1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
|
/*
* Project: The SPD Image correction and azimuthal regrouping
* http://forge.epn-campus.eu/projects/show/azimuthal
*
* Copyright (C) 2005-2010 European Synchrotron Radiation Facility
* Grenoble, France
*
* Principal authors: P. Boesecke (boesecke@esrf.fr)
* R. Wilcke (wilcke@esrf.fr)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* and the GNU Lesser General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*/
# define POLARIZATION_VERSION "polarization : V1.61 Peter Boesecke 2011-07-11"
/*+++------------------------------------------------------------------------
NAME
polarization --- routines for polarization correction
SYNOPSIS
# include waxs.h
# include polarization.h
HISTORY
2004-07-27 V1.0
2004-07-28 V1.1 polarization_Init(..., int Invert) added
2004-10-31 V1.2 polarization_Init(..., double Factor, ...) added
2010-03-18 V1.3 include reference.h for ProjectionType
2010-12-12-V1.5 unused PolarizationParams removed
2011-06-22 V1.6 orientation recalculation 1..16 added
2011-07-11 V1.61 polarization.h: Ori was double, defined as long int
DESCRIPTION
The function polarization_factor calculates the polarization factor for
coordinates in the SAXS reference system (see *). The image can
either be an Ewald-sphere projection of a scattering pattern
(waxs-projection) or a flat detector pattern (saxs-projection).
Three parameters describe the polarization of the incident beam: the
polarization P (0<=P<=1), the ellipticity PChi (-pi/4<=PChi<=pi/4) and
the inclination PPsi (0<=PPsi<=pi) of the polarization plane. The
ellipticity PChi is zero for linear polarization. For circular
polarization its absolute value is pi/4 and smaller for elliptical
polarization. The polarization factor is symmetric for PChi and
therefore independent of the helicity.
The angle PPsi describes a ccw rotation of the polarization plane
around axis x_3 with respect to the x_1 axis in orientation 1.
Orientation 1 corresponds to a righhanded coordinate system with the axes
x_1, x_2 and x_3 where x_1 is horizontal and pointing to the right,
axis x_2 is pointing upwards and axis x_3 against the observer and against
the travelling direction of the incident beam. The image is observed in
the x_1, x_2 plane.
For a different orientation an internal OPsi is recalculated accordingly:
orientation OPsi
1 : 1, 2, 3 PPsi
2 : -1, 2, 3 -PPsi+pi
3 : 1,-2, 3 -PPsi
4 : -1,-2, 3 PPsi-pi
5 : 2, 1, 3 -PPsi+pi/2
6 : 2,-1, 3 PPsi-pi/2
7 : -2, 1, 3 PPsi+pi/2
8 : -2,-1, 3 -PPsi-pi/2
9 : 1, 2,-3 PPsi
10: -1, 2,-3 -PPsi+pi
11: 1,-2,-3 -PPsi
12: -1,-2,-3 PPsi-pi
13: 2, 1,-3 -PPsi+pi/2
14: 2,-1,-3 PPsi-pi/2
15: -2, 1,-3 PPsi+pi/2
16: -2,-1,-3 -PPsi-pi/2
In the following, 3d vectors are followed by '~', the length of a vector
is just its name: e.g. kin = ||kin~||. Vectors with unit length are
followed by '^', e.g. kin^ = kin~/kin.
kin~ : wavevector of incident beam
(i) kout~ : wavevector of scattered beam
s~ = kout~ - kin~ : scattering vector
The scattering is elastic. The wavenumber k of kin~ and kout~ is:
(ii) k = 1/wavelength = kin = kout
Scattering Geometry
The input image must be an Ewald sphere projection of the scattering pattern
as created with saxs_waxs. The unit vectors in lab space are: e1^, e2^, e3^.
Axis 3 in lab space is parallel to axis 3 of the projection. The azimuths of
the axes 1 and 2 of the projections are identical to the azimuths of the axes 1
and 2 in lab space. For details see waxs.c.
The incident beam (kin~) is antiparallel to axis3.
(iii) kin~ = -kin * e3^
The saxs-coordinates sp_1 and sp_2 of the input image are:
(iv) sp_1 = s * cos(alpha)
sp_2 = s * sin(alpha)
From sp_1 and sp_2 the direction kout^ of the scattered beam is calculated
using the routine waxs_sp2kdir:
( sin(2Theta)*cos(alpha) ) ( kout1 )
(v) kout^ = | sin(2Theta)*sin(alpha) | = | kout2 |
( -cos(2Theta) ) ( kout3 )
*) coordinates in the SAXS reference system:
sp_1 = k * ((x_1+off_1) - cen_1) * (pix_1/dis)
sp_2 = k * ((x_2+off_2) - cen_2) * (pix_2/dis)
where x_1, x_2 are the pixel coordinates, off_1,off_2, the offsets,
cen_1,cen_2 the point of normal incidence ("poni", "center"), pix_1,pix_2,
the pixel sizes, dis the distance between the sample and the point of
normal incidence and k the wavenumber (1/wavelength). SAXS-coordinates are
correspondingly defined in the unprojected and in the projected image.
Polarization factor
The E-vector Eout of the scattered beam kout is proportional to the projection
of the E-vector Ein of the incident beam kin to the transversal plane of the
scattered beam:
(vi) Eout = f * ( Ein - kout^ (kout^*Ein) )
The scattered intensity Iout is given by
(vii) Iout = <Eout * Eout*>
where Eout* denotes the complex conjugate of Eout. Applying eq. vii to eq. vi
gives the result
(viii) Iout = f*f ( <Ein * Ein*> - <(kout^ * Ein)*(kout^ * Ein*)> )
Die incident wave is transverse to axis 3 and can be described with
( a1*exp(i*(phi1-2*pi*ny*t)) )
(ix) Ein = | a2*exp(i*(phi2-2*pi*ny*t)) |
( 0 )
where a1 and a2 are the real electric amplitudes, phi1 and phi2 the phases,
ny the frequency and t the time. The description of polarization follows the
notation of Born and Wolf [1].
Inserting eq. 9 into eq. viii returns the result
Iout = f*f * ( (1-kout1*kout1) * (s0+s1)/2
(x) + (1-kout2*kout2) * (s0-s1)/2
- kout1*kout2 * s2 )
where s0, s1 and s2 are the Stokes parameter of the incident wave. The Stokes
parameters describe the polarization of the incident wave and are related
to a1, a2 and delta=phi1-phi2 in the following way.
(xi a) <a1*a1> = (so+s1)/2
(xi b) <a2*a2> = (so-s1)/2
(xi c) <2*a1*a2*cos(delta)> = s2
(xi d) <2*a1*a2*sin(delta)> = s3
The Stokes parameter of the incident wave can be separated into an unpolarized
s(1) and a polarized part s(2):
(xii a) s = s(1) + s(2) = ( s0, s1, s2, s3 )
(xii b) s(1) = ( (1-P)*s0, 0, 0, 0 )
(xii c) s(2) = ( P*s0, s1, s2, s3 )
where P is the polarization (0<=P<=1). If P is 0 the wave is totally
unpolarized, if P is 1 the wave is totally polarized.
The polarized portion s(2) can be described by the Poincar notation:
(xiii a) s0(2)+s1(2) = P*so+s1 = P*so*(1+cos(2*PChi)*cos(2*PPsi))
(xiii b) s0(2)-s1(2) = P*so-s1 = P*so*(1-cos(2*PChi)*cos(2*PPsi))
(xiii c) s2(2) = s2 = P*so*cos(2*PChi)*sin(2*PPsi)
with
P : degree of polarization (0<=P<=1)
PChi : ellipticity (after Poincar) (-pi/4<=PChi<=+pi/4)
PChi=-pi/4 left hand (cw) circular polarization
PChi<0 left hand polarization
PChi==0 linear polarization
PChi>0 right hand polarization
PChi=pi/4 right hand (ccw) circular polarization
PPsi : inclination of the plane of polarization (after Poincar) (0<=PPsi<pi)
PPsi is the angle between axis x_1 and the plane of polarization
Because the angles PChi and PPsi are defined in a mirrored coordinate system
with the incident beam parallel to e3^ (and not antiparallel) the signs of the
angle PPsi must be altered if used in the standard SAXS coordinate system. The
result is independent of the sign of PChi.
The scattering intensity Iout can also be splitted into an unpolarized and
a polarized part:
(xiv a) Iout = Iout(1) + Iout(2)
(xiv b) Iout(1) = f*f * (1-P)*s0 * ( 1 + kout3*kout3 )/2
(xiv c) Iout(2) = f*f * P *s0 * (
(1-kout1*kout1) * 0.5 * (1+cos(2*PChi)*cos(2*PPsi))
+ (1-kout2*kout2) * 0.5 * (1-cos(2*PChi)*cos(2*PPsi))
- kout1*kout2 * cos(2*PChi)*sin(2*PPsi) )
The number of scattered photons per steradian Iout scattered by a cloud of
n/A independent electrons n per area A that is illuminated with Iin incident
photons is:
(xv) Iout = Iin * (n/A * re*re) * polarization_factor(sp)
where Iin=s0 is the incident beam intensity, n/A the number of electrons per
cross section and re the classical electron radius.
For small scattering angles ||sp||/k<<1 the polarization_factor approaches 1.
The factor f*f is equal to n/A*re*re, where n/A is area density of electrons
and re is the classical electron radius.
[1] Born&Wolf, Principles of Optics, 6th (corrected) edition 1997,
Cambridge University Press 1980, 10.8 and 1.4.
USAGE
include "waxs.h"
include "polarization.h"
include "reference.h"
PParams pparams;
double factor;
int invert, projection;
WaxsCoord wc;
double K, rot1, rot2, rot3;
double pol, pchi, ppsi;
double polfac; // optional variable for polarization factor
factor = 1.0; // to calculate #electrons/nm^3 set factor to re^2/nm^3, e.g.
// factor = num_str2double ( "re*re/nm3", NULL, &errval );
invert=0; // 1 to invert the calculated polarization factor
projection = IO_ProSaxs; // IO_ProSaxs (flat detector pattern) or
// IO_ProWaxs (Ewald sphere projection)
K = WAVENUMBER(wavelength_m);
rot1 = 0.0; // rotation around lab axis 1 [rad]
rot2 = 0.0; // rotation around lab axis 2 [rad]
rot3 = 0.0; // rotation around lab axis 3 [rad]
pol = 1.0; // degree of polarization (0<=P<=1)
pchi = 0.0; // ellipticity (after Poincar) (-pi/4<=PChi<=+pi/4)
// PChi=-pi/4 left hand (cw) circular polarization
// PChi<0 left hand polarization
// PChi==0 linear polarization
// PChi>0 right hand polarization
// PChi=pi/4 right hand (ccw) circular polarization
ppsi = 0.0; // inclination of the plane of polarization (after Poincar)
// (0<=PPsi<pi)
Because the angles pchi and ppsi are defined for a mirrored coordinate system
with the incident beam parallel to e3^ (and not antiparallel) the sign of the
angle ppsi must be altered during initialization if the Saxs convention is
used (beam antiparallel to e3^). The polarization factor is independent of
the sign of pchi.
polarization_Init(&pparams, ori,
K, rot1, rot2, rot3, pol, pchi, -ppsi, factor, invert);
for (i2) {
for (i1) {
// The reference system of wc must be IO_Saxs
wc.s_1 = INDEX2S(i1,Offset_1,PSize_1,Center_1,SampleDistance,WaveLength);
wc.s_2 = INDEX2S(i2,Offset_2,PSize_2,Center_2,SampleDistance,WaveLength);
polfac = polarization_factor ( &pparams, wc, projection );
if (polfac<0) continue; // error
...
}
}
----------------------------------------------------------------------------*/
/******************************************************************************
* Include Files *
******************************************************************************/
# include "polarization.h"
# include "reference.h" // for ProjectionType
/******************************************************************************
* Private Constants *
******************************************************************************/
# define R_PI 3.1415926535897932384626
// static const double deg2rad = R_PI/180.0;
// static const double rad2deg = 180.0/R_PI;
// static const double pi = R_PI;
// static const double halfpi = R_PI*0.5;
static const double quarterpi = R_PI*0.25;
// static const double twopi = R_PI*2.0;
// static const double one = 1.0;
// static const double eps = 1e-30;
static const double qpi_eps = 1e-6;
/******************************************************************************
* Routines *
******************************************************************************/
void polarization_PrintParams ( FILE * out, PParams Params )
{ PParams * pParams = &Params;
if (!pParams->Init) return;
fprintf(out," Init = %d\n", pParams->Init);
fprintf(out," Ori = %ld\n", pParams->Ori);
fprintf(out," P = %lg\n", pParams->P);
fprintf(out," PChi = %lg\n", pParams->PChi);
fprintf(out," PPsi = %lg\n", pParams->PPsi);
fprintf(out," Factor = %lg\n", pParams->Factor);
fprintf(out," Invert = %d\n", pParams->Invert);
fprintf(out," halfOnePlusCos2ChiCos2Psi = %lg\n",
pParams->halfOnePlusCos2ChiCos2Psi);
fprintf(out," halfOneMinusCos2ChiCos2Psi = %lg\n",
pParams->halfOneMinusCos2ChiCos2Psi);
fprintf(out," Cos2ChiSin2Psi = %lg\n", pParams->Cos2ChiSin2Psi);
waxs_PrintParams( out, pParams->wparams );
} // polarization_PrintParams
/*+++------------------------------------------------------------------------
NAME
polarization_Init --- Initialisation of parameters
SYNOPSIS
int polarization_Init ( PParams * pParams, long ori,
double k, double rot1, double rot2, double rot3,
double P, double PChi, double PPsi, double Factor,
int Invert );
DESCRIPTION
It initializes all static parameters.
ARGUMENTS
ori : orientation (default: 1)
k : wavenumber
rot1,
rot2,
rot3 : detector rotations as defined in waxs.c
P : degree of polarization (0<=P<=1)
PChi : ellipticity (after Poincar) (-pi/4<=PChi<=+pi/4)
PChi=-pi/4 left hand (cw) circular polarization
PChi<0 left hand polarization
PChi==0 linear polarization
PChi>0 right hand polarization
PChi=pi/4 right hand (ccw) circular polarization
PPsi : inclination of the plane of polarization (after Poincar) (0<=PPsi<pi)
Factor: positive multiplication factor larger than 0
Invert: switch for the function polarization_factor:
0: the polarization factor P multiplied with Factor is calculated
(P*Factor),
range of returned values (0..Factor)
1: the inverse of the polarization factor P divided by Factor is
calculated (1/(P*Factor)),
range of returned value (1/Factor..inf), instead of inf the
value 0 is returned.
RETURN VALUE
returns 0 if OK
otherwise error
----------------------------------------------------------------------------*/
int polarization_Init ( PParams * pParams, long ori,
double k, double rot1, double rot2, double rot3,
double P, double PChi, double PPsi, double Factor,
int Invert )
{
double Cos2Chi, Sin2Chi, Cos2Psi, Sin2Psi;
double OPsi;
if (!pParams) return(-2);
pParams->Init = 0;
// Initialize waxs (not rotated)
if ( waxs_Init ( &(pParams->wparams), k, rot1, rot2, rot3 ) ) return( -1 );
// Polarization
if ( ( P < 0.0 ) || ( P > 1.0 ) ) return( -1 );
pParams->P = P;
// Orientation change
if (ori<0) ori=raster_inversion ( -ori );
pParams->Ori = ori;
switch (ori) {
case 2: // 2 : -1, 2, 3 -PPsi+R_PI
case 10: // 10: -1, 2,-3 -PPsi+R_PI
OPsi=-PPsi+R_PI;
break;
case 3: // 3 : 1,-2, 3 -PPsi
case 11: // 11: 1,-2,-3 -PPsi
OPsi=-PPsi;
break;
case 4: // 4 : -1,-2, 3 PPsi-R_PI
case 12: // 12: -1,-2,-3 PPsi-R_PI
OPsi=PPsi-R_PI;
break;
case 5: // 5 : 2, 1, 3 -PPsi+R_PI/2
case 13: // 13: 2, 1,-3 -PPsi+R_PI/2
OPsi=-PPsi+R_PI/2;
case 6: // 6 : 2,-1, 3 PPsi-R_PI/2
case 14: // 14: 2,-1,-3 PPsi-R_PI/2
OPsi=PPsi-R_PI/2;
break;
case 7: // 7 : -2, 1, 3 PPsi+R_PI/2
case 15: // 15: -2, 1,-3 PPsi+R_PI/2
OPsi=PPsi+R_PI/2;
break;
case 8: // 8 : -2,-1, 3 -PPsi-R_PI/2
case 16: // 16: -2,-1,-3 -PPsi-R_PI/2
OPsi=-PPsi-R_PI/2;
break;
default: // 1 : 1, 2, 3 PPsi
// 9 : 1, 2,-3 PPsi
OPsi=PPsi;
}
// Poincar parameters
if ( ( PChi<-quarterpi-qpi_eps ) || ( PChi>quarterpi+qpi_eps ) ) return( -1 );
pParams->PChi = PChi;
pParams->PPsi = OPsi;
if ( Factor <= 0 ) return( -1 );
pParams->Factor=Factor;
pParams->Invert=Invert;
Cos2Chi=cos(2.0*PChi);
Sin2Chi=sin(2.0*PChi);
Cos2Psi=cos(2.0*OPsi);
Sin2Psi=sin(2.0*OPsi);
pParams->halfOnePlusCos2ChiCos2Psi = (1.0+Cos2Chi*Cos2Psi)*0.5;
pParams->halfOneMinusCos2ChiCos2Psi = (1.0-Cos2Chi*Cos2Psi)*0.5;
pParams->Cos2ChiSin2Psi = Cos2Chi*Sin2Psi;
pParams->Init = 1;
return( 0 );
} // polarization_Init
/*+++------------------------------------------------------------------------
NAME
polarization_factor --- calculates the polarization factor
SYNOPSIS
double polarization_factor ( PParams * pParams,
WaxsCoord wc, int projection )
DESCRIPTION
Calculates the polarization factor from the saxs-coordinate wc of
the Ewald sphere-projection.
ARGUMENT
WaxsCoord wc : World Coordinate (SAXS or WAXS)
int projection : World Coordinate type (ProjectionType)
IO_NoPro : invalid (0)
IO_ProSaxs : flat detector (SAXS-coordinate) (1)
IO_ProWaxs : Ewald sphere-projection (WAXS-coordinate) (2)
Attention, analogue definition of ProjectionType in SaxsImage.h, do not
change order.
RETURN VALUE
double polarization factor >= 0:
in case of an error the returned value is negative
----------------------------------------------------------------------------*/
double polarization_factor ( PParams * pParams,
WaxsCoord wc, int projection )
{
double kvec[3];
WaxsDir kdir;
double Iu, Ip;
double Value;
if (!pParams) return(-2);
// pParams initialized
if (!pParams->Init) return( -1 );
switch ( projection ) {
case IO_ProSaxs: // calculate kdir from scattering vector s
kdir = waxs_s2kdir ( &(pParams->wparams), wc );
break;
case IO_ProWaxs: // calculate kdir from Ewald - sphere projection
kdir = waxs_sp2kdir ( &(pParams->wparams), wc );
break;
default: return( -1 );
}
if (kdir.status) return( -1 );
kvec[0] = kdir.sinTwoTheta*kdir.cosAlpha;
kvec[1] = kdir.sinTwoTheta*kdir.sinAlpha;
kvec[2] = -kdir.cosTwoTheta;
// unpolarized part
Iu = (1.0-pParams->P)*0.5*(1.0+kvec[2]*kvec[2]);
Ip = pParams->P*( (1.0-kvec[0]*kvec[0])*pParams->halfOnePlusCos2ChiCos2Psi
+ (1.0-kvec[1]*kvec[1])*pParams->halfOneMinusCos2ChiCos2Psi
+ kvec[0]*kvec[1] *pParams->Cos2ChiSin2Psi );
Value = (Iu+Ip)*pParams->Factor;
if (pParams->Invert) {
if (Value>0) Value=1.0/Value;
else return( -1 );
}
return( Value );
} // polarization_factor
|