1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
|
/*
* Project: The SPD Image correction and azimuthal regrouping
* http://forge.epn-campus.eu/projects/show/azimuthal
*
* Copyright (C) 2005-2010 European Synchrotron Radiation Facility
* Grenoble, France
*
* Principal authors: P. Boesecke (boesecke@esrf.fr)
* R. Wilcke (wilcke@esrf.fr)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* and the GNU Lesser General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*/
# define IPOL_VERSION "ipol : V1.7 Peter Boesecke 2010-09-29"
/*+++------------------------------------------------------------------------
NAME
ipol --- interpolation routines
SYNOPSIS
# include ipol.h
DESCRIPTION
The module does not used externally defined routines and does not need
to be linked to external libraries.
HISTORY
2005-12-04 V1.0 Extracted from SaxsRoutines V1.38
2005-12-09 V1.1 Array and dummy definitions from SaxsDefinitions.
Isum2ldw and Isum2ldwE: IPOL_ANTIALIASED
2006-05-16 V1.2 Isum2ldw and Isum2ldwE: in vicinity to dummies *weight
can be zero if IPOL_ANTIALIASED is set, even if cnt is not
zero. cnt is now explicitely set to 0 if *weight is 0.
2007-02-26 V1.3 IpolRebin2 added
2007-04-19 V1.4 code corrected to avoid compiler warnings with -Wall
2008-05-25 V1.5 Isum2ldwE (calculation of varsum): if VarDat is NULL
pvarval is not incremented and points always to 0,
unused variable pvarstart has been removed.
Isum2ldwEw (weighted sum), Isum2ldwE renamed to Isum2ldwEe.
Isum2ldwE uses Isum2ldwEe or Isum2ldwEw depending on
the switch variable IPolWeight.
2008-05-27 V1.6 IPolMin: minimum coverage ratio of all non-dummy input
pixels to the output pixel.
If IPolMin*the output pixel area is larger than the sum
of all contributing input pixel areas, the calculated
value is rejected (cnt=0).
To do: the weight mode should also be used for rebinning,
probably better: pixels covering regions fully
inside the output pixel should not be rejected, i.e.
that are contributing with 100%.
2010-09-29 V1.7 IDX redefined using floor function
DESCRIPTION
----------------------------------------------------------------------------*/
/******************************************************************************
* Include Files *
******************************************************************************/
# include "ipol.h"
/******************************************************************************
* Private Macros *
******************************************************************************/
/******************************************************************************
* Private Variables *
******************************************************************************/
PRIVATE int IPolMode = IPOL_NORMAL;
PRIVATE int IPolWeight = IPOL_EQUAL;
PRIVATE float IPolMin = 0.5; // Minimum ratio of output to input pixel size
/******************************************************************************
* Routines *
******************************************************************************/
/*---------------------------------------------------------------------------
NAME
Ipolmode --- set/return interpolation mode
DESCRIPTION
Sets the interpolation mode and returns its new value:
IPOL_NORMAL: normal, IPOL_ANTIALIASED: anti-aliased
If the input value is 0 only the current mode is returned.
---------------------------------------------------------------------------*/
int Ipolmode ( int mode )
{ switch (mode ) {
case IPOL_NORMAL: IPolMode = IPOL_NORMAL; break;
case IPOL_ANTIALIASED: IPolMode = IPOL_ANTIALIASED; break;
}
return ( IPolMode );
} /* Ipolmode */
const char *Ipolmode2str ( int mode )
{ switch (mode ) {
case IPOL_NORMAL: return("normal");
case IPOL_ANTIALIASED: return("antialiased");
default: return("undefined");
}
} /* Ipolmode2str */
/*---------------------------------------------------------------------------
NAME
Ipolweight --- set/return weight method
DESCRIPTION
Sets the method of weighting of data points and returns the new value:
IPOL_EQUAL: each data point has equal weight,
IPOL_WEIGHTED: each point is weighted with its inverse variance
If the input value is 0 only the current method is returned.
---------------------------------------------------------------------------*/
int Ipolweight ( int method )
{ switch (method ) {
case IPOL_EQUAL: IPolWeight = IPOL_EQUAL; break;
case IPOL_WEIGHTED: IPolWeight = IPOL_WEIGHTED; break;
}
return ( IPolWeight );
} /* Ipolweight */
const char *Ipolweight2str ( int method )
{ switch (method ) {
case IPOL_EQUAL: return("equal");
case IPOL_WEIGHTED: return("weighted");
default: return("undefined");
}
} /* Ipolweight2str */
/*---------------------------------------------------------------------------
NAME
Ipolmin --- set/return minimum ratio between input and output pixel area
DESCRIPTION
Sets the minimum accepted ratio between input and output pixel area
If not used the default setting is 0.5.
If the input value is negative only the actually used value is returned.
---------------------------------------------------------------------------*/
float Ipolmin ( float minimum )
{ if (minimum>=0.0) IPolMin = minimum;
return ( IPolMin );
} /* Ipolmin */
/*---------------------------------------------------------------------------
NAME
Isum2ldwEw --- Weighted pixel area integral with variance array
PURPOSE
Like Isum2ldwEw but each point is additionally weighted with 1/variance.
DESCRIPTION
The output value "sum" is the weighted area integral of all pixel values in
the region between (f1_1,f1_2) and (f3_1,f3_2). If one of the pixels lies
outside the range of the image or if it is a dummy it is ignored (wi=0):
All pixels are weighted with 1/variance.
If at least one pixel of the sum has zero variance only the pixels with
variance 0 will contribute to the sum according to the covered area.
The output value "varsum" is the area integral of all variance values
in the same region weighted with 1/variance. It is effectively the sum of
all contributing pixels. If the variance value of at least one non-dummy
pixel in the region is negative "varsum" cannot be calculated and is set
to -1.0.
area = (f1_2-f1_1)*(f3_2,f3_1)
sum = vsign * Sum(Ii*wi/Ei)/Mean(1/Ei)
(vsign * Sum(Ii*wi) if one of the Ei is 0)
weight = vsign * Sum(wi/Ei)/Mean(1/Ei)
(vsign * Sum(wi) if one of the Ei is 0)
varsum = Sum(wi)/Mean(1/Ei) (Sum(Ei*wi) if one of the Ei is 0)
or -1.0 if it cannot be calculated
varweight = Sum(wi/Ei)/Mean(1/Ei) (Sum(wi) if one of the Ei is 0)
cnt = number of contributing intensity values
where Mean(1/Ei) = Sum(1/Ei)/cnt
wi = overlap area of pixel i with [(f1_1,f1_2)..(f3_1,f3_2)]
For non-zero weight, the averaged values are Sum(Ii*wi/Ei)/Sum(wi/Ei) and
Sum(wi)/Sum(wi/Ei). vsign takes into account the direction of integration.
If the integration along a single axis is done from positive to negative
coordinates vsign is negative, otherwise positive.
The variance values are always positive, independent of the integration
direction. If the variance sum varsum is negative it is invalid.
If VarDat is NULL, sum, weight and varweight are calculated, varsum is
0.0 for all non-dummy pixels inside the array and negative for all pixels
outside the array.
SYNOPSIS
int Isum2ldwEw ( float *Data, float *VarDat, int Dim_1, int Dim_2,
float Dummy, float DDummy,
float f1_1, float f1_2, float f3_1, float f3_2,
float *sum, float *weight,
float *varsum, float *varweight);
return value (o) : number of pixels contributing to the output
value (0..4), if 0, no valid data point found.
float Data[Dim_1,Dim_2] (i) : input data array
float VarDat[Dim_1,Dim_2] (i) : input variance array
int Dim_1, Dim_2 (i) : dimension of array
float Dummy, DDummy (i) : dummy specification
float f1_1, f1_2 (i) : index coordinate of lower left corner
float f3_1, f3_2 (i) : index coordinate of upper right corner
float *sum (o) : area integral of data array (Data)
float *weight (o) : area of contributing pixels to sum
float *varsum (o) : area integral of variance array (VarDat)
*varsum is set to -1.0 if one of the
contributing non-dummy pixels is negative.
float *varweight (o) : area of contributing pixels
---------------------------------------------------------------------------*/
int Isum2ldwEw ( float *Data, float *VarDat, int Dim_1, int Dim_2,
float Dummy, float DDummy,
float f1_1, float f1_2, float f3_1, float f3_2,
float *sum, float *weight,
float *varsum, float *varweight)
{ // const float eps = IPOLEPS; // unused
int cnt, varcnt;
float *pval, *pstart;
float *pvarval, varval, invvarval, wdvarval;
float vsign=1.0, vvar=1.0;
float w;
float w1_1,w1_2,w3_1,w3_2;
float null = 0.0;
float weightv, sumv, varsumv;
int cntv, varcntv;
float suminvvar, meaninvvar;
int varflag = 1; // set to 0 if one of the variances is 0
int i_1, i_2;
int i1_1, i1_2, i3_1, i3_2;
float Df_1, Df_2, Df_12;
float Df_1A, Df_2A, Df_12A;
float f_1A, f_2A;
float tmp;
Df_1 = f3_1-f1_1;
Df_2 = f3_2-f1_2;
Df_12 = Df_1*Df_2;
/* sort range */
if (Df_1<0) {tmp=f1_1;f1_1=f3_1;f3_1=tmp;vsign*=-1.0;Df_1=-Df_1;}
if (Df_2<0) {tmp=f1_2;f1_2=f3_2;f3_2=tmp;vsign*=-1.0;Df_2=-Df_2;}
*weight=0.0;
*varweight=0.0;
*sum=0.0;
*varsum=-1.0;
cnt=0;
varcnt=0;
weightv = 0.0;
sumv = 0.0;
varsumv = 0.0;
cntv = 0;
varcntv = 0;
suminvvar = 0.0;
if (!Data) return(cnt); // return, if NULL pointer
if (IPolMode == IPOL_ANTIALIASED) {
/* Increase the integration range in both directions to 1. For
renormalization of the results adjust vsign. */
if (Df_1<=1.0) {
Df_1A = 1.0;
f_1A = 0.5*(f1_1+f3_1);
f1_1 =f_1A-0.5;f3_1=f_1A+0.5;
} else Df_1A = Df_1;
if (Df_2<=1.0) {
Df_2A = 1.0;
f_2A = 0.5*(f1_2+f3_2);
f1_2 =f_2A-0.5;f3_2=f_2A+0.5;
} else Df_2A = Df_2;
Df_12A = Df_1A*Df_2A;
if (Df_12A == 0.0) return(cnt);
tmp = Df_12/Df_12A;
vvar *= tmp;
vsign *= tmp;
}
/* Add 0.5 to exclude negative array indices */
f1_1+=0.5; f1_2+=0.5; f3_1+=0.5; f3_2+=0.5;
// Lower left edge f1, w1_i is the overlap area of pixel p1
// All w1_i are positive: 0<=w1_i<=1.0
i1_1 = floor(f1_1);
if (i1_1 >= 0 ) w1_1 = 1.0 - (f1_1 - i1_1);
else {i1_1 = 0; w1_1 = 1.0; }
i1_2 = floor(f1_2);
if (i1_2 >= 0 ) w1_2 = 1.0 - (f1_2 - i1_2);
else {i1_2 = 0; w1_2 = 1.0; }
// upper right edge f3, w3_i is the overestimated area of pixel p3
// All w3_i are negative or zero: -1.0<=w3_i<=0.0
i3_1 = ceil(f3_1);
if (i3_1<=Dim_1) w3_1 = f3_1 - i3_1;
else { i3_1 = Dim_1; w3_1 = 0.0; }
i3_2 = ceil(f3_2);
if (i3_2<=Dim_2) w3_2 = f3_2 - i3_2;
else { i3_2 = Dim_2; w3_2 = 0.0; }
// Stop, if already the lower left pixel p1 lies outside the array.
// or if upper right pixel lies outside the array.
if ((i1_1>=Dim_1)||((i1_2>=Dim_2))||(i3_1<0)||(i3_2<0)) return(cnt);
pvarval = &null; // if VarDat is NULL
*varsum = 0.0;
cntv = 0;
suminvvar = 0.0;
weightv = 0.0;
sumv = 0.0;
varcntv = 0;
varsumv = 0.0;
varflag = 1; // set to 0 if one of the variances is 0
// p1 (lower left pixel)
pstart = pval = ABSPTR(Data,Dim_1,Dim_2,i1_1,i1_2);
if (VarDat) pvarval = VarDat-Data+pval;
w = w1_1*w1_2;
if NODUMMY(*pval,Dummy,DDummy) {
varval=*pvarval;
if (varval==0.0) {
cnt++; *weight+=w;
*sum+=*pval*w;
//*varsum+=varval*w;
varcnt++;
varflag=0;
} else {
if ((varflag)&&(varval>0)) {
invvarval=1.0/varval;
wdvarval=w*invvarval;
cntv++; weightv+=wdvarval;
sumv+=*pval*wdvarval;
suminvvar+=invvarval;
varsumv+=w; varcntv++;
}
}
}
// lower line between p1 and p2
for (i_1=i1_1+1;i_1<i3_1;i_1++) {
pval = NEXTCOL(pval,Dim_1,Dim_2);
if (VarDat) pvarval = VarDat-Data+pval;
w=w1_2;
if NODUMMY(*pval,Dummy,DDummy) {
varval=*pvarval;
if (varval==0.0) {
cnt++; *weight+=w;
*sum+=*pval*w;
//*varsum+=varval*w;
varcnt++;
varflag=0;
} else {
if ((varflag)&&(varval>0)) {
invvarval=1.0/varval;
wdvarval=w*invvarval;
cntv++; weightv+=wdvarval;
sumv+=*pval*wdvarval;
suminvvar+=invvarval;
varsumv+=w; varcntv++;
}
}
}
}
// p2 (correct overestimation)
w = w3_1*w1_2;
if NODUMMY(*pval,Dummy,DDummy) {
varval=*pvarval;
if (varval==0.0) {
cnt++; *weight+=w;
*sum+=*pval*w;
//*varsum+=varval*w;
varcnt++;
varflag=0;
} else {
if ((varflag)&&(varval>0)) {
invvarval=1.0/varval;
wdvarval=w*invvarval;
cntv++; weightv+=wdvarval;
sumv+=*pval*wdvarval;
suminvvar+=invvarval;
varsumv+=w; varcntv++;
}
}
}
for (i_2=i1_2+1;i_2<i3_2;i_2++) {
// first column
pstart = pval = NEXTROW(pstart,Dim_1,Dim_2);
if (VarDat) pvarval = VarDat-Data+pval;
w=w1_1;
if NODUMMY(*pval,Dummy,DDummy) {
varval=*pvarval;
if (varval==0.0) {
cnt++; *weight+=w;
*sum+=*pval*w;
//*varsum+=varval*w;
varcnt++;
varflag=0;
} else {
if ((varflag)&&(varval>0)) {
invvarval=1.0/varval;
wdvarval=w*invvarval;
cntv++; weightv+=wdvarval;
sumv+=*pval*wdvarval;
suminvvar+=invvarval;
varsumv+=w; varcntv++;
}
}
}
// line
for (i_1=i1_1+1;i_1<i3_1;i_1++) {
pval = NEXTCOL(pval,Dim_1,Dim_2);
if (VarDat) pvarval = VarDat-Data+pval;
// w=1.0
if NODUMMY(*pval,Dummy,DDummy) {
varval=*pvarval;
if (varval==0.0) {
cnt++; *weight+=1.0;
*sum+=*pval;
//*varsum+=varval;
varcnt++;
varflag=0;
} else {
if ((varflag)&&(varval>0)) {
invvarval=1.0/varval;
cntv++; weightv+=invvarval;
sumv+=*pval*invvarval;
suminvvar+=invvarval;
varsumv+=1.0; varcntv++;
}
}
}
}
// last column (correct overestimation)
w=w3_1;
if NODUMMY(*pval,Dummy,DDummy) {
varval=*pvarval;
if (varval==0.0) {
cnt++; *weight+=w;
*sum+=*pval*w;
//*varsum+=varval*w;
varcnt++;
varflag=0;
} else {
if ((varflag)&&(varval>0)) {
invvarval=1.0/varval;
wdvarval=w*invvarval;
cntv++; weightv+=wdvarval;
sumv+=*pval*wdvarval;
suminvvar+=invvarval;
varsumv+=w; varcntv++;
}
}
}
}
// p4 (correct overestimation)
pval = pstart;
if (VarDat) pvarval = VarDat-Data+pval;
w = w1_1*w3_2;
if NODUMMY(*pval,Dummy,DDummy) {
varval=*pvarval;
if (varval==0.0) {
cnt++; *weight+=w;
*sum+=*pval*w;
//*varsum+=varval*w;
varcnt++;
varflag=0;
} else {
if ((varflag)&&(varval>0)) {
invvarval=1.0/varval;
wdvarval=w*invvarval;
cntv++; weightv+=wdvarval;
sumv+=*pval*wdvarval;
suminvvar+=invvarval;
varsumv+=w; varcntv++;
}
}
}
// upper line between p4 and p3 (correction)
for (i_1=i1_1+1;i_1<i3_1;i_1++) {
pval = NEXTCOL(pval,Dim_1,Dim_2);
if (VarDat) pvarval = VarDat-Data+pval;
w=w3_2;
if NODUMMY(*pval,Dummy,DDummy) {
varval=*pvarval;
if (varval==0.0) {
cnt++; *weight+=w;
*sum+=*pval*w;
//*varsum+=varval*w;
varcnt++;
varflag=0;
} else {
if ((varflag)&&(varval>0)) {
invvarval=1.0/varval;
wdvarval=w*invvarval;
cntv++; weightv+=wdvarval;
sumv+=*pval*wdvarval;
suminvvar+=invvarval;
varsumv+=w; varcntv++;
}
}
}
}
// p3 (correct underestimation)
w = w3_1*w3_2;
if NODUMMY(*pval,Dummy,DDummy) {
varval=*pvarval;
if (varval==0.0) {
cnt++; *weight+=w;
*sum+=*pval*w;
//*varsum+=varval*w;
varcnt++;
varflag=0;
} else {
if ((varflag)&&(varval>0)) {
invvarval=1.0/varval;
wdvarval=w*invvarval;
cntv++; weightv+=wdvarval;
sumv+=*pval*wdvarval;
suminvvar+=invvarval;
varsumv+=w; varcntv++;
}
}
}
if (varflag) {
meaninvvar = suminvvar/cntv;
cnt = cntv;
varcnt = varcntv;
*sum = sumv/meaninvvar;
*weight = weightv/meaninvvar;
*varsum = varsumv/meaninvvar;
}
*sum *= vsign;
*weight *= vsign;
if (varcnt!=cnt) *varsum = -1.0; else *varsum *= vvar;
*varweight = fabs(*weight);
// *weight can apparently be zero when cnt is not if IPOL_ANTIALIASED is set
if (fabs(*weight)<1e-32) cnt=0;
else // reject pixels with less than IPolMin coverage
if ( fabs(Df_12)*IPolMin > fabs(*weight) ) cnt=0;
return(cnt);
} /* Isum2ldwEw */
/*---------------------------------------------------------------------------
NAME
Isum2ldwEe--- Pixel area integral with variance array
PURPOSE
Like Isum2ldw but additionally with calculation of variance array.
DESCRIPTION
The output value "sum" is the area integral of all pixel values in the region
between (f1_1,f1_2) and (f3_1,f3_2). If one of the pixels lies outside the
range of the image or if it is a dummy it is ignored (wi=0):
The output value "varsum" is the area integral of all variance values
in the same region. If the variance value of at least one non-dummy pixel in
the region is negative "varsum" cannot be calculated and is set to -1.0.
area = (f1_2-f1_1)*(f3_2,f3_1)
sum = vsign * Sum(Ii*wi)
weight = vsign * Sum(wi)
varsum = Sum(Ei*wi) or -1.0 if it cannot be calculated
varweight = Sum(wi)
cnt = number of contributing intensity values
wi = overlap area of pixel i with [(f1_1,f1_2)..(f3_1,f3_2)]
For non-zero weight, the averaged values are Sum(Ii*wi)/Sum(wi) and
Sum(Ei*wi)/Sum(wi). vsign takes into account the direction of integration.
If the integration along a single axis is done from positive to negative
coordinates vsign is negative, otherwise positive.
The variance values are always positive, independent of the integration
direction. If the variance sum varsum is negative it is invalid.
If VarDat is NULL, sum, weight and varweight are calculated, varsum is
0.0 for all non-dummy pixels inside the array and negative for all pixels
outside the array.
SYNOPSIS
int Isum2ldwEe ( float *Data, float *VarDat, int Dim_1, int Dim_2,
float Dummy, float DDummy,
float f1_1, float f1_2, float f3_1, float f3_2,
float *sum, float *weight,
float *varsum, float *varweight);
return value (o) : number of pixels contributing to the output
value (0..4), if 0, no valid data point found.
float Data[Dim_1,Dim_2] (i) : input data array
float VarDat[Dim_1,Dim_2] (i) : input variance array
int Dim_1, Dim_2 (i) : dimension of array
float Dummy, DDummy (i) : dummy specification
float f1_1, f1_2 (i) : index coordinate of lower left corner
float f3_1, f3_2 (i) : index coordinate of upper right corner
float *sum (o) : area integral of data array (Data)
float *weight (o) : area of contributing pixels to sum
float *varsum (o) : area integral of variance array (VarDat)
*varsum is set to -1.0 if one of the
contributing non-dummy pixels is negative.
float *varweight (o) : area of contributing pixels
---------------------------------------------------------------------------*/
int Isum2ldwEe ( float *Data, float *VarDat, int Dim_1, int Dim_2,
float Dummy, float DDummy,
float f1_1, float f1_2, float f3_1, float f3_2,
float *sum, float *weight,
float *varsum, float *varweight)
{ // const float eps = IPOLEPS; // unused
int cnt, varcnt;
float *pval, *pstart;
float *pvarval;
float vsign=1.0, vvar=1.0;
float w;
float w1_1,w1_2,w3_1,w3_2;
float null = 0.0;
int i_1, i_2;
int i1_1, i1_2, i3_1, i3_2;
float Df_1, Df_2, Df_12;
float Df_1A, Df_2A, Df_12A;
float f_1A, f_2A;
float tmp;
Df_1 = f3_1-f1_1;
Df_2 = f3_2-f1_2;
Df_12 = Df_1*Df_2;
/* sort range */
if (Df_1<0) {tmp=f1_1;f1_1=f3_1;f3_1=tmp;vsign*=-1.0;Df_1=-Df_1;}
if (Df_2<0) {tmp=f1_2;f1_2=f3_2;f3_2=tmp;vsign*=-1.0;Df_2=-Df_2;}
*weight=0.0;
*varweight=0.0;
*sum=0.0;
*varsum=-1.0;
cnt=0;
varcnt=0;
if (!Data) return(cnt); // return, if NULL pointer
if (IPolMode == IPOL_ANTIALIASED) {
/* Increase the integration range in both directions to 1. For
renormalization of the results adjust vsign. */
if (Df_1<=1.0) {
Df_1A = 1.0;
f_1A = 0.5*(f1_1+f3_1);
f1_1 =f_1A-0.5;f3_1=f_1A+0.5;
} else Df_1A = Df_1;
if (Df_2<=1.0) {
Df_2A = 1.0;
f_2A = 0.5*(f1_2+f3_2);
f1_2 =f_2A-0.5;f3_2=f_2A+0.5;
} else Df_2A = Df_2;
Df_12A = Df_1A*Df_2A;
if (Df_12A == 0.0) return(cnt);
tmp = Df_12/Df_12A;
vvar *= tmp;
vsign *= tmp;
}
/* Add 0.5 to exclude negative array indices */
f1_1+=0.5; f1_2+=0.5; f3_1+=0.5; f3_2+=0.5;
// Lower left edge f1, w1_i is the overlap area of pixel p1
// All w1_i are positive: 0<=w1_i<=1.0
i1_1 = floor(f1_1);
if (i1_1 >= 0 ) w1_1 = 1.0 - (f1_1 - i1_1);
else {i1_1 = 0; w1_1 = 1.0; }
i1_2 = floor(f1_2);
if (i1_2 >= 0 ) w1_2 = 1.0 - (f1_2 - i1_2);
else {i1_2 = 0; w1_2 = 1.0; }
// upper right edge f3, w3_i is the overestimated area of pixel p3
// All w3_i are negative or zero: -1.0<=w3_i<=0.0
i3_1 = ceil(f3_1);
if (i3_1<=Dim_1) w3_1 = f3_1 - i3_1;
else { i3_1 = Dim_1; w3_1 = 0.0; }
i3_2 = ceil(f3_2);
if (i3_2<=Dim_2) w3_2 = f3_2 - i3_2;
else { i3_2 = Dim_2; w3_2 = 0.0; }
// Stop, if already the lower left pixel p1 lies outside the array.
// or if upper right pixel lies outside the array.
if ((i1_1>=Dim_1)||((i1_2>=Dim_2))||(i3_1<0)||(i3_2<0)) return(cnt);
pvarval = &null; // if VarDat is NULL
*varsum = 0.0;
// p1 (lower left pixel)
pstart = pval = ABSPTR(Data,Dim_1,Dim_2,i1_1,i1_2);
if (VarDat) pvarval = VarDat-Data+pval;
w = w1_1*w1_2;
if NODUMMY(*pval,Dummy,DDummy) {
cnt++; *weight+=w;
*sum+=*pval*w;
if (*pvarval>=0) { *varsum+=*pvarval*w; varcnt++; }
}
// lower line between p1 and p2
for (i_1=i1_1+1;i_1<i3_1;i_1++) {
pval = NEXTCOL(pval,Dim_1,Dim_2);
if (VarDat) pvarval = VarDat-Data+pval;
if NODUMMY(*pval,Dummy,DDummy) {
cnt++; *weight+=w1_2;
*sum+=*pval*w1_2;
if (*pvarval>=0) { *varsum+=*pvarval*w1_2; varcnt++; }
}
}
// p2 (correct overestimation)
w = w3_1*w1_2;
if NODUMMY(*pval,Dummy,DDummy) {
cnt++; *weight+=w;
*sum+=*pval*w;
if (*pvarval>=0) { *varsum+=*pvarval*w; varcnt++; }
}
for (i_2=i1_2+1;i_2<i3_2;i_2++) {
// first column
pstart = pval = NEXTROW(pstart,Dim_1,Dim_2);
if (VarDat) pvarval = VarDat-Data+pval;
if NODUMMY(*pval,Dummy,DDummy) {
cnt++; *weight+=w1_1;
*sum+=*pval*w1_1;
if (*pvarval>=0) { *varsum+=*pvarval*w1_1; varcnt++; }
}
// line
for (i_1=i1_1+1;i_1<i3_1;i_1++) {
pval = NEXTCOL(pval,Dim_1,Dim_2);
if (VarDat) pvarval = VarDat-Data+pval;
if NODUMMY(*pval,Dummy,DDummy) {
cnt++; *weight+=1.0;
*sum+=*pval;
if (*pvarval>=0) { *varsum+=*pvarval; varcnt++; }
}
}
// last column (correct overestimation)
if NODUMMY(*pval,Dummy,DDummy) {
cnt++; *weight+=w3_1;
*sum+=*pval*w3_1;
if (*pvarval>=0) { *varsum+=*pvarval*w3_1; varcnt++; }
}
}
// p4 (correct overestimation)
pval = pstart;
if (VarDat) pvarval = VarDat-Data+pval;
w = w1_1*w3_2;
if NODUMMY(*pval,Dummy,DDummy) {
cnt++; *weight+=w;
*sum+=*pval*w;
if (*pvarval>=0) { *varsum+=*pvarval*w; varcnt++; }
}
// upper line between p4 and p3 (correction)
for (i_1=i1_1+1;i_1<i3_1;i_1++) {
pval = NEXTCOL(pval,Dim_1,Dim_2);
if (VarDat) pvarval = VarDat-Data+pval;
if NODUMMY(*pval,Dummy,DDummy) {
cnt++; *weight+=w3_2;
*sum+=*pval*w3_2;
if (*pvarval>=0) { *varsum+=*pvarval*w3_2; varcnt++; }
}
}
// p3 (correct underestimation)
w = w3_1*w3_2;
if NODUMMY(*pval,Dummy,DDummy) {
cnt++; *weight+=w;
*sum+=*pval*w;
if (*pvarval>=0) { *varsum+=*pvarval*w; varcnt++; }
}
*sum *= vsign;
*weight *= vsign;
if (varcnt!=cnt) *varsum = -1.0; else *varsum *= vvar;
*varweight = fabs(*weight);
// *weight can apparently be zero when cnt is not if IPOL_ANTIALIASED is set
if (fabs(*weight)<1e-32) cnt=0;
else // reject pixels with less than IPolMin coverage
if ( fabs(Df_12)*IPolMin > fabs(*weight) ) cnt=0;
return(cnt);
} /* Isum2ldwEe*/
/*---------------------------------------------------------------------------
NAME
Isum2ldwE --- Pixel area integral with variance array
PURPOSE
Use Isum2ldwEe or Isum2ldwEw depending on IPolWeight.
DESCRIPTION
See Isum2ldwEe and Isum2ldwEw.
---------------------------------------------------------------------------*/
int Isum2ldwE ( float *Data, float *VarDat, int Dim_1, int Dim_2,
float Dummy, float DDummy,
float f1_1, float f1_2, float f3_1, float f3_2,
float *sum, float *weight,
float *varsum, float *varweight)
{ int cnt=0;
switch (IPolWeight) {
case IPOL_EQUAL:
cnt = Isum2ldwEe ( Data, VarDat, Dim_1, Dim_2,
Dummy, DDummy, f1_1, f1_2, f3_1, f3_2,
sum, weight, varsum, varweight); break;
case IPOL_WEIGHTED:
cnt = Isum2ldwEw ( Data, VarDat, Dim_1, Dim_2,
Dummy, DDummy, f1_1, f1_2, f3_1, f3_2,
sum, weight, varsum, varweight); break;
}
return( cnt );
} // Isum2ldwE
/*---------------------------------------------------------------------------
NAME
Isum2ldw --- Pixel area integral
PURPOSE
Area integral of the array Data between index coordinate (f1_1,f1_2) and
index coordinate (f3_1,f3_2). Dummy values and array limits are checked.
The contributing area is returned in weight. The intensity value per
pixel area is sum divided by weight. The return value of the function is the
number of contributing pixels.
A call with (f3_1,f3_2) = (f1_1+1,f1_2+1) corresponds to a call to Ipol2ldw
with (f_1,f_2) = (f1_1+0.5,f1_2+0.5). See also Ipol2ldw.
If the interpolation mode is IPOL_ANTIALIASED (default), the minimum side
length of an integration area is 1. Smaller side lengths are increased to 1
and the results are renomalized to match the original side lengths.
DESCRIPTION
The output value "sum" is the area integral of all pixel values in the region
between (f1_1,f1_2) and (f3_1,f3_2). If one of the pixels lies outside the
range of the image or if it is a dummy it is ignored (wi=0):
sum = Sum(Ii*wi)
weight = Sum(wi)
cnt = number of contributing intensity values
wi = overlap area of pixel i with [(f1_1,f1_2)..(f3_1,f3_2)]
For non-zero weight, the averaged value is Sum(Ii*wi)/Sum(wi).
--------------------- --------------------- ---------------------
f3_2 - | ******| |*******************| |************** |
| ******|.|*******************|.|************** |
| p4- -*-*-*-|.|-*-*-*-*-*-*-*-*-*-|.|-*-*-*-*p3**** |
| | ******|.|*******************|.|*********|**** |
| ******| |*******************| |************** |
--------------------- --------------------- ---------------------
... ... ...
--------------------- --------------------- ---------------------
| ******| |*******************| |*********|**** |
f = *** | | ******|.|*******************|.|************** |
| ******|.|*******************|.|*********|**** |
| | ******|.|*******************|.|************** |
| ******| |*******************| |*********|**** |
--------------------- --------------------- ---------------------
... ... ...
--------------------- --------------------- ---------------------
f1_2 - | ******| |*******************| |************** |
| | |.| |.| | |
| p1- - - - -|.|- - - - - - - - - -|.|- - - - p2 |
| |.| |.| |
| | | | | |
--------------------- --------------------- ---------------------
| |
f1_1 f3_1
SYNOPSIS
int Isum2ldw ( float *Data, int Dim_1, int Dim_2, float Dummy, float DDummy,
float f1_1, float f1_2, float f3_1, float f3_2,
float *sum, float *weight);
return value (o) : number of pixels contributing to the output
value (0..4), if 0, no valid data point found.
float Data[Dim_1,Dim_2] (i) : input array
int Dim_1, Dim_2 (i) : dimension of array
float Dummy, DDummy (i) : dummy specification
float f1_1, f1_2 (i) : index coordinate of lower left corner
float f3_1, f3_2 (i) : index coordinate of upper right corner
float *sum (o) : area integral of Data array
float *weight (o) : area of contributing pixels
---------------------------------------------------------------------------*/
int Isum2ldw ( float *Data, int Dim_1, int Dim_2,
float Dummy, float DDummy,
float f1_1, float f1_2, float f3_1, float f3_2,
float *sum, float *weight)
{ // const float eps = IPOLEPS; // unused
int cnt=0;
float *pval, *pstart;
float vsign=1.0;
float w;
float w1_1,w1_2,w3_1,w3_2;
int i_1, i_2;
int i1_1, i1_2, i3_1, i3_2;
float Df_1, Df_2, Df_12;
float Df_1A, Df_2A, Df_12A;
float f_1A, f_2A;
float tmp;
Df_1 = f3_1-f1_1;
Df_2 = f3_2-f1_2;
Df_12 = Df_1*Df_2;
/* use faster routine Ipol2ldw, if area size is 1x1 */
if ((Df_1==1.0)&&(Df_2==1.0))
return(Ipol2ldw(Data,Dim_1,Dim_2,Dummy,DDummy,f1_1+0.5,f1_2+0.5,sum,weight));
/* sort range */
if (Df_1<0) {tmp=f1_1;f1_1=f3_1;f3_1=tmp;vsign*=-1.0;Df_1=-Df_1;}
if (Df_2<0) {tmp=f1_2;f1_2=f3_2;f3_2=tmp;vsign*=-1.0;Df_2=-Df_2;}
*weight=0.0;
*sum=0.0;
cnt=0;
if (!Data) return(cnt); // return, if NULL pointer
if (IPolMode == IPOL_ANTIALIASED) {
/* Increase the integration range in both directions to 1. For
renormalization of the results adjust vsign. */
if (Df_1<=1.0) {
Df_1A = 1.0;
f_1A = 0.5*(f1_1+f3_1);
f1_1 =f_1A-0.5;f3_1=f_1A+0.5;
} else Df_1A = Df_1;
if (Df_2<=1.0) {
Df_2A = 1.0;
f_2A = 0.5*(f1_2+f3_2);
f1_2 =f_2A-0.5;f3_2=f_2A+0.5;
} else Df_2A = Df_2;
Df_12A = Df_1A*Df_2A;
if (Df_12A == 0.0) return(cnt);
vsign*=Df_12/Df_12A;
}
/* Add 0.5 to exclude negative array indices */
f1_1+=0.5; f1_2+=0.5; f3_1+=0.5; f3_2+=0.5;
// Lower left edge f1, w1_i is the overlap area of pixel p1
// All w1_i are positive: 0<=w1_i<=1.0
i1_1 = floor(f1_1);
if (i1_1 >= 0 ) w1_1 = 1.0 - (f1_1 - i1_1);
else {i1_1 = 0; w1_1 = 1.0; }
i1_2 = floor(f1_2);
if (i1_2 >= 0 ) w1_2 = 1.0 - (f1_2 - i1_2);
else {i1_2 = 0; w1_2 = 1.0; }
// upper right edge f3, w3_i is the overestimated area of pixel p3
// All w3_i are negative or zero: -1.0<=w3_i<=0.0
i3_1 = ceil(f3_1);
if (i3_1<=Dim_1) w3_1 = f3_1 - i3_1;
else { i3_1 = Dim_1; w3_1 = 0.0; }
i3_2 = ceil(f3_2);
if (i3_2<=Dim_2) w3_2 = f3_2 - i3_2;
else { i3_2 = Dim_2; w3_2 = 0.0; }
// Stop, if already the lower left pixel p1 lies outside the array.
// or if upper right pixel lies outside the array.
if ((i1_1>=Dim_1)||((i1_2>=Dim_2))||(i3_1<0)||(i3_2<0)) return(cnt);
// p1 (lower left pixel)
pstart = pval = ABSPTR(Data,Dim_1,Dim_2,i1_1,i1_2);
w = w1_1*w1_2;
if NODUMMY(*pval,Dummy,DDummy) { cnt++; *weight+=w; *sum+=*pval*w; }
// lower line between p1 and p2
for (i_1=i1_1+1;i_1<i3_1;i_1++) {
pval = NEXTCOL(pval,Dim_1,Dim_2);
if NODUMMY(*pval,Dummy,DDummy) { cnt++; *weight+=w1_2; *sum+=*pval*w1_2; }
}
// p2 (correct overestimation)
w = w3_1*w1_2;
if NODUMMY(*pval,Dummy,DDummy) { cnt++; *weight+=w; *sum+=*pval*w; }
for (i_2=i1_2+1;i_2<i3_2;i_2++) {
// first column
pstart = pval = NEXTROW(pstart,Dim_1,Dim_2);
if NODUMMY(*pval,Dummy,DDummy) { cnt++; *weight+=w1_1; *sum+=*pval*w1_1; }
// line
for (i_1=i1_1+1;i_1<i3_1;i_1++) {
pval = NEXTCOL(pval,Dim_1,Dim_2);
if NODUMMY(*pval,Dummy,DDummy) { cnt++; *weight+=1.0; *sum+=*pval; }
}
// last column (correct overestimation)
if NODUMMY(*pval,Dummy,DDummy) { cnt++; *weight+=w3_1; *sum+=*pval*w3_1; }
}
// p4 (correct overestimation)
pval = pstart;
w = w1_1*w3_2;
if NODUMMY(*pval,Dummy,DDummy) { cnt++; *weight+=w; *sum+=*pval*w; }
// upper line between p4 and p3 (correction)
for (i_1=i1_1+1;i_1<i3_1;i_1++) {
pval = NEXTCOL(pval,Dim_1,Dim_2);
if NODUMMY(*pval,Dummy,DDummy) { cnt++; *weight+=w3_2; *sum+=*pval*w3_2; }
}
// p3 (correct underestimation)
w = w3_1*w3_2;
if NODUMMY(*pval,Dummy,DDummy) { cnt++; *weight+=w; *sum+=*pval*w; }
*sum *= vsign;
*weight *= vsign;
// *weight can apparently be zero when cnt is not if IPOL_ANTIALIASED is set
if (fabs(*weight)<1e-32) cnt=0;
else // reject pixels with less than IPolMin coverage
if ( fabs(Df_12)*IPolMin > fabs(*weight) ) cnt=0;
return(cnt);
} /* Isum2ldw */
/*---------------------------------------------------------------------------
NAME
Ipol2ldw --- Linear two dimensional interpolation
PURPOSE
Linear two dimensional interpolation including dummies with limit checks
Ipol2ldw calculates the weighted sum and the sum of the weights of the
contributing pixels. The array limits are checked. To calculate the
interpolated value, sum must be devided by weight. The function returns
the number of contributing pixels. See also Ipol2ld.
The result corresponds to Isum2ldw(...,f_1-0.5,f_2-0.5,f_1+0.5,f_2+0.5,...).
DESCRIPTION
The output value "sum" is the weighted sum of the intensities of the 4
closest pixels p1 to p4 around pixel f. Pixel f is located at (f_1,f_2).
The values of the pixels p1=Data[i_1,i_2], p2=Data[i_1+1,i_2],
p3=Data[i_1+1,i_2+1] and p4=Data[I_1,i_2+1] are multiplied by the overlap
areas wi of each pixel with the pixel f and added. The overlap areas w1
to w4 are calculated from the displacement r_1 and r_2 of f from p1.
If one of the 4 pixels lies outside the range of the image or if it is
a dummy it is ignored (wi=0):
sum = Sum(Ii*wi)
weight = Sum(wi)
cnt = number of used intensity values
w1 = (1-r_1)*(1-r_2)
w2 = r_1*(1-r_2)
w3 = r_1*r_2
w4 = (1-r_1)*r_2
with r_1 = f_1 - floor(f_1) and r_2 = f_2 - floor(f_2)
For non-zero weight, the averaged value is Sum(Ii*wi)/Sum(wi).
-----------------------------------------
| //////|************** |
| //////|************** |
w4 = /// | p4- -/-/-/-|-*-*-*-*p3**** | w3 = ***
f_2 ----| | //////|***f*****|**** |
^ | //////|************** |
| -----------------------------------------
w1 = +++ |r_2| ++++++|\\\\\\\\\\\\\\ | w2 = \\\
v | | | | |
floor(f_2)-----| p1- - - - -|- - - - p2 |
| | |
| | |
-----------------------------------------
| r_1 |
|<----------->|
|
floor(f_1) f_1
SYNOPSIS
int Ipol2ldw (float *Data, int Dim_1, int Dim_2, float Dummy, float DDummy,
float f_1, float f_2, float *sum, float *weight)
return value (o) : number of pixels contributing to the output
value (0..4), if 0, no valid data point found.
float Data[Dim_1,Dim_2] (i) : input array
int Dim_1, Dim_2 (i) : dimension of array
float Dummy, DDummy (i) : dummy specification
float f_1, f_2 (i) : program array indices (interpolation point)
float *sum (o) : weighted sum of interpolated pixels
float *weight (o) : weight of sum
minimum 0.0: no valid pixel found
maximum 1.0: interpolation between 1 to 4
distance weighted pixels
---------------------------------------------------------------------------*/
int Ipol2ldw (float *Data, int Dim_1, int Dim_2, float Dummy, float DDummy,
float f_1, float f_2, float *sum, float *weight )
{ const float eps = IPOLEPS;
int cnt;
float *pval1, *pval2, *pval3, *pval4;
float w1, w2, w3, w4;
int i_1, i_2;
float r_1, r_2;
/* calculate integer indices and rest */
IDX(f_1,i_1,r_1);
IDX(f_2,i_2,r_2);
*weight=0.0;
*sum=0.0;
cnt=0;
if (!Data) return(cnt); // return, if NULL pointer
pval1 = ABSPTR(Data,Dim_1,Dim_2,i_1,i_2);
/* General check */
if ( (i_1>=0) && (i_2>=0) && (i_1<Dim_1-1) && (i_2<Dim_2-1) )
/* all 4 points inside the array */
if (r_1<eps) {
if (r_2<eps) {
if NODUMMY(*pval1,Dummy,DDummy) {
cnt++; *weight += 1.0; *sum = *pval1; /* no interpolation */
} /* if NODUMMY */
} else {
if NODUMMY(*pval1,Dummy,DDummy) {
cnt++;w1=1.0-r_2; *weight+=w1; *sum+=*pval1*w1;
} /* if NODUMMY */
pval4 = NEXTROW(pval1,Dim_1,Dim_2);
if NODUMMY(*pval4,Dummy,DDummy) {
cnt++;w4=r_2; *weight+=w4; *sum+=*pval4*w4;
} /* if NODUMMY */
} /* if (r_2<eps) */
} else {
if (r_2<eps) {
if NODUMMY(*pval1,Dummy,DDummy) {
cnt++; w1=(1.0-r_1); *weight+=w1; *sum = *pval1*w1;
} /* if NODUMMY */
pval2 = NEXTCOL(pval1,Dim_1,Dim_2);
if NODUMMY(*pval2,Dummy,DDummy) {
cnt++; w2=r_1; *weight+=w2; *sum+=*pval2*w2;
} /* if NODUMMY */
} else {
if NODUMMY(*pval1,Dummy,DDummy) {
cnt++;w1=(1.0-r_1)*(1.0-r_2); *weight+=w1; *sum+=*pval1*w1;
} /* if NODUMMY */
pval2 = NEXTCOL(pval1,Dim_1,Dim_2);
if NODUMMY(*pval2,Dummy,DDummy) {
cnt++;w2=r_1*(1.0-r_2); *weight+=w2; *sum+=*pval2*w2;
} /* if NODUMMY */
pval4 = NEXTROW(pval1,Dim_1,Dim_2);
if NODUMMY(*pval4,Dummy,DDummy) {
cnt++;w4=(1.0-r_1)*r_2; *weight+=w4; *sum+=*pval4*w4;
} /* if NODUMMY */
pval3 = NEXTCOLROW(pval1,Dim_1,Dim_2);
if NODUMMY(*pval3,Dummy,DDummy) {
cnt++;w3=r_1*r_2; *weight+=w3; *sum+=*pval3*w3;
} /* if NODUMMY */
} /* (r_2<eps) */
} /* if (r_1 ... */
else if ( (i_1>=-1) && (i_2>=-1) && (i_1<Dim_1) && (i_2<Dim_2) ) {
/* some of the 4 points are inside the array */
if (r_1<eps) {
if (r_2<eps) {
if ( (i_1>=0) && (i_2>=0) ) /* pval1 OK? */
if NODUMMY(*pval1,Dummy,DDummy) {
cnt++; *weight += 1.0; *sum = *pval1; /* no interpolation */
} /* if NODUMMY */
} else {
if ( (i_1>=0) && (i_2>=0) ) /* pval1 OK? */
if NODUMMY(*pval1,Dummy,DDummy) {
cnt++;w1=1.0-r_2; *weight+=w1; *sum+=*pval1*w1;
} /* if NODUMMY */
if ( (i_1>=0) && (i_2<Dim_2-1) ) {
pval4 = NEXTROW(pval1,Dim_1,Dim_2);
if NODUMMY(*pval4,Dummy,DDummy) {
cnt++;w4=r_2; *weight+=w4; *sum+=*pval4*w4;
} /* if NODUMMY */
} /* pval4 */
} /* if (r_2<eps) */
} else {
if (r_2<eps) {
if ( (i_1>=0) && (i_2>=0) ) /* pval1 OK? */
if NODUMMY(*pval1,Dummy,DDummy) {
cnt++; w1=(1.0-r_1); *weight+=w1; *sum = *pval1*w1;
} /* if NODUMMY */
if ( (i_2>=0) && (i_1<Dim_1-1) ) {
pval2 = NEXTCOL(pval1,Dim_1,Dim_2);
if NODUMMY(*pval2,Dummy,DDummy) {
cnt++; w2=r_1; *weight+=w2; *sum+=*pval2*w2;
} /* if NODUMMY */
} /* pval2 */
} else {
if ( (i_1>=0) && (i_2>=0) ) /* pval1 OK? */
if NODUMMY(*pval1,Dummy,DDummy) {
cnt++;w1=(1.0-r_1)*(1.0-r_2); *weight+=w1; *sum+=*pval1*w1;
} /* if NODUMMY */
if ( (i_2>=0) && (i_1<Dim_1-1) ) {
pval2 = NEXTCOL(pval1,Dim_1,Dim_2);
if NODUMMY(*pval2,Dummy,DDummy) {
cnt++;w2=r_1*(1.0-r_2); *weight+=w2; *sum+=*pval2*w2;
} /* if NODUMMY */
} /* pval2 */
if ( (i_1>=0) && (i_2<Dim_2-1) ) {
pval4 = NEXTROW(pval1,Dim_1,Dim_2);
if NODUMMY(*pval4,Dummy,DDummy) {
cnt++;w4=(1.0-r_1)*r_2; *weight+=w4; *sum+=*pval4*w4;
} /* if NODUMMY */
} /* pval4 */
if ( (i_1<Dim_1-1) && (i_2<Dim_2-1) ) {
pval3 = NEXTCOLROW(pval1,Dim_1,Dim_2);
if NODUMMY(*pval3,Dummy,DDummy) {
cnt++;w3=r_1*r_2; *weight+=w3; *sum+=*pval3*w3;
} /* if NODUMMY */
} /* pval3 */
} /* (r_2<eps) */
} /* if (r_1 ... */
}
// reject pixels with less than IPolMin coverage
if ( IPolMin > fabs(*weight) ) cnt=0;
return(cnt);
} /* Ipol2ldw */
/*---------------------------------------------------------------------------
NAME
Ipol2ld --- Interpolation including dummies with limit checks
PURPOSE
Linear two dimensional interpolation including dummies with limit checks
Ipol2ld returns the interpolated value. To calculate the sum and the weight
of the interpolated pixels use Ipol2ldw.
METHOD
See Ipol2ldw. Ipol2ld calculates only the interpolated value and returns
the number of interpolated pixels.
---------------------------------------------------------------------------*/
int Ipol2ld (float *Data, int Dim_1, int Dim_2, float Dummy, float DDummy,
float f_1, float f_2, float *value)
{ float weight;
int cnt;
cnt = Ipol2ldw(Data, Dim_1, Dim_2, Dummy, DDummy,f_1, f_2, value, &weight);
if (cnt) *value = *value/weight;
return ( cnt );
} /* Ipol2ld */
int Ipol2d (float *Data, int Dim_1, int Dim_2, float Dummy, float DDummy,
float f_1, float f_2, float *value)
{ return(Ipol2ld (Data, Dim_1, Dim_2, Dummy, DDummy,
f_1, f_2, value));
} /* Ipol2d */
/*---------------------------------------------------------------------------
NAME
Ipol2 --- Two dimensional interpolation, no limit checks, no dummy checks
SYNOPSIS
void Ipol2 (float *Data, int Dim_1, int Dim_2,
float f_1, float f_2, float *value)
PURPOSE
Linear two dimensional interpolation
no limit checks,
no dummy checks
METHOD
The point (f_1, f_2) is linearly interpolated between the 4 closest
program array elements val1=Data[i_1,i_2], val2=Data[i_1+1,I_2],
val3=Data[i_1+1,i_2+1] and val4=Data[I_1,i_2+1]. If a float index
is an integer number 0, 1, 2, 3 etc. no interpolation is done in the
corresponding direction.
ARGUMENTS
return value (o) : number of pixels contributing to the output
value (0..4), if 0, only dummies found.
float Data[Dim_1,Dim_2] (i) : input array
int Dim_1, Dim_2 (i) : dimension of array
float f_1, f_2 (i) : program array indices (interpolation point)
float *value (o) : interpolated value
2 HISTORY
28-Apr-1995 PB from Ipol2d
---------------------------------------------------------------------------*/
void Ipol2 (float *Data, int Dim_1, int Dim_2,
float f_1, float f_2, float *value)
{ const float eps = IPOLEPS;
int cnt;
float *pval1, *pval2, *pval3, *pval4;
float w1, w2, w3, w4;
float weight;
int i_1, i_2;
float r_1, r_2;
/* calculate integer indices and rest */
IDX(f_1,i_1,r_1);
IDX(f_2,i_2,r_2);
weight=0.0;
*value=0.0;
cnt=0;
if (!Data) return; // return, if NULL pointer
pval1 = ABSPTR(Data,Dim_1,Dim_2,i_1,i_2);
if (r_1<eps) {
if (r_2<eps) {
cnt++; *value = *pval1; /* no interpolation */
} else {
cnt++;w1=1.0-r_2; weight+=w1; *value+=*pval1*w1;
pval4 = NEXTROW(pval1,Dim_1,Dim_2);
cnt++;w4=r_2; weight+=w4; *value+=*pval4*w4;
if (cnt) *value = *value/weight;
} /* if (r_2<eps) */
} else {
if (r_2<eps) {
cnt++; w1=(1-r_1); weight+=w1; *value = *pval1*w1;
pval2 = NEXTCOL(pval1,Dim_1,Dim_2);
cnt++; w2=r_1; weight+=w2; *value+=*pval2*w2;
if (cnt) *value = *value/weight;
} else {
cnt++;w1=(1.0-r_1)*(1.0-r_2); weight+=w1; *value+=*pval1*w1;
pval2 = NEXTCOL(pval1,Dim_1,Dim_2);
cnt++;w2=r_1*(1.0-r_2); weight+=w2; *value+=*pval2*w2;
pval4 = NEXTROW(pval1,Dim_1,Dim_2);
cnt++;w4=(1.0-r_1)*r_2; weight+=w4; *value+=*pval4*w4;
pval3 = NEXTCOLROW(pval1,Dim_1,Dim_2);
cnt++;w3=r_1*r_2; weight+=w3; *value+=*pval3*w3;
if (cnt) *value = *value/weight;
} /* (r_2<eps) */
} /* if (r_1 ... */
} /* Ipol2 */
/*---------------------------------------------------------------------------
NAME
IpolRebin2 --- Two dimensional rebinning of a float array.
SYNOPSIS
void IpolRebin2 ( float *Data, int Dim_1, int Dim_2,
float * DataOut, int * OutDim_1, int * OutDim_2,
float Dummy, float DDummy, int Bin_1, int Bin_2, int average )
PURPOSE
Two dimensional rebinning of a float array. The result is written to the
output array. The new dimensions are returned.
ARGUMENTS
float Data[Dim_1,Dim_2] (i) : input array with dimension Dim_1, Dim_2
int Dim_1, Dim_2 (i) : dimensions of input array
float *DataOut (o) : output array (needs to be allocated!)
int *pOutDim_1, *pOutDim_2 (o) : pointer to output dimensions
(need to be allocated!)
float Dummy, DDummy (i) : Dummy values of input and output arrays
int Bin_1, Bin_2 (i) : Binning factors (>=1)
int Average (i) : flag: sum (0) or average (!0) pixel values
Data and DataOut can be identical. If they are not identical, they must not
overlap. The output variables *pOutDim_1 and *pOutDim_2 must have been
allocated. They can be identical to Dim_1 and Dim_2.
HISTORY
2007-02-26 PB from RebinFloat2d
---------------------------------------------------------------------------*/
void IpolRebin2 ( float *Data, int Dim_1, int Dim_2,
float * DataOut, int * pOutDim_1, int * pOutDim_2,
float Dummy, float DDummy, int Bin_1, int Bin_2, int Average )
{ register long int j_1, j_2, i_1, i_2;
float * pin, * pout;
float value, sum, count;
int bin_1, bin_2;
int dim_1, dim_2;
dim_1 = Dim_1;
dim_2 = Dim_2;
if (pOutDim_1!=NULL) *pOutDim_1=dim_1;
if (pOutDim_2!=NULL) *pOutDim_2=dim_2;
bin_1 = Bin_1>1?Bin_1:1; // max(1,bin_1)
bin_2 = Bin_2>1?Bin_2:1; // max(1,bin_2)
if ((bin_1>1) || (bin_2>1) || (DataOut!=Data)) {
pout = DataOut;
if (pout!=NULL) {
for (j_2=0;j_2<=dim_2-bin_2;j_2+=bin_2)
for (j_1=0;j_1<=dim_1-bin_1;j_1+=bin_1) {
sum = 0.0; count = 0.0;
for (i_2=j_2;i_2<j_2+bin_2;i_2++) {
pin = ABSPTR(Data,dim_1,dim_2,j_1,i_2);
for (i_1=j_1;i_1<j_1+bin_1;i_1++) {
value = *(pin++);
if NODUMMY(value,Dummy,DDummy)
{ sum += value; count += 1.0; }
}
}
if (count>0.0) *(pout++) = Average?sum/count:sum;
else *(pout++) = Dummy;
}
dim_1 /= bin_1; dim_2 /= bin_2;
if (pOutDim_1!=NULL) *pOutDim_1=dim_1;
if (pOutDim_2!=NULL) *pOutDim_2=dim_2;
}
}
} /* IpolRebin2 */
/*****************************************************************************/
|