1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
|
/*
* Project: The SPD Image correction and azimuthal regrouping
* http://forge.epn-campus.eu/projects/show/azimuthal
*
* Copyright (C) 2005-2010 European Synchrotron Radiation Facility
* Grenoble, France
*
* Principal authors: P. Boesecke (boesecke@esrf.fr)
* R. Wilcke (wilcke@esrf.fr)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* and the GNU Lesser General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*/
# define ARC_VERSION "arc : V1.9 Peter Boesecke 2011-06-28"
/*+++------------------------------------------------------------------------
NAME
arc --- routines for arc and ang averaging
SYNOPSIS
# include arc.h
HISTORY
2005-10-28 V1.0 Peter Boesecke
2007-04-19 V1.2 PB -Wall compiler warnings resolved
2009-10-02 V1.3 PB arc_lfactor moved to SaxsRoutines,
Success -> 0, SaxsArc -> arc
include only ipol.h and reference.h
2010-03-05 V1.4 PB Problems averaging in a single step:
ang_sum, arc_sum: limits, steps etc. improved,
angular range limited to 360 degrees,
ang_sum: averaging in a single step possible
2010-03-19 V1.5 PB ang_limits parameter changed to use waxs_Range.
ang_range, waxs included
2010-03-20 V1.6 PB ang_limits: condition for min_angle corrected
2010-05-31 V1.7 PB update for waxs.c V1.10
2010-06-02 V1.8 PB maximum regrouping range 360_deg, splitted
in 3 ranges
2011-06-28 V1.9 PB waxs_get_transform and waxs_Transform updated
----------------------------------------------------------------------------*/
/******************************************************************************
* Include Files *
******************************************************************************/
# include "arc.h"
/******************************************************************************
* Private Constants *
******************************************************************************/
static const double arc_rad2deg = 180.0/NUM_PI;
static const double arc_radius_eps = 1e-32;
static const double arc_angle_eps = 1e-32;
static const float arc_twopi = 2.0*NUM_PI;
/******************************************************************************
* Private Definitions *
******************************************************************************/
# define CALC_DIST(A) sqrt((A[0])*(A[0])+(A[1])*(A[1]))
/******************************************************************************
* Routines *
******************************************************************************/
/*+++------------------------------------------------------------------------
NAME
ang_range
SYNOPSIS
int ang_range( int rsys, int proin, int proout,
long dim_1, long dim_2,
float off_1, float pix_1, float cen_1,
float off_2, float pix_2, float cen_2,
float dis, float wvl,
float detrot1, float detrot2, float detrot3,
WaxsCoord *Wmin, WaxsCoord *Wmax, int * pstatus);
DESCRIPTION
Returns the maximum and minimum world coordinates of the cartesian
input image in referecne system rsys. A transformation from
Saxs to Waxs or vice versa is only done if the reference system
rsys is IO_Saxs. In all other cases proin and proout are ignored.
Wmin.s_1 : Wmin_1
Wmin.s_2 : Wmin_2
Wmax.s_1 : Wmax_1
Wmax.s_2 : Wmax_2
RETURN VALUE
-1: inverse projection transformation (WAXS->SAXS)
0: no transformation
1: normal projection transformation (SAXS->WAXS)
-------------------------------------------------------------------------+*/
int ang_range( int rsys, int proin, int proout,
long dim_1, long dim_2,
float off_1, float pix_1, float cen_1,
float off_2, float pix_2, float cen_2,
float dis, float wvl,
float detrot1, float detrot2, float detrot3,
WaxsCoord *Wmin, WaxsCoord *Wmax, int * pstatus)
{
float Off_11, Off_21;
float Ps_11, Ps_21;
float f10, f20, f11, f21;
double K=1.0, rot1=0.0, rot2=0.0, rot3=0.0;
WParams I1params, I0params;
int transform=0; // no transformation
int status=0;
if (pstatus) *pstatus = status;
/* Use waxs_Transform only if reference system is Saxs and if either the
input or the output image is in Saxs projection, but not if both images
are in Saxs projection and the rotations are Zero. */
if ( (rsys==IO_Saxs)&&((proin==IO_ProSaxs)||(proout==IO_ProSaxs))
&&(!((proin==proout)&&(detrot1==0.0)&&(detrot2==0.0)&&(detrot3==0.0))) ) {
K = (double) WAVENUMBER(wvl);
rot1 = (double) detrot1;
rot2 = (double) detrot2;
rot3 = (double) detrot3;
waxs_Init ( &I1params, K, rot1, rot2, rot3 );
waxs_Init ( &I0params, K, 0.0, 0.0, 0.0 );
/* Get coordinate range */
transform=waxs_Range( &I1params, &I0params,
proin, proout,
dim_1, dim_2,
off_1, pix_1, cen_1,
off_2, pix_2, cen_2,
dis, wvl,
Wmin, Wmax, &status);
if (status) goto ang_range_error;
} else {
/* Get world coordinate range of input image */
switch (rsys) {
case IO_Saxs:
// SAXSREF(Off,Ps,O,P,C,S,W)
SAXSREF(Off_11,Ps_11,off_1,pix_1,cen_1,dis,wvl);
SAXSREF(Off_21,Ps_21,off_2,pix_2,cen_2,dis,wvl);
break;
case IO_Normal:
NORMALREF(Off_11,Ps_11,off_1,pix_1,cen_1);
NORMALREF(Off_21,Ps_21,off_2,pix_2,cen_2);
break;
default:
status=-1;
goto ang_range_error;
}
f10 = f20 = A2INDEX(ARRAYSTART+LOWERBORDER);
f11 = A2INDEX(ARRAYSTART+LOWERBORDER+dim_1);
f21 = A2INDEX(ARRAYSTART+LOWERBORDER+dim_2);
if (Wmin) {
Wmin->s_1 = WORLD(f10,Off_11,Ps_11); // W1min_1
Wmin->s_2 = WORLD(f20,Off_21,Ps_21); // W1min_2
}
if (Wmax) {
Wmax->s_1 = WORLD(f11,Off_11,Ps_11); // W1max_1
Wmax->s_2 = WORLD(f21,Off_21,Ps_21); // W1max_2
}
}
return ( transform );
ang_range_error:
if (pstatus) *pstatus = status;
return ( transform );
} // ang_range
/*+++------------------------------------------------------------------------
NAME
ang_limits
SYNOPSIS
void ang_limits( WaxsCoord Wmin, WaxsCoord Wmax,
WaxsCoord *Amin, WaxsCoord *Amax,
int * pstatus);
DESCRIPTION
Returns the maximum and minimum distances of the output image.
The returned distances are absolute values in world distances,
the angles are returned in radian.
Amin.s_1 : minimum radius
Amax.s_1 : maximum radius
Amin.s_2 : minimum angle
Amax.s_2 : maximum angle
| |
| |
G | H | I
| |
_________|_________|_________
edge4| |edge3
| |
D | E | F
| |
_________|_________|_________
edge1| |edge2
| |
A | B | C
| |
| |
RETURN VALUE
void
-------------------------------------------------------------------------+*/
void ang_limits( WaxsCoord Wmin, WaxsCoord Wmax,
WaxsCoord *Amin, WaxsCoord *Amax,
int * pstatus)
{
float edge1[2], edge2[2], edge3[2], edge4[2];
float dist1, dist2, dist3, dist4;
float min_radius, max_radius, min_angle, max_angle;
if (*pstatus) pstatus=0;
edge1[0] = Wmin.s_1; // WORLD(i10,Off_11,Ps_11);
edge1[1] = Wmin.s_2; // WORLD(i20,Off_21,Ps_21);
edge2[0] = Wmax.s_1; // WORLD(i11,Off_11,Ps_11);
edge2[1] = Wmin.s_2; // edge1[1];
edge3[0] = Wmax.s_1; // edge2[0];
edge3[1] = Wmax.s_2; // WORLD(i21,Off_21,Ps_21);
edge4[0] = Wmin.s_1; // edge1[0];
edge4[1] = Wmax.s_2; // edge3[1];
dist1 = CALC_DIST(edge1);
dist2 = CALC_DIST(edge2);
dist3 = CALC_DIST(edge3);
dist4 = CALC_DIST(edge4);
if ( 0.0 < edge1[0] ) {
// A, D, G
if ( 0.0 < edge1[1] ) {
// A
min_radius = dist1;
max_radius = dist3;
min_angle = atan2(edge2[1],edge2[0]);
max_angle = atan2(edge4[1],edge4[0]);
} else {
if ( 0.0 < edge4[1] ) {
// D
min_radius = edge1[0];
max_radius = MAX2(dist2,dist3);
min_angle = atan2(edge1[1],edge1[0]);
max_angle = atan2(edge4[1],edge4[0]);
} else {
// G
min_radius = dist4;
max_radius = dist2;
min_angle = atan2(edge1[1],edge1[0]);
max_angle = atan2(edge3[1],edge3[0]);
}
}
} else {
if ( 0.0 < edge2[0] ) {
// B, E, H
if ( 0.0 < edge2[1] ) {
// B
min_radius = edge1[1];
max_radius = MAX2(dist4,dist3);
min_angle = atan2(edge2[1],edge2[0]);
max_angle = atan2(edge1[1],edge1[0]);
} else {
if ( 0.0 < edge3[1] ) {
// E
min_radius = 0.0;
max_radius = MAX4(dist1, dist2, dist3, dist4);
min_angle = 0.0;
max_angle = arc_twopi;
} else {
// H
min_radius = -edge3[1];
max_radius = MAX2(dist1,dist2);
min_angle = atan2(edge4[1],edge4[0]);
max_angle = atan2(edge3[1],edge3[0]);
}
}
} else {
// C, F, I
if ( 0.0 < edge2[1] ) {
// C
min_radius = dist2;
max_radius = dist4;
min_angle = atan2(edge3[1],edge3[0]);
max_angle = atan2(edge1[1],edge1[0]);
} else {
if ( 0.0 < edge3[1] ) {
// F
min_radius = -edge2[0];
max_radius = MAX2(dist1,dist4);
min_angle = atan2(edge3[1],edge3[0]);
max_angle = atan2(edge2[1],edge2[0]);
} else {
// I
min_radius = dist3;
max_radius = dist1;
min_angle = atan2(edge4[1],edge4[0]);
max_angle = atan2(edge2[1],edge2[0]);
}
}
}
}
// output range of angles is [0..2*pi]
if ( max_angle<min_angle ) max_angle += arc_twopi;
if ( (min_angle<-arc_angle_eps)||(max_angle<=0.0) ) {
min_angle += arc_twopi; max_angle += arc_twopi;
}
if (Amin) {
Amin->s_1 = min_radius; // minimum radius
Amin->s_2 = min_angle; // minimum angle
}
if (Amax) {
Amax->s_1 = max_radius; // maximum radius
Amax->s_2 = max_angle; // maximum angle
}
return;
} // ang_limits
/*---------------------------------------------------------------------------
NAME
arc_sum --- Regrouping of an image from cartesian to radius/arc
SYNOPSIS
void arc_sum ( int rsys,
float * I0Data, float * E0Data,
int I0Dim_1, int I0Dim_2,
float I0Offset_1, float I0PSize_1, float I0Center_1,
float I0Offset_2, float I0PSize_2, float I0Center_2,
float I0SampleDistance, float I0WaveLength,
int I0Pro,
float I0Dummy, float I0DDummy,
float * I1Data, float * E1Data,
int I1Dim_1, int I1Dim_2,
float I1Offset_1, float I1PSize_1, float I1Center_1,
float I1Offset_2, float I1PSize_2, float I1Center_2,
float I1SampleDistance, float I1WaveLength,
float I1DetRot1, float I1DetRot2, float I1DetRot3,
int I1Pro,
float I1Dummy, float I1DDummy,
float AngleMin, float AngleMax,
float Shift_1, float Shift_2,
int vsum, int ave, int testbit, int * pstatus );
PURPOSE
Regrouping of an image radius/arc
DESCRIPTION
The routine regroupes an input image with cartesian coordinates w_1 and w_2
to an image with coordinates radius and arc. The input image is described
with Normal (Offset, Center, PSize) or Saxs coordinates (Offset, Center,
PSize, SampleDistance, WaveLength). Axis 1 of the regrouped image is the
radius, axis 2 the arc. The reference system of output axis 2 is always Normal.
The regrouping is done in the sector between AngleMin and AngleMax. If
AngleMin >= AngleMax nothing is done. AngleMax is limited to AngleMin+2*pi.
The part of the output image outside this range is left unchanged.
(w_1, w_2) -> (radius,arc)
with radius = sqrt(w_1^2+w_2^2), arc = radius*Angle and
cos(Angle)=w_1/radius, sin(Angle)=w_2/radius.
ARGUMENTS
int rsys (i) : reference system
float * I0Data (o) : output image data
float * E0Data (o) : output variance data (ignored if NULL)
int I0Dim_1, (i) :
I0Dim_2 (i) : dimensions of output data arrays
float I0Offset_1,
I0PSize_1,
I0Center_1,
I0Offset_2,
I0Center_2,
I0PSize_2 (i) : output image parameters
I0SampleDistance (i) :
I0WaveLength (i) :
I0Pro () : projection type of input image
float I0Dummy,
I0DDummy (i) : output image dummy definition
float * I1Data (i) : input image data
float * E1Data (i) : input variance data (ignored if NULL)
int I1Dim_1,
I1Dim_2 (i) : dimensions of input data arrays
float I1Offset_1,
I1PSize_1,
I1Center_1,
I1Offset_2,
I1PSize_2,
I1Center_2 (i) : input image parameters
I1SampleDistance (i) :
I1WaveLength (i) :
I1DetRot1,
I1DetRot1,
I1DetRot1 (i) : detector rotations (in radian)
I1Pro () : projection type of output image
float AngleMin,
AngleMax (i) : angular range (in rad)
float Shift_1,
Shift_2 (i) : shift of the output image along axis 1 and 2.
The shift is usually 0.
int vsum (i) : if 1, integrate output values
int ave (i) : if 1, average input values
int testbit (i) : if 1, write debug info
int *pstatus (o) : returned status value
---------------------------------------------------------------------------*/
void arc_sum ( int rsys,
float * I0Data, float * E0Data,
int I0Dim_1, int I0Dim_2,
float I0Offset_1, float I0PSize_1, float I0Center_1,
float I0Offset_2, float I0PSize_2, float I0Center_2,
float I0SampleDistance, float I0WaveLength,
int I0Pro,
float I0Dummy, float I0DDummy,
float * I1Data, float * E1Data,
int I1Dim_1, int I1Dim_2,
float I1Offset_1, float I1PSize_1, float I1Center_1,
float I1Offset_2, float I1PSize_2, float I1Center_2,
float I1SampleDistance, float I1WaveLength,
float I1DetRot1, float I1DetRot2, float I1DetRot3,
int I1Pro,
float I1Dummy, float I1DDummy,
float AngleMin, float AngleMax,
float Shift_1, float Shift_2,
int vsum, int ave, int testbit, int * pstatus )
{
float *pI0Data, *pE0Data;
float Off_10, Ps_10, Off_20, Ps_20;
float Off_11, Ps_11, Off_21, Ps_21;
float I1Value, I1Sum, I1Weight, I1ArcSum, I1ArcSumWeight;
float E1Value, E1Sum, E1Weight, E1ArcSum, E1ArcSumWeight;
double K=1.0, rot1=0.0, rot2=0.0, rot3=0.0;
WParams I1params, I0params;
float Angle, DAngle, AngleLower, AngleUpper;
float MinArc, MaxArc;
float AngleFst, AngleLst;
float MinRadius, MaxRadius, MinAngle, MaxAngle;
float W0_2Fst, W0_2Lst;
float W0_2Min, W0_2Max;
WaxsCoord W1min, W1max, A1min, A1max;
WaxsCoord W0, W1;
int transform=0;
int i_1, i_2;
int i_20, i_22;
float f_11, f_21;
float DDArc, DArc, Arc, Radius;
int NArc, iarc;
float VarDDummy=DDSET(VarDummy);
float factor;
int cnt, varcnt;
int status=0;
if (testbit) printf("arc_sum: AngleMin=% g_deg, AngleMax=% g_deg\n",
AngleMin*arc_rad2deg,AngleMax*arc_rad2deg);
/* Calculate pixel transformations */
switch (rsys) {
case IO_Normal:
if (testbit) printf("arc_sum: The reference system is NORMAL\n");
NORMALREF(Off_11,Ps_11,I1Offset_1,I1PSize_1,I1Center_1);
NORMALREF(Off_21,Ps_21,I1Offset_2,I1PSize_2,I1Center_2);
NORMALREF(Off_10,Ps_10,I0Offset_1,I0PSize_1,I0Center_1);
NORMALREF(Off_20,Ps_20,I0Offset_2,I0PSize_2,I0Center_2);
break;
case IO_Saxs:
if (testbit) printf("arc_sum: The reference system is SAXS\n");
SAXSREF(Off_11,Ps_11,I1Offset_1,I1PSize_1,I1Center_1,I1SampleDistance,I1WaveLength);
SAXSREF(Off_21,Ps_21,I1Offset_2,I1PSize_2,I1Center_2,I1SampleDistance,I1WaveLength);
SAXSREF(Off_10,Ps_10,I0Offset_1,I0PSize_1,I0Center_1,I0SampleDistance,I0WaveLength);
SAXSREF(Off_20,Ps_20,I0Offset_2,I0PSize_2,I0Center_2,I0SampleDistance,I0WaveLength);
break;
default:
fprintf(stderr,"ERROR: The reference system is neither NORMAL nor SAXS (%d)\n",rsys);
status=-1;
goto arc_sum_error;
}
/* Subtract output shift for calculation */
Off_10 = Off_10-Shift_1; Off_20 = Off_20-Shift_2;
if (testbit) {
printf("arc_sum: Off_10 = % f, Ps_10 = % f\n", Off_10,Ps_10);
printf("arc_sum: Off_20 = % f, Ps_20 = % f\n", Off_20,Ps_20);
}
/* loop over I0Data */
/*
* Calculate the number of input image pixels that will have to be averaged
* over for one output image pixel.
*
* Ps_11 and Ps_21 are the input image pixel sizes in x and y direction;
* Ps_10 is the output image pixel size in radial direction, it is set to
* be the smaller one of the input image sizes in x and y direction;
* Ps_20 is the output image pixel size in angular direction, this is an
* input parameter of the routine.
*
* The size of an "unit" pixel is therefore Ps_11 * Ps_21 (= dx * dy) in
* the input image and Ps_10 * Ps_20 (= dr * da) in the output image.
*
* However, dx * dy is the same area over the whole image, whereas dr * da is
* smaller for small values of r and bigger for big values of r.
*
* The area corresponding to dr * da at a given value of r is F = r * dr *
* da.
* Therefore, the number of input image pixels that will fit into an "unit"
* output pixel is
* N = F / (dx * dy), or because of the definition of dr
* N = r * da / MAX(dx,dy)
*
* This is therefore the number of input image pixels that will have to be
* averaged over for one output pixel. The actual value used (variable NAngle
* further below) is an overestimate of this, to make sure that all possible
* input pixels are actually taken into account.
*
* DDArc is an intermediate variable, it corresponds to the number of input
* image pixels at r = 1. It will be used to calculate NArc later.
*/
DDArc = Ps_20/(MIN2(Ps_11,Ps_21));
if (testbit) printf("arc_sum: DDArc = % g_deg\n", DDArc * arc_rad2deg);
/*
* Calculate the minimum and maximum arc values for the input image.
* The dimensions of the output image should have been adjusted with
* ang_limits
*/
transform = ang_range( rsys, I1Pro, I0Pro,
I1Dim_1, I1Dim_2,
I1Offset_1,I1PSize_1,I1Center_1,
I1Offset_2,I1PSize_2,I1Center_2,
I1SampleDistance, I1WaveLength,
I1DetRot1, I1DetRot2, I1DetRot3,
&W1min, &W1max, &status);
if (status) goto arc_sum_error;
if (testbit) {
printf("arc_sum: W1min_1=%g, W1max_1=%g\n", W1min.s_1,W1max.s_1);
printf("arc_sum: W1min_2=%g, W1max_2=%g\n", W1min.s_2,W1max.s_2);
printf("arc_sum: transform=%d\n",transform);
}
ang_limits( W1min, W1max, &A1min, &A1max, &status);
if (status) goto arc_sum_error;
if (testbit) {
printf("arc_sum: A1min.s_1=%lg , A1max.s_1=%lg\n",
A1min.s_1,A1max.s_1);
printf("arc_sum: A1min.s_2=%lg_deg, A1max.s_2=%lg_deg\n",
A1min.s_2*arc_rad2deg,A1max.s_2*arc_rad2deg);
}
MinRadius = A1min.s_1;
MaxRadius = A1max.s_1;
MinAngle = A1min.s_2 + floor(AngleMin/arc_twopi)*arc_twopi;
MaxAngle = A1max.s_2 + floor(AngleMin/arc_twopi)*arc_twopi;
// Calculate coordinate range of Arc in output image
W0_2Fst = WORLD(INDEXSTART+LOWERBORDER,Off_20,Ps_20);
W0_2Lst = WORLD(INDEXSTART+LOWERBORDER+I0Dim_2,Off_20,Ps_20);
if (W0_2Fst <= W0_2Lst) {
W0_2Min = W0_2Fst; W0_2Max = W0_2Lst;
} else {
W0_2Min = W0_2Lst; W0_2Max = W0_2Fst;
}
/* maximum range is AngleMin+2_pi*/
AngleFst = MAX2(AngleMin,MinAngle);
AngleLst = MIN2(AngleMax,MaxAngle);
if (testbit) {
printf("arc_sum: W0_2Min=%g_deg, W0_2Max=%g_deg\n",W0_2Min*arc_rad2deg,W0_2Max*arc_rad2deg);
printf("arc_sum: MinRadius=%g, MaxRadius=%g, MinAngle=%g_deg, MaxAngle=%g_deg\n",
MinRadius, MaxRadius, MinAngle*arc_rad2deg, MaxAngle*arc_rad2deg );
printf("AngleFst=%g_deg, AngleLst=%g_deg\n",
AngleFst*arc_rad2deg, AngleLst*arc_rad2deg );
}
K = (double) WAVENUMBER(I1WaveLength);
rot1 = (double) I1DetRot1;
rot2 = (double) I1DetRot2;
rot3 = (double) I1DetRot3;
waxs_Init ( &I1params, K, rot1, rot2, rot3 );
waxs_Init ( &I0params, K, 0.0, 0.0, 0.0 );
if (testbit) {
printf("I0params\n");
waxs_PrintParams ( stdout, I0params );
printf("I1params\n");
waxs_PrintParams ( stdout, I1params );
}
if (AngleFst < AngleLst) {
/* MinArc and MaxArc depend on the actual radius, i.e. on i_1 */
for (i_1=0;i_1<I0Dim_1;i_1++) {
Radius = WORLD(i_1,Off_10,Ps_10);
if ( Radius > MaxRadius || Radius < MinRadius ) continue;
if (testbit) printf("arc_sum: AngleFst=%g_deg, AngleLst=%g_deg\n",
AngleFst*arc_rad2deg, AngleLst*arc_rad2deg );
if (Radius >= 0 ) {
MinArc = MAX2(Radius*AngleFst,W0_2Min);
MaxArc = MIN2(Radius*AngleLst,W0_2Max);
} else {
MinArc = MAX2(Radius*AngleFst,W0_2Min);
MaxArc = MIN2(Radius*AngleLst,W0_2Max);
}
i_20=MAX2(0,floor(INDEX(MinArc,Off_20,Ps_20)-LOWERBORDER)); // first pixel in range
i_22=MIN2(I0Dim_2,ceil(INDEX(MaxArc,Off_20,Ps_20)-LOWERBORDER)); // first pixel after range
if (testbit>1) {
printf("arc_sum: MinArc=%g, MaxArc=%g\n",MinArc*arc_rad2deg,MaxArc*arc_rad2deg);
printf("arc_sum: i_20=%d, i_22=%d\n",i_20,i_22);
}
/* number of intervals on the arc for averaging */
NArc = MAX2(1,(int) DDArc + 1 );
DArc = Ps_20/(float) NArc;
if (testbit>1)
printf("arc_sum: %d: Radius=%g, NArc=%d, DArc=%g\n",
i_1,Radius,NArc,DArc * arc_rad2deg);
for (i_2=i_20;i_2<i_22;i_2++) {
// Calculate center of first pixel
Arc = WORLD(((float)i_2),Off_20,Ps_20);
/* averaging on the arc */
if ( Radius >= arc_radius_eps ) {
DAngle = DArc/Radius;
AngleLower = WORLD(((float)i_2+LOWERBORDER),Off_20,Ps_20)/Radius; // lower limit
AngleUpper = WORLD(((float)i_2+1+LOWERBORDER),Off_20,Ps_20)/Radius; // upper limit
// restrict integration range to [AngleFst..AngleLst];
AngleLower = MAX2(AngleFst,AngleLower);
AngleUpper = MIN2(AngleLst,AngleUpper);
} else {
DAngle = 0.0;
AngleLower = AngleFst;
AngleUpper = AngleLst;
}
if (testbit>2) {
printf("arc_sum: %d,%d: Arc=%g, MinArc=%g_deg, MaxArc=%g_deg\n",
i_1,i_2,Arc * arc_rad2deg,MinArc * arc_rad2deg,MaxArc * arc_rad2deg);
printf("arc_sum: %d,%d: AngleLower=%g_deg, AngleUpper=%g_deg\n",
i_1,i_2,AngleLower*arc_rad2deg,AngleUpper*arc_rad2deg);
}
cnt = 0;
varcnt = 0;
I1ArcSum = 0.0; I1ArcSumWeight = 0.0;
E1ArcSum = 0.0; E1ArcSumWeight = 0.0;
for (iarc = 0; iarc<NArc; iarc++) {
if ( Radius >= arc_radius_eps ) {
Angle = Arc/Radius;
W0.s_1 = Radius * cos( Angle ); // W_1
W0.s_2 = Radius * sin( Angle ); // W_2
} else {
Angle = 0.0;
W0.s_1 = 0.0; // W_1
W0.s_2 = 0.0; // W_2
}
/* transform saxs-coordinate of unrotated detector (I0params) or Waxs-
projection to saxs-coordinate of rotated detector (I1params) */
//++++++++ W1 = waxs_Transform( &I1params, &I0params, transform, W0 );
W1 = waxs_Transform( &I0params, &I1params, transform, W0 );
if (!W1.status) {
/* averaging range is [AngleFst..AngleLst] */
if ( ( Angle < AngleLower ) || ( AngleUpper < Angle ) ) {
if (testbit>3)
printf("arc_sum: iarc=%d: Angle=%g_deg not in [%g_deg..%g_deg] => continue\n",
iarc,Angle*arc_rad2deg,AngleLower*arc_rad2deg,AngleUpper*arc_rad2deg);
Arc += DArc;
continue;
}
f_11 = INDEX(W1.s_1,Off_11,Ps_11);
f_21 = INDEX(W1.s_2,Off_21,Ps_21);
if ( E0Data ) {
// V0 = V1
if ( Isum2ldwE(I1Data,E1Data,I1Dim_1,I1Dim_2,I1Dummy,I1DDummy,
f_11-0.5, f_21-0.5, f_11+0.5, f_21+0.5,
&I1Sum, &I1Weight, &E1Sum, &E1Weight) ) {
/* then do something with the data */
I1ArcSum += I1Sum;
I1ArcSumWeight += I1Weight;
if ( E1Sum >= 0.0 ) {
E1ArcSum += E1Sum;
E1ArcSumWeight += E1Weight;
varcnt++;
}
cnt++;
} /* if Isum2ldwE ... */
} else {
if ( Isum2ldw(I1Data,I1Dim_1,I1Dim_2,I1Dummy,I1DDummy,
f_11-0.5, f_21-0.5, f_11+0.5, f_21+0.5,
&I1Sum, &I1Weight) ) {
/* then do something with the data */
I1ArcSum += I1Sum;
I1ArcSumWeight += I1Weight;
cnt++;
} /* if Isum2ldw ... */
}
} // if (!W1.status)
Arc += DArc;
} /* for iarc */
if (cnt>0) {
pI0Data = ABSPTR(I0Data,I0Dim_1,I0Dim_2,i_1,i_2);
pE0Data = E0Data-I0Data+pI0Data;
/* The following factor adjusts the size of a rectangular pixel with
the size Ps_11*Ps_21 to a circular pixel with height Ps_10 and
width DArc */
factor = (DArc*Ps_10)/(Ps_11*Ps_21);
I1ArcSum *= factor; I1ArcSumWeight *= factor;
E1ArcSum *= factor; E1ArcSumWeight *= factor;
I1Value = I1ArcSum; if (ave) I1Value /= I1ArcSumWeight;
if ( E0Data && ( varcnt==cnt ) ) {
E1Value = E1ArcSum;
if (ave) E1Value /= E1ArcSumWeight*E1ArcSumWeight;
/* Take into account that the data was averaged in a sector */
} else E1Value = -1.0;
if (vsum) {
/* Multiply with number of covered pixels */
factor = I1ArcSumWeight;
I1Value *= I1ArcSumWeight;
if ( E1Value>=0 ) E1Value *= I1ArcSumWeight*I1ArcSumWeight;
}
UPDATE( *pI0Data, I1Value, I0Dummy, I0DDummy );
if ( E0Data && ( E1Value>=0.0 ) ) {
UPDATE( *pE0Data, E1Value, VarDummy, VarDDummy );
}
}
/* end angular averaging */
} /* for i_2 ... */
} /* for i_1 ... */
} /* if (AngleFst < AngleLst) */
if (pstatus) *pstatus = status;
return;
arc_sum_error:
if (pstatus) *pstatus = status;
return;
} /* arc_sum */
/*---------------------------------------------------------------------------
NAME
ang_sum --- Regrouping of an image from cartesian to polar coordinates
PURPOSE
Regrouping of an image radius/arc
DESCRIPTION
The routine regroupes an input image with cartesian coordinates w_1 and w_2
to an image with polar coordinates. The input image is described with Normal
coordinates (Offset, Center, PSize) or Saxs coordinates (Offset, Center,
PSize, SampleDistance, WaveLength). Axis 1 of the regrouped image is the
radius, axis 2 the angle. The reference system of output axis 2 is always Normal.
The regrouping is done in the sector between AngleMin and AngleMax. If
AngleMin >= AngleMax nothing is done. AngleMax is limited to AngleMin+2*pi.
The part of the output image outside this range is left unchanged.
(w_1, w_2) -> (radius,angle)
with radius = sqrt(w_1^2+w_2^2) and
cos(Angle)=w_1/radius, sin(Angle)=w_2/radius.
SYNOPSIS
void ang_sum ( int rsys,
float * I0Data, float * E0Data,
int I0Dim_1, int I0Dim_2,
float I0Offset_1, float I0PSize_1, float I0Center_1,
float I0Offset_2, float I0PSize_2, float I0Center_2,
float I0SampleDistance, float I0WaveLength,
int I0Pro,
float I0Dummy, float I0DDummy,
float * I1Data, float * E1Data,
int I1Dim_1, int I1Dim_2,
float I1Offset_1, float I1PSize_1, float I1Center_1,
float I1Offset_2, float I1PSize_2, float I1Center_2,
float I1SampleDistance, float I1WaveLength,
float I1DetRot1, float I1DetRot2, float I1DetRot3,
int I1Pro,
float I1Dummy, float I1DDummy,
float AngleMin, float AngleMax,
float Shift_1, float Shift_2,
int vsum, int ave, int testbit, int * pstatus )
ARGUMENTS
int rsys (i) : reference system
float * I0Data (o) : output image data
float * E0Data (o) : output variance data (ignored if NULL)
int I0Dim_1, (i) :
I0Dim_2 (i) : dimensions of output data arrays
float I0Offset_1,
I0PSize_1,
I0Center_1,
I0Offset_2,
I0Center_2,
I0PSize_2 (i) : output image parameters
I0SampleDistance (i) :
I0WaveLength (i) :
I0Pro () : projection type of input image
float I0Dummy,
I0DDummy (i) : output image dummy definition
float * I1Data (i) : input image data
float * E1Data (i) : input variance data (ignored if NULL)
int I1Dim_1,
I1Dim_2 (i) : dimensions of input data arrays
float I1Offset_1,
I1PSize_1,
I1Center_1,
I1Offset_2,
I1PSize_2,
I1Center_2 (i) : input image parameters
I1SampleDistance (i) :
I1WaveLength (i) :
I1DetRot1,
I1DetRot1,
I1DetRot1 (i) : detector rotations (in radian)
I1Pro () : projection type of output image
float AngleMin,
AngleMax (i) : angular range (in rad)
float Shift_1,
Shift_2 (i) : shift of the output image along axis 1 and 2.
The shift is usually 0.
int vsum (i) : if 1, integrate output values
int ave (i) : if 1, average input values
int testbit (i) : if 1, write debug info
int *pstatus (o) : returned status value
---------------------------------------------------------------------------*/
void ang_sum ( int rsys,
float * I0Data, float * E0Data,
int I0Dim_1, int I0Dim_2,
float I0Offset_1, float I0PSize_1, float I0Center_1,
float I0Offset_2, float I0PSize_2, float I0Center_2,
float I0SampleDistance, float I0WaveLength,
int I0Pro,
float I0Dummy, float I0DDummy,
float * I1Data, float * E1Data,
int I1Dim_1, int I1Dim_2,
float I1Offset_1, float I1PSize_1, float I1Center_1,
float I1Offset_2, float I1PSize_2, float I1Center_2,
float I1SampleDistance, float I1WaveLength,
float I1DetRot1, float I1DetRot2, float I1DetRot3,
int I1Pro,
float I1Dummy, float I1DDummy,
float AngleMin, float AngleMax,
float Shift_1, float Shift_2,
int vsum, int ave, int testbit, int * pstatus )
{
float *pI0Data, *pE0Data;
float Off_10, Ps_10, Off_20, Ps_20;
float Off_11, Ps_11, Off_21, Ps_21;
float I1Value, I1Sum, I1Weight, I1CircleSum, I1CircleSumWeight;
float E1Value, E1Sum, E1Weight, E1CircleSum, E1CircleSumWeight;
double K=1.0, rot1=0.0, rot2=0.0, rot3=0.0;
WParams I1params, I0params;
int i_1, i_2;
int i_10, i_11, i_20, i_22;
float f_11, f_21;
float DDAngle, DAngle, Angle, Radius;
float AngleLower, AngleUpper;
float angle, AngleFst, AngleLst;
int NAngle, iangle, ianglefst, ianglelst;
# define N_RANGES 3
float Fst[N_RANGES], Lst[N_RANGES];
int range;
float MinRadius, MaxRadius, MinAngle, MaxAngle;
WaxsCoord W1min, W1max, A1min, A1max;
WaxsCoord W0, W1;
int transform=0;
float VarDDummy=DDSET(VarDummy);
float factor;
int cnt, varcnt;
int status=0;
/* restrict range to 2 pi */
AngleMax = MIN2(AngleMax,AngleMin+arc_twopi);
if (testbit) {
printf("ang_sum: AngleMin=% g_deg, AngleMax=% g_deg\n",
AngleMin*arc_rad2deg,AngleMax*arc_rad2deg);
}
/* Calculate pixel transformations */
switch (rsys) {
case IO_Normal:
if (testbit) printf("ang_sum: The reference system is NORMAL\n");
NORMALREF(Off_11,Ps_11,I1Offset_1,I1PSize_1,I1Center_1);
NORMALREF(Off_21,Ps_21,I1Offset_2,I1PSize_2,I1Center_2);
NORMALREF(Off_10,Ps_10,I0Offset_1,I0PSize_1,I0Center_1);
NORMALREF(Off_20,Ps_20,I0Offset_2,I0PSize_2,I0Center_2);
break;
case IO_Saxs:
if (testbit) printf("ang_sum: The radial reference system is SAXS, the angular NORMAL\n");
SAXSREF(Off_11,Ps_11,I1Offset_1,I1PSize_1,I1Center_1,I1SampleDistance,I1WaveLength);
SAXSREF(Off_21,Ps_21,I1Offset_2,I1PSize_2,I1Center_2,I1SampleDistance,I1WaveLength);
SAXSREF(Off_10,Ps_10,I0Offset_1,I0PSize_1,I0Center_1,I0SampleDistance,I0WaveLength);
NORMALREF(Off_20,Ps_20,I0Offset_2,I0PSize_2,I0Center_2); // Angle reference is NORMAL
break;
default:
fprintf(stderr,"ERROR: The reference system is neither NORMAL nor SAXS (%d)\n",rsys);
status=-1;
goto ang_sum_error;
}
/* Subtract output shift for calculation */
Off_10 = Off_10-Shift_1; Off_20 = Off_20-Shift_2;
if (testbit) {
printf("ang_sum: Off_10 = % f, Ps_10 = % f\n", Off_10,Ps_10);
printf("ang_sum: Off_20 = % f, Ps_20 = % f\n", Off_20,Ps_20);
}
/*
* Calculate the minimum and maximum arc values for the input image.
* The dimensions of the output image should have been adjusted with
* ang_limits
*/
transform = ang_range( rsys, I1Pro, I0Pro,
I1Dim_1, I1Dim_2,
I1Offset_1,I1PSize_1,I1Center_1,
I1Offset_2,I1PSize_2,I1Center_2,
I1SampleDistance, I1WaveLength,
I1DetRot1, I1DetRot2, I1DetRot3,
&W1min, &W1max, &status);
if (status) goto ang_sum_error;
if (testbit) {
printf("ang_sum: W1min_1=%g, W1max_1=%g\n", W1min.s_1,W1max.s_1);
printf("ang_sum: W1min_2=%g, W1max_2=%g\n", W1min.s_2,W1max.s_2);
printf("ang_sum: transform=%d\n",transform);
}
ang_limits( W1min, W1max, &A1min, &A1max, &status);
if (status) goto ang_sum_error;
if (testbit) {
printf("ang_sum: A1min.s_1=%lg , A1max.s_1=%lg\n",
A1min.s_1,A1max.s_1);
printf("ang_sum: A1min.s_2=%lg_deg, A1max.s_2=%lg_deg\n",
A1min.s_2*arc_rad2deg,A1max.s_2*arc_rad2deg);
}
MinRadius = A1min.s_1;
MaxRadius = A1max.s_1;
MinAngle = A1min.s_2 + floor(AngleMin/arc_twopi)*arc_twopi;
MaxAngle = A1max.s_2 + floor(AngleMin/arc_twopi)*arc_twopi;
if (testbit) {
printf("ang_sum: MinRadius=%g, MaxRadius=%g, MinAngle=%g_deg, MaxAngle=%g_deg\n",
MinRadius, MaxRadius, MinAngle*arc_rad2deg, MaxAngle*arc_rad2deg );
}
/* loop over I0Data */
DDAngle = Ps_20/(MIN2(Ps_11,Ps_21));
if (testbit) printf("ang_sum: DDAngle = % g_deg/m\n",
DDAngle * arc_rad2deg);
K = (double) WAVENUMBER(I1WaveLength);
rot1 = (double) I1DetRot1;
rot2 = (double) I1DetRot2;
rot3 = (double) I1DetRot3;
waxs_Init ( &I1params, K, rot1, rot2, rot3 );
waxs_Init ( &I0params, K, 0.0, 0.0, 0.0 );
if (testbit) {
waxs_PrintParams ( stdout, I1params );
}
// REGROUPING BEGIN {
/* Parameters
Ranges:
Output: AngleMin, AngleMax=MIN2(AngleMin+2_pi,AngleMax)
[AngleMin..AngleMax]
Range1: [AngleFst1=AngleMin..AngleLst1=MIN2(AngleMax,MaxAngle-2_pi)
Range2: [AngleFst2=MAX2(AngleMin,MinAngle)..AngleLst2=MIN2(AngleMax,MaxAngle)]
*/
/* maximum range is AngleMin .. AngleMax */
Fst[0] = MAX2(AngleMin,MinAngle);
Lst[0] = MIN2(AngleMax,MaxAngle);
/* 2nd range, if MaxAngle > AngleMax */
Fst[1] = AngleMin;
Lst[1] = MIN2(Fst[0],MaxAngle-arc_twopi);
/* 3rd range, if MaxAngle > AngleMax */
Fst[2] = MAX2(Lst[0],MinAngle+arc_twopi);
Lst[2] = AngleMax;
for (range=0;range<N_RANGES;range++) {
AngleFst = Fst[range];
AngleLst = Lst[range];
if (testbit) {
printf("ang_sum: AngleFst=%g_deg, AngleLst=%g_deg\n",
AngleFst*arc_rad2deg, AngleLst*arc_rad2deg );
}
if (AngleFst < AngleLst) {
// calculate indices of pixel center from indices of lower and upper edges
i_10=MAX2(0,floor(INDEX(MinRadius,Off_10,Ps_10)-LOWERBORDER+0.5));
i_11=MIN2(I0Dim_1,ceil(INDEX(MaxRadius,Off_10,Ps_10)-LOWERBORDER+0.5));
// calculate indices of pixel center from indices of lower and upper edges
i_20=MAX2(0,floor(INDEX(AngleFst,Off_20,Ps_20)-LOWERBORDER)); // first pixel in range
i_22=MIN2(I0Dim_2,ceil(INDEX(AngleLst,Off_20,Ps_20)-LOWERBORDER)); // first pixel after range
if (testbit>1) {
printf("ang_sum: i_10=%d, i_11=%d\n",i_10,i_11);
printf("ang_sum: i_20=%d, i_22=%d\n",i_20,i_22);
}
for (i_1=i_10;i_1<i_11;i_1++) {
Radius = WORLD(i_1,Off_10,Ps_10);
if ( Radius > MaxRadius || Radius < MinRadius ) continue;
/* number of angular intervals for averaging */
NAngle = MAX2(1,(int) (DDAngle * Radius) + 1 );
DAngle = Ps_20/(float) NAngle;
if (testbit>1)
printf("ang_sum: %d: Radius=%g, NAngle=%d, DAngle=%g_deg\n",
i_1,Radius,NAngle,DAngle*arc_rad2deg);
// the integration range is from [AngleFst..AngleLst];
for (i_2=i_20;i_2<i_22;i_2++) {
// use the center of the angular interval to get the pixel value
Angle = WORLD(((float)i_2),Off_20,Ps_20); // output angle
AngleLower = WORLD(((float)i_2+LOWERBORDER),Off_20,Ps_20); // lower limit
AngleUpper = WORLD(((float)i_2+1+LOWERBORDER),Off_20,Ps_20); // upper limit
// restrict integration range to [AngleFst..AngleLst];
AngleLower = MAX2(AngleFst,AngleLower);
AngleUpper = MIN2(AngleLst,AngleUpper);
if (testbit>2)
printf("ang_sum: %d,%d: Angle=%g_deg, AngleLower=%g_deg, AngleUpper=%g_deg\n",
i_1,i_2,Angle*arc_rad2deg,AngleLower*arc_rad2deg,AngleUpper*arc_rad2deg);
/* angular averaging */
cnt = 0;
varcnt = 0;
I1CircleSum = 0.0; I1CircleSumWeight = 0.0;
E1CircleSum = 0.0; E1CircleSumWeight = 0.0;
// Angle .. Angle+NAngle*DAngle
ianglefst = 0;
ianglelst = floor( (AngleUpper - AngleLower) / DAngle + 0.5);
// the reduced angular range is [AngleLower..AngleUpper]
angle = AngleLower + DAngle*0.5;
if (testbit>2)
printf("ang_sum: %d,%d: angle=%g_deg, ianglefst=%d, ianglelst=%d\n",
i_1,i_2,angle*arc_rad2deg,ianglefst,ianglelst);
// average only in range with valid pixels
for (iangle = ianglefst; iangle<ianglelst; iangle++) {
/* averaging range is [AngleFst..AngleLst] */
if ( ( angle < AngleLower ) || ( AngleUpper < angle ) ) {
if (testbit>3)
printf("ang_sum: iangle=%d: angle=%g_deg not in [%g_deg..%g_deg] => continue\n",
iangle,angle*arc_rad2deg,AngleLower*arc_rad2deg,AngleUpper*arc_rad2deg);
angle += DAngle;
continue;
}
W0.s_1 = Radius * cos( angle );
W0.s_2 = Radius * sin( angle );
/* transform saxs-coordinate of unrotated detector (I0params) or Waxs-
projection to saxs-coordinate of rotated detector (I1params) */
W1 = waxs_Transform( &I0params, &I1params, transform, W0 );
if (!W1.status) {
f_11 = INDEX(W1.s_1,Off_11,Ps_11);
f_21 = INDEX(W1.s_2,Off_21,Ps_21);
if ( E0Data ) {
// V0 = V1
if ( Isum2ldwE(I1Data,E1Data,I1Dim_1,I1Dim_2,I1Dummy,I1DDummy,
f_11-0.5, f_21-0.5, f_11+0.5, f_21+0.5,
&I1Sum, &I1Weight, &E1Sum, &E1Weight) ) {
/* then do something with the data */
I1CircleSum += I1Sum;
I1CircleSumWeight += I1Weight;
if ( E1Sum >= 0.0 ) {
E1CircleSum += E1Sum;
E1CircleSumWeight += E1Weight;
varcnt++;
}
cnt++;
} /* if Isum2ldwE ... */
} else {
if ( Isum2ldw(I1Data,I1Dim_1,I1Dim_2,I1Dummy,I1DDummy,
f_11-0.5, f_21-0.5, f_11+0.5, f_21+0.5,
&I1Sum, &I1Weight) ) {
/* then do something with the data */
I1CircleSum += I1Sum;
I1CircleSumWeight += I1Weight;
cnt++;
} /* if Isum2ldw ... */
}
} // if (!W1.status)
angle += DAngle;
} /* for iangle ... */
if (cnt>0) {
pI0Data = ABSPTR(I0Data,I0Dim_1,I0Dim_2,i_1,i_2);
pE0Data = E0Data-I0Data+pI0Data;
/* The following factor adjusts the size of a rectangular pixel with
the size Ps_11*Ps_21 to a circular pixel with height Ps_10
and width Radius*DAngle */
factor = (Radius*DAngle*Ps_10)/(Ps_11*Ps_21);
I1CircleSum *= factor; I1CircleSumWeight *= factor;
E1CircleSum *= factor; E1CircleSumWeight *= factor;
I1Value = I1CircleSum; if (ave) I1Value /= I1CircleSumWeight;
if ( E0Data && ( varcnt==cnt ) ) {
E1Value = E1CircleSum;
if (ave) E1Value /= E1CircleSumWeight*E1CircleSumWeight;
/* Take into account that the data were averaged in a sector */
} else E1Value = -1.0;
if (vsum) {
/* Multiply with number of covered pixels */
factor = I1CircleSumWeight;
I1Value *= I1CircleSumWeight;
if ( E1Value>=0 ) E1Value *= I1CircleSumWeight*I1CircleSumWeight;
}
UPDATE( *pI0Data, I1Value, I0Dummy, I0DDummy );
if ( E0Data && ( E1Value>=0.0 ) ) {
UPDATE( *pE0Data, E1Value, VarDummy, VarDDummy );
}
}
/* end angular averaging */
} /* for i_2 ... */
} /* for i_1 ... */
} /* if ( AngleFst < AngleLst ) */
} /* for range ... */
// REGROUPING END }
if (pstatus) *pstatus = status;
return;
ang_sum_error:
if (pstatus) *pstatus = status;
return;
} /* ang_sum */
|