1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
|
/*
* Project: The SPD Image correction and azimuthal regrouping
* http://forge.epn-campus.eu/projects/show/azimuthal
*
* Copyright (C) 2005-2010 European Synchrotron Radiation Facility
* Grenoble, France
*
* Principal authors: P. Boesecke (boesecke@esrf.fr)
* R. Wilcke (wilcke@esrf.fr)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* and the GNU Lesser General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*/
/*+++------------------------------------------------------------------------
NAME
angle --- routines for angular averaging
SYNOPSIS
# include angle.h
HISTORY
2005-10-08 V1.0 Peter Boesecke
2005-10-29 V1.1 PB *pstatus = Success; added
2006-05-13 V1.2 PB angle_limits and checks for Min/MaxAngle and Min/MaxRadius
added
2007-04-19 V1.3 PB -Wall compiler warnings resolved
2009-10-02 V1.4 PB Success -> 0, SaxsAngle -> angle
include only ipol.h and reference.h
DESCRIPTION
* Attention:
* - all values of the output array must have been preset with the value
* "I0Dummy"
----------------------------------------------------------------------------*/
/******************************************************************************
* Include Files *
******************************************************************************/
# include "angle.h"
/******************************************************************************
* Private Constants *
******************************************************************************/
static const double rad2deg = 180.0/NUM_PI;
static const float twopi = 2.0*NUM_PI;
/******************************************************************************
* Private Definitions *
******************************************************************************/
# define CALC_DIST(A) sqrt((A[0])*(A[0])+(A[1])*(A[1]))
/******************************************************************************
* Routines *
******************************************************************************/
/*+++------------------------------------------------------------------------
NAME
angle_limits
SYNOPSIS
float angle_limits( int mode, int I1Dim_1, int I1Dim_2,
float Off_11, float Ps_11, float Off_21, float Ps_21,
float Wcenter_1, float Wcenter_2 )
DESCRIPTION
Returns the maximum or minimum distances and the maximum or minimum azimuthal
angles of the edges in world coordinates from the center,
depending on mode. The center is (Wcenter_1,Wcenter_2) in the world system.
The returned distances are absolute values in world distances,
the angles are returned in radian.
mode 1: minimum radius
mode 2: maximum radius
mode -1: minimum angle
mode -2: maximum angle
| |
| |
G | H | I
| |
_________|_________|_________
edge4| |edge3
| |
D | E | F
| |
_________|_________|_________
edge1| |edge2
| |
A | B | C
| |
| |
RETURN VALUE
value depending on mode, -999.0 is error
-------------------------------------------------------------------------+*/
float angle_limits( int mode, int I1Dim_1, int I1Dim_2,
float Off_11, float Ps_11, float Off_21, float Ps_21,
float Wcenter_1, float Wcenter_2 )
{
float i10, i11, i20, i21;
float edge1[2], edge2[2], edge3[2], edge4[2];
float dist1, dist2, dist3, dist4;
float min_radius, max_radius, min_angle, max_angle;
float value;
i10 = i20 = A2INDEX(ARRAYSTART+LOWERBORDER);
i11 = A2INDEX(ARRAYSTART+LOWERBORDER+I1Dim_1);
i21 = A2INDEX(ARRAYSTART+LOWERBORDER+I1Dim_2);
edge1[0] = WORLD(i10,Off_11,Ps_11)-Wcenter_1;
edge1[1] = WORLD(i20,Off_21,Ps_21)-Wcenter_2;
edge2[0] = WORLD(i11,Off_11,Ps_11)-Wcenter_1;
edge2[1] = edge1[1];
edge3[0] = edge2[0];
edge3[1] = WORLD(i21,Off_21,Ps_21)-Wcenter_2;
edge4[0] = edge1[0];
edge4[1] = edge3[1];
dist1 = CALC_DIST(edge1);
dist2 = CALC_DIST(edge2);
dist3 = CALC_DIST(edge3);
dist4 = CALC_DIST(edge4);
if ( 0.0 < edge1[0] ) {
// A, D, G
if ( 0.0 < edge1[1] ) {
// A
min_radius = dist1;
max_radius = dist3;
min_angle = atan2(edge2[1],edge2[0]);
max_angle = atan2(edge4[1],edge4[0]);
} else {
if ( 0.0 < edge4[1] ) {
// D
min_radius = edge1[0];
max_radius = MAX2(dist2,dist3);
min_angle = atan2(edge1[1],edge1[0]);
max_angle = atan2(edge4[1],edge4[0]);
} else {
// G
min_radius = dist4;
max_radius = dist2;
min_angle = atan2(edge1[1],edge1[0]);
max_angle = atan2(edge3[1],edge3[0]);
}
}
} else {
if ( 0.0 < edge2[0] ) {
// B, E, H
if ( 0.0 < edge2[1] ) {
// B
min_radius = edge1[1];
max_radius = MAX2(dist4,dist3);
min_angle = atan2(edge2[1],edge2[0]);
max_angle = atan2(edge1[1],edge1[0]);
} else {
if ( 0.0 < edge3[1] ) {
// E
min_radius = 0.0;
max_radius = MAX4(dist1, dist2, dist3, dist4);
min_angle = 0.0;
max_angle = twopi;
} else {
// H
min_radius = -edge3[1];
max_radius = MAX2(dist1,dist2);
min_angle = atan2(edge4[1],edge4[0]);
max_angle = atan2(edge3[1],edge3[0]);
}
}
} else {
// C, F, I
if ( 0.0 < edge2[1] ) {
// C
min_radius = dist2;
max_radius = dist4;
min_angle = atan2(edge3[1],edge3[0]);
max_angle = atan2(edge1[1],edge1[0]);
} else {
if ( 0.0 < edge3[1] ) {
// F
min_radius = -edge2[0];
max_radius = MAX2(dist1,dist4);
min_angle = atan2(edge3[1],edge3[0]);
max_angle = atan2(edge2[1],edge2[0]);
} else {
// I
min_radius = dist3;
max_radius = dist1;
min_angle = atan2(edge4[1],edge4[0]);
max_angle = atan2(edge2[1],edge2[0]);
}
}
}
}
// output range of min_angle [0..2*pi]
if (min_angle< 0.0) min_angle += twopi;
if (max_angle<=0.0) max_angle += twopi;
switch (mode ) {
case 1: // minimum radius
value = min_radius;
break;
case 2: // maximum radius
value = max_radius;
break;
case -1: // minimum angle
value = min_angle;
break;
case -2: // maximum angle
value = max_angle;
break;
default : // error
value = -999.0;
}
return ( value );
} // angle_limits
/*+++------------------------------------------------------------------------
NAME
angle_sum --- azimuthal summation/averaging of an image
SYNOPSIS
void angle_sum ( float * I0Data, float * E0Data,
int I0Dim_1, int I0Dim_2,
float Off_10, float Ps_10, float Off_20, float Ps_20,
float I0Dummy, float I0DDummy,
float * I1Data, float * E1Data,
int I1Dim_1, int I1Dim_2,
float Off_11, float Ps_11, float Off_21, float Ps_21,
float I1Dummy, float I1DDummy,
float Wcenter_1, float Wcenter_2,
int vsum, int ave, int testbit, int * pstatus );
DESCRIPTION
Azimuthal summation/averaging of an image.
Before using this function the output array must have been preset with
I0Dummy.
NO RETURN VALUE
-------------------------------------------------------------------------+*/
void angle_sum ( float * I0Data, float * E0Data,
int I0Dim_1, int I0Dim_2,
float Off_10, float Ps_10, float Off_20, float Ps_20,
float I0Dummy, float I0DDummy,
float * I1Data, float * E1Data,
int I1Dim_1, int I1Dim_2,
float Off_11, float Ps_11, float Off_21, float Ps_21,
float I1Dummy, float I1DDummy,
float Wcenter_1, float Wcenter_2,
int vsum, int ave, int testbit, int * pstatus )
{
float *pI0Data, *pE0Data;
float I1Value, I1Sum, I1Weight, I1CircleSum, I1CircleSumWeight;
float E1Value, E1Sum, E1Weight, E1CircleSum, E1CircleSumWeight;
int i_1, i_2;
float W_1, W_2;
float f_11, f_21;
float DDAngle, DAngle, Angle, Radius;
int NAngle, iangle;
float MinRadius, MaxRadius, MinAngle, MaxAngle;
float NormAngle;
float VarDDummy=DDSET(VarDummy);
float factor;
int cnt, varcnt;
if (pstatus) *pstatus = 0;
/* loop over I0Data */
/*
* Detailed descriptoin by R. Wilcke
* Calculate the number of input image pixels that will have to be averaged
* over for one output image pixel.
*
* Ps_11 and Ps_21 are the input image pixel sizes in x and y direction;
* Ps_10 is the output image pixel size in radial direction, it is set to
* be the smaller one of the input image sizes in x and y direction;
* Ps_20 is the output image pixel size in angular direction, this is an
* input parameter of the routine.
*
* The size of an "unit" pixel is therefore Ps_11 * Ps_21 (= dx * dy) in
* the input image and Ps_10 * Ps_20 (= dr * da) in the output image.
*
* However, dx * dy is the same area over the whole image, whereas dr * da is
* smaller for small values of r and bigger for big values of r.
*
* The area corresponding to dr * da at a given value of r is F = r * dr *
* da.
* Therefore, the number of input image pixels that will fit into an "unit"
* output pixel is
* N = F / (dx * dy), or because of the definition of dr
* N = r * da / MAX(dx,dy)
*
* This is therefore the number of input image pixels that will have to be
* averaged over for one output pixel. The actual value used (variable NAngle
* further below) is an overestimate of this, to make sure that all possible
* input pixels are actually taken into account.
*
* DDAngle is an intermediate variable, it corresponds to the number of input
* image pixels at r = 1. It will be used to calculate NAngle later.
*/
DDAngle = Ps_20/(MIN2(Ps_11,Ps_21));
if (testbit) printf("DDAngle = % g_deg\n", DDAngle * rad2deg);
/*
* Calculate the minimum and maximum radius and angle
* values for the input image.
*/
MinRadius = angle_limits( 1, I1Dim_1, I1Dim_2,
Off_11, Ps_11, Off_21, Ps_21, Wcenter_1, Wcenter_2 );
MaxRadius = angle_limits( 2, I1Dim_1, I1Dim_2,
Off_11, Ps_11, Off_21, Ps_21, Wcenter_1, Wcenter_2 );
MinAngle = angle_limits( -1, I1Dim_1, I1Dim_2,
Off_11, Ps_11, Off_21, Ps_21, Wcenter_1, Wcenter_2 );
MaxAngle = angle_limits( -2, I1Dim_1, I1Dim_2,
Off_11, Ps_11, Off_21, Ps_21, Wcenter_1, Wcenter_2 );
if (testbit)
printf("MinRadius=%g, MaxRadius=%g, MinAngle=%g_deg, MaxAngle=%g_deg\n",
MinRadius, MaxRadius, MinAngle*rad2deg, MaxAngle*rad2deg );
/*
* Loop over the output array.
*
* The outer loop goes over the radius, the inner one over the angle.
* Radial values outside the requested range are skipped.
*
* Attention:
* - all values of the output array must have been preset with the value
* "I0Dummy"
*/
for (i_1=0;i_1<I0Dim_1;i_1++) {
Radius = WORLD(i_1,Off_10,Ps_10);
if ( Radius > MaxRadius || Radius < MinRadius )
continue;
/* number of angular intervals for averaging */
NAngle = MAX2(1,(int) (DDAngle * Radius) + 1 );
DAngle = Ps_20/(float) NAngle;
if (testbit>1)
printf("%d: Radius=%g, NAngle=%d, DAngle=%g_deg\n",
i_1,Radius,NAngle,DAngle*rad2deg);
for (i_2=0;i_2<I0Dim_2;i_2++) {
Angle = WORLD((LOWERBORDER+(float)i_2),Off_20,Ps_20) + DAngle*0.5;
if ( Angle > MaxAngle || Angle < MinAngle ) {
/* MinAngle and MaxAngle are normalized angles between [0..2*pi],
check also the normalized angle */
NormAngle = Angle-floor(Angle/twopi)*twopi;
if ( MinAngle <= MaxAngle ) {
// check, whether the angle is outside [MinAngle..MaxAngle]
if ( NormAngle > MaxAngle || NormAngle < MinAngle ) continue;
} else {
// check, whether the angle is inside [MaxAngle..MinAngle]
if ( NormAngle < MaxAngle && NormAngle > MinAngle ) continue;
}
}
/* angular averaging */
cnt = 0;
varcnt = 0;
I1CircleSum = 0.0; I1CircleSumWeight = 0.0;
E1CircleSum = 0.0; E1CircleSumWeight = 0.0;
for (iangle = 0; iangle<NAngle; iangle++) {
W_1 = Radius * cos( Angle ) + Wcenter_1;
W_2 = Radius * sin( Angle ) + Wcenter_2;
f_11 = INDEX(W_1,Off_11,Ps_11);
f_21 = INDEX(W_2,Off_21,Ps_21);
if ( E0Data ) {
// V0 = V1
if ( Isum2ldwE(I1Data,E1Data,I1Dim_1,I1Dim_2,I1Dummy,I1DDummy,
f_11-0.5, f_21-0.5, f_11+0.5, f_21+0.5,
&I1Sum, &I1Weight, &E1Sum, &E1Weight) ) {
/* then do something with the data */
I1CircleSum += I1Sum;
I1CircleSumWeight += I1Weight;
if ( E1Sum >= 0.0 ) {
E1CircleSum += E1Sum;
E1CircleSumWeight += E1Weight;
varcnt++;
}
cnt++;
} /* if Isum2ldwE ... */
} else {
if (Ipol2ldw (I1Data,I1Dim_1,I1Dim_2,I1Dummy,I1DDummy,
f_11, f_21, &I1Sum, &I1Weight)) {
/* then do something with the data */
I1CircleSum += I1Sum;
I1CircleSumWeight += I1Weight;
cnt++;
} /* if Ipol2ld ... */
}
Angle += DAngle;
} /* for */
if (cnt>0) {
pI0Data = ABSPTR(I0Data,I0Dim_1,I0Dim_2,i_1,i_2);
pE0Data = E0Data-I0Data+pI0Data;
/* The following factor adjusts the size of a rectangular pixel with
the size Ps_11*Ps_21 to a circular pixel with height Ps_10
and width Radius*DAngle */
factor = (Radius*DAngle*Ps_10)/(Ps_11*Ps_21);
I1CircleSum *= factor; I1CircleSumWeight *= factor;
E1CircleSum *= factor; E1CircleSumWeight *= factor;
I1Value = I1CircleSum; if (ave) I1Value /= I1CircleSumWeight;
if ( E0Data && ( varcnt==cnt ) ) {
E1Value = E1CircleSum;
if (ave) E1Value /= E1CircleSumWeight*E1CircleSumWeight;
/* Take into account that the data was averaged in a sector */
} else E1Value = -1.0;
if (vsum) {
/* Multiply with number of covered pixels */
factor = I1CircleSumWeight;
I1Value *= I1CircleSumWeight;
if ( E1Value>=0 ) E1Value *= I1CircleSumWeight*I1CircleSumWeight;
}
UPDATE( *pI0Data, I1Value, I0Dummy, I0DDummy );
if ( E0Data && ( E1Value>=0.0 ) ) {
UPDATE( *pE0Data, E1Value, VarDummy, VarDDummy );
}
}
/* end angular averaging */
} /* for i_2 ... */
} /* for i_1 ... */
} /* angle_sum */
|