inline__ SORT sort_Intersect(SORT S1, SORT S2)
{
return list_Nconc(S1, S2);
}
static __inline__ SORT sort_DeleteBaseNode(SORT S, NODE N)
{
return list_PointerDeleteElement(S,N);
}
static __inline__ SORT sort_AddBaseNode(SORT S, NODE N)
{
return list_Cons(N,S);
}
static __inline__ void sort_NodeFree(NODE N)
{
memory_Free(N,sizeof(NODE_NODE));
}
static __inline__ BOOL sort_NodeEqual(NODE N1, NODE N2)
{
return (N1 == N2);
}
static __inline__ void sort_NodeDelete(NODE N)
{
list_Delete(N->links);
N->links = list_Nil();
list_Delete(N->clauses);
N->clauses = list_Nil();
sort_NodeFree(N);
}
static __inline__ LIST sort_NodeLinks(NODE N)
{
return N->links;
}
static __inline__ BOOL sort_NodeValue(SORTTHEORY S, NODE N)
{
return (N->mark == S->mark);
}
static __inline__ BOOL sort_NodeExtraValue(SORTTHEORY S, NODE N)
{
return (N->extra == S->mark);
}
static __inline__ BOOL sort_NodeStartValue(SORTTHEORY S, NODE N)
{
return (N->start == S->mark);
}
static __inline__ NAT sort_NodeMark(NODE N)
{
return N->mark;
}
static __inline__ NAT sort_NodeStart(NODE N)
{
return N->start;
}
static __inline__ SYMBOL sort_NodeSymbol(NODE N)
{
return N->symbol;
}
static __inline__ LIST sort_NodeClauses(NODE N)
{
return N->clauses;
}
static __inline__ void sort_PutNodeMark(NODE N, NAT M)
{
N->mark = M;
}
static __inline__ void sort_PutNodeExtra(NODE N, NAT M)
{
N->extra = M;
}
static __inline__ void sort_PutNodeStart(NODE N, NAT S)
{
N->start = S;
}
static __inline__ void sort_PutNodeSymbol(NODE N, SYMBOL S)
{
N->symbol = S;
}
static __inline__ void sort_PutNodeLinks(NODE N, LIST C)
{
N->links = C;
}
static __inline__ void sort_PutNodeClauses(NODE N, LIST C)
{
N->clauses = C;
}
static __inline__ void sort_PutNodeTrue(SORTTHEORY S, NODE N)
{
N->mark = S->mark;
}
static __inline__ void sort_PutNodeExtraTrue(SORTTHEORY S, NODE N)
{
N->extra = S->mark;
}
static __inline__ void sort_PutNodeStartTrue(SORTTHEORY S, NODE N)
{
N->start = S->mark;
}
static __inline__ void sort_DeleteNodeClauses(NODE N)
{
list_Delete(N->clauses);
N->clauses=list_Nil();
}
static __inline__ LIST sort_LinkInput(SLINK S)
{
return S->input;
}
static __inline__ NODE sort_LinkOutput(SLINK S)
{
return S->output;
}
static __inline__ int sort_LinkFire(SLINK S)
{
return S->fire;
}
static __inline__ int sort_LinkVar(SLINK S)
{
return S->var;
}
static __inline__ CLAUSE sort_LinkClause(SLINK S)
{
return S->clause;
}
static __inline__ int sort_LinkCard(SLINK S)
{
return S->card;
}
static __inline__ void sort_PutLinkInput(SLINK S, LIST T)
{
S->input = T;
}
static __inline__ void sort_PutLinkVar(SLINK S, SYMBOL V)
{
S->var = V;
}
static __inline__ void sort_PutLinkOutput(SLINK S,NODE H)
{
S->output = H;
}
static __inline__ void sort_PutLinkClause(SLINK S, CLAUSE C)
{
S->clause = C;
}
static __inline__ void sort_PutLinkCard(SLINK S,int L)
{
S->card = L;
}
static __inline__ void sort_LinkResetFire(SLINK S) {
S->fire = S->card;
}
static __inline__ int sort_LinkDecrementFire(SLINK S)
{
--(S->fire);
return S->fire;
}
static __inline__ void sort_LinkFree(SLINK S)
{
memory_Free(S,sizeof(SLINK_NODE));
}
static __inline__ void sort_LinkDelete(SLINK S)
{
LIST Scan;
for (Scan=sort_LinkInput(S); !list_Empty(Scan); Scan=list_Cdr(Scan))
sort_PutNodeLinks(list_Car(Scan),list_PointerDeleteElement(sort_NodeLinks(list_Car(Scan)),S));
list_Delete(sort_LinkInput(S));
sort_LinkFree(S);
}
static __inline__ BOOL sort_HasEqualSort(SORT S1, SORT S2)
{
return S1 == S2;
}
static __inline__ POINTER sort_PairSort(LIST Pair)
{
return list_PairFirst(Pair);
}
static __inline__ POINTER sort_PairClauses(LIST Pair)
{
return list_PairSecond(Pair);
}
static __inline__ LIST sort_PairCreate(SORT S , LIST Clauses)
{
return list_PairCreate((POINTER)S, Clauses);
}
static __inline__ void sort_PairFree(LIST Pair)
{
list_PairFree(Pair);
}
static __inline__ void sort_PairDelete(LIST Pair)
/**************************************************************
INPUT:
RETURNS: Nothing.
***************************************************************/
{
sort_DeleteOne(sort_PairSort(Pair));
list_Delete(sort_PairClauses(Pair));
list_PairFree(Pair);
}
static __inline__ LIST sort_PairCopy(LIST Pair)
{
return sort_PairCreate(sort_Copy(sort_PairSort(Pair)),
list_Copy(sort_PairClauses(Pair)));
}
static __inline__ NODE sort_TheoryNode(SORTTHEORY Theory, SYMBOL S)
{
return Theory->basesorttable[symbol_Index(S)];
}
static __inline__ NAT sort_TheoryMark(SORTTHEORY Theory)
{
return Theory->mark;
}
static __inline__ LIST sort_TheorySuborigcls(SORTTHEORY Theory)
{
return Theory->suborigcls;
}
static __inline__ LIST sort_TheoryTermorigcls(SORTTHEORY Theory)
{
return Theory->termorigcls;
}
static __inline__ void sort_TheoryIncrementMark(SORTTHEORY Theory)
{
if (Theory->mark == NAT_MAX) {
int i;
NODE Node;
for (i = 0; i < symbol__MAXSIGNATURE; i++) {
Node = Theory->basesorttable[i];
Node->mark = 0;
Node->extra = 0;
Node->start = 0;
}
Theory->mark = 0;
}
++(Theory->mark);
}
static __inline__ st_INDEX sort_TheoryIndex(SORTTHEORY Theory)
{
return Theory->index;
}
/**************************************************************/
/* Functions */
/**************************************************************/
void sort_Init(void);
void sort_Free(void);
void sort_Delete(SORT);
BOOL sort_Eq(SORT, SORT);
void sort_DeleteSortPair(SOJU);
void sort_Print(SORT);
void sort_PairPrint(SOJU);
LIST sort_GetSymbolsFromSort(SORT);
BOOL sort_ContainsSymbol(SORT, SYMBOL);
BOOL sort_IsSort(SORT);
SORTTHEORY sort_ApproxStaticSortTheory(LIST, FLAGSTORE, PRECEDENCE);
SORTTHEORY sort_ApproxDynamicSortTheory(LIST);
SORTTHEORY sort_TheoryCreate(void);
void sort_TheoryDelete(SORTTHEORY);
void sort_TheoryPrint(SORTTHEORY);
void sort_TheoryInsertClause(SORTTHEORY, CLAUSE, CLAUSE, LITERAL);
void sort_TheoryDeleteClause(SORTTHEORY, CLAUSE);
SORT sort_TheorySortOfSymbol(SORTTHEORY, SYMBOL);
BOOL sort_TheorySortEqual(SORTTHEORY,SORT,SORT);
LIST sort_TheoryIsSubsort(SORTTHEORY, SORT, SORT, BOOL*);
BOOL sort_TheoryIsSubsortOf(SORTTHEORY, SORT, SORT);
BOOL sort_TheoryIsSubsortOfExtra(SORTTHEORY , SORT , SORT , SORT);
LIST sort_TheoryComputeAllSubsortHits(SORTTHEORY, SORT, SORT);
SOJU sort_ComputeSort(SORTTHEORY,TERM, CLAUSE, int, FLAGSTORE, PRECEDENCE);
LIST sort_ApproxMaxDeclClauses(CLAUSE, FLAGSTORE, PRECEDENCE);
STR sort_AnalyzeSortStructure(LIST, FLAGSTORE, PRECEDENCE);
#endif
|