1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
/*
* Project: The SPD Image correction and azimuthal regrouping
* http://forge.epn-campus.eu/projects/show/azimuthal
*
* Copyright (C) 2005-2010 European Synchrotron Radiation Facility
* Grenoble, France
*
* Principal authors: P. Boesecke (boesecke@esrf.fr)
* R. Wilcke (wilcke@esrf.fr)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* and the GNU Lesser General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*/
# define POISSON_VERSION "poisson : V1.1 Peter Boesecke 2007-02-21"
/*+++------------------------------------------------------------------------
NAME
gauss --- routines for poissonian distributions
SYNOPSIS
# include poisson.h
HISTORY
2000-11-17 V0.0 Peter Boesecke creation, problem in SumPoisson20
All routines to approximate SumPoisson taken from
http://www.io.com/~ritter/JAVASCRP/BINOMPOI.HTM
2000-11-18 V0.1 PB InvSumPoisson loop improved
2000-11-18 V0.2 SumPoisson works now correctly
2000-11-22 V1.0 Generates now correct mean and sigma
2007-02-21 V1.1 POISSON_VERSION updated and pi defined as constant.
SaxsDefinition.h is not needed any more
----------------------------------------------------------------------------*/
# include "poisson.h"
#ifndef ROUND
# define ROUND( x ) floor( ( x ) + 0.5 )
#endif
#ifndef MAX2
# define MAX2( x, y ) (( x ) < ( y ))?( y ):( x )
#endif
long fac( long x ) // x!
{
long t = 1l;
while (x > 1l)
t *= x--;
return( t );
} /* fac */
double logfac( long x ) // log(x!)
{ // by Stirling's formula Knuth I: 111
const double pi = 3.1415926535897932384626;
double invx, invx2, invx3, invx5, invx7;
double sum;
if (x <= 1l) x = 1l;
if (x < 12l)
return log( fac( x ) );
else {
invx = (double) 1.0 / (double) x;
invx2 = invx * invx;
invx3 = invx2 * invx;
invx5 = invx3 * invx2;
invx7 = invx5 * invx2;
sum = ((x + 0.5) * log(x)) - x;
sum += log(2*pi) * 0.5;
sum += (invx / 12.0) - (invx3 / 360.0);
sum += (invx5 / 1260.0) - (invx7 / 1680.0);
return ( sum );
}
} /* logfac */
double g( double x )
{ // Peizer & Pratt 1968, JASA 63: 1416-1456
const double eps = 1e-10;
const double switchlev = 0.1;
double z, d, di;
long i;
if (x == 0)
z = 1;
else
if (fabs(x-1.0)<eps) z = 0;
else {
d = 1.0 - x;
if (fabs(d) > switchlev)
z = (1.0 - (x * x) + (2.0 * x * log(x))) / (d * d);
else {
z = d / 3.0; // first term
di = d; // d**1
for (i = 2l; i <= 7l; i++) {
di *= d; // d**i
z += (2.0 * di) / ((i+1) * (i+2));
}
}
}
return ( z );
} /* g */
double IntGauss1( double x )
{ // Abramowitz & Stegun 26.2.19
double
d1 = 0.0498673470,
d2 = 0.0211410061,
d3 = 0.0032776263,
d4 = 0.0000380036,
d5 = 0.0000488906,
d6 = 0.0000053830;
double a,t;
a = fabs(x),
t = 1.0 + a*(d1+a*(d2+a*(d3+a*(d4+a*(d5+a*d6)))));
// to 16th power
t *= t; t *= t; t *= t; t *= t;
t = 1.0 / (t+t); // the MINUS 16th
if (x >= 0) t = 1-t;
return( t );
} /* IntGauss1 */
double SumPoisson20( long k, double u ) // Integral(0,k,Poisson(k,u)) for k>20
{ // Peizer & Pratt 1968, JASA 63: 1416-1456
double s;
double d1, d2;
double z;
s = (double) k + (double) (1.0/2.0);
d1 = (double) k - u + (double) (2.0/3.0);
d2 = d1 + (double) 0.02/(double) (k+1l);
z = (1.0 + g(s/u)) / u;
z = d2 * sqrt(z);
z = IntGauss1( z );
return( z );
} /* SumPoisson20 */
double Poisson( long k, double ny ) // poisson distribution
{
double value = 1.0;
long i;
double logsum = 0.0;
for (i=1;i<=k;i++) {
logsum += log(ny/i);
}
value *= exp(-ny+logsum);
return ( value );
} /* Poisson */
double Poisson1( long k, double ny ) // poisson distribution Sterling
{
return ( exp(-ny+log(ny)*k-logfac(k)) );
} /* Poisson */
double SumPoisson( long k, double ny ) // Sum(0,k,Poisson(k,ny))
/* cumulative sum of the poisson distribution */
{
double sum;
long j;
if (k >= 20)
sum = SumPoisson20( k, ny );
else
{
sum = 0.0; j = 0;
while (j <= k)
if (j<12) sum += Poisson( j++, ny ); else sum += Poisson1( j++, ny );
if (sum > 1.0) sum = 1.0;
}
return( sum );
} /* SumPoisson */
double IntPoisson( double k, double ny ) // Integral(0,k,Poisson(k,ny))
{ // interpolation of SumPoisson
long k1, k2;
double y1;
double value;
k1 = floor(k); k2 = k1+1;
y1 = SumPoisson( k1 , ny );
value = y1 + Poisson( k2 , ny ) * (k-k1);
return( value );
} /* IntPoisson */
long InvSumPoisson ( double y, double ny ) // Inverted SumPoisson
{ // Newton tangential approximation
const int imax = 200;
const double diffeps = 1e-14;
const double amin = 1e-16;
double k, kold;
double yn;
double a, b;
double eps;
int i=0;
if (ny<1e-6) return( 0.0 );
if (ny>1) eps = sqrt(ny)/10.0;
else eps = ny/10.0;
k = ny;
for (i=1;i<imax;i++) {
yn = IntPoisson( k, ny );
if ( ny < 100 ) a = Poisson( ceil(k), ny );
else a = Poisson( floor(k), ny );
if (fabs(a)<amin) break;
if ((a>0) && ( 1.0-yn < diffeps )) break;
if ((a<0) && ( yn < diffeps )) break;
b = yn-a*k;
kold =k; k = (y - b)/a; if (k<0) k=0;
if (fabs(k-kold)<eps) break;
}
return( ceil(k) );
} /* InvSumPoisson */
void PoissonNoiseSeed( unsigned int seed ) // set random number seed
{ srand( seed );
} /* PoissonNoiseSeed */
long PoissonNoise( double ny ) // create poissonian distributed noise
{
int rannum = rand();
double p;
long value;
/* create random numbers between 0 and 1 */
p = rannum/(RAND_MAX+1.0);
/* project the range 0 to 1 to the x-range of the poisson distribution */
value = InvSumPoisson ( p, ny );
return ( value );
} /* PoissonNoise */
double RandomNoise( void ) // create random noise between 0.0 and 1.0
{
int rannum = rand();
double value;
/* create random numbers between 0 and 1 */
value = rannum/(RAND_MAX+1.0);
return ( value );
} /* PoissonNoise */
|