File: tilt3d.c

package info (click to toggle)
spd 1.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 3,572 kB
  • sloc: ansic: 25,938; fortran: 10,483; sh: 1,032; makefile: 75
file content (621 lines) | stat: -rw-r--r-- 17,069 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
/*
 *   Project: The SPD Image correction and azimuthal regrouping
 *                      http://forge.epn-campus.eu/projects/show/azimuthal
 *
 *   Copyright (C) 2005-2010 European Synchrotron Radiation Facility
 *                           Grenoble, France
 *
 *   Principal authors: P. Boesecke (boesecke@esrf.fr)
 *                      R. Wilcke (wilcke@esrf.fr)
 *
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU Lesser General Public License as published
 *   by the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU Lesser General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   and the GNU Lesser General Public License  along with this program.
 *   If not, see <http://www.gnu.org/licenses/>.
 */

# define TILT3D_VERSION "tilt3d : Peter Boesecke V1.11 2011-06-16"
/*---------------------------------------------------------------------------
NAME

   tilt3d - Conversion between tilt1f, tilt2f, tilt3f and 3d rotation matrix.


SYNOPSIS


DESCRIPTION

The angles tilt1f and tilt2f are defined by fit2d to calibrate the
inclination of a detector with respect to an ideal orientation.

The axes 1, 2 and 3 define a right-handed orthogonal system in the 
laboratory space. The angle tilt1f is the ccw rotation of the inclination 
axis around lab axis 3, starting from axis 2 (see *). Tilt2f is the angle 
between the detector normal and axis 3. tilt3f is a ccw rotation around 
axis 3. 

The third angle ("tilt3f") that rotates the detector in the laboratory 
around the primary beam is missing in the fit2d description. It is 
added here to define bijective transformations.

*) This is equivalent to a ccw rotation of the tilting plane around axis 3, 
starting from axis 1. Because tilt1 is defined here as the rotation of the
tilt axis starting from axis 1 there is a difference by pi/2 to the fit2d 
definition (rotation of the tilt "plane" starting from axis 1). The 
internally used angle tilt1 needs therefore to be redefined as

  tilt1=tilt1f+pi/2.

(see A. Hammersley, High Pressure Research, 1996, Vol. 14, pp. 235-248)

tilt3d_matrix calculates the rotation matrix is calculated for the 
angles tilt1f, tilt2f and tilt3f. 

tilt3d_inverse_matrix calculates the inverse rotation matrix.

tilt3d_angles determines the tilt from a given rotation matrix.

fit2d (rotations around detector axes, origin in detector plane)
  with tilt1=tilt1f+pi/2, tilt2=tilt2f, tilt3=tilt3f:

    rotation angle of tilt axis on detector (ccw around axis3):

                    |  cos(tilt1) -sin(tilt1)         0.0 |
      T1(tilt1) =   |  sin(tilt1)  cos(tilt1)         0.0 |
                    |        0.0         0.0          1.0 |

    inclination of detector plane (ccw around axis1' after Tilt1):

                    |         1.0        0.0          0.0 |
      T2(tilt2) =   |         0.0  cos(tilt2) -sin(tilt2) |
                    |         0.0  sin(tilt2)  cos(tilt2) |

    rotation angle of detector (ccw around axis 3):

                    |  cos(tilt3) -sin(tilt3)         0.0 | 
      T3(tilt3) =   |  sin(tilt3)  cos(tilt3)         0.0 |
                    |        0.0         0.0          1.0 |                  

    principal (output) ranges:

     tilt1f=Tilt[0] ] -Pi .. +Pi ]
     tilt2f=Tilt[1] [  0  .. +Pi ]
     tilt3f=Tilt[2] ] -Pi .. +Pi ]

 all rotations:

  T[tilt1, tilt2, tilt3] = T3(tilt3).T1(tilt1).T2(tilt2).T1(-tilt1)

  t11 = T[0][0] =  cos(tilt1)             cos(tilt1+tilt3) + sin(tilt1) cos(tilt2) sin(tilt1+tilt3)
  t12 = T[1][0] =  sin(tilt1)             cos(tilt1+tilt3) - cos(tilt1) cos(tilt2) sin(tilt1+tilt3)
  t13 = T[2][0] =              sin(tilt2) sin(tilt1+tilt3)

  t21 = T[0][1] = -sin(tilt1)  cos(tilt2) cos(tilt1+tilt3) + cos(tilt1)            sin(tilt1+tilt3)
  t22 = T[1][1] =  cos(tilt1)  cos(tilt2) cos(tilt1+tilt3) + sin(tilt1)            sin(tilt1+tilt3)
  t23 = T[2][1] =             -sin(tilt2) cos(tilt1+tilt3)

  t31 = T[0][2] = -sin(tilt1)  sin(tilt2)
  t32 = T[1][2] =  cos(tilt1)  sin(tilt2)
  t33 = T[2][2] =  cos(tilt2)

                         | T[0][0] T[1][0] T[2][0] |
  T(tilt1,tilt2,tilt3) = | T[0][1] T[1][1] T[2][1] |
                         | T[0][2] T[1][2] T[2][2] |

                         | t11     t12     t13 |
                       = | t21     t22     t23 |
                         | t31     t32     t33 |

                         |  c1 c13 + s1 c2 s13     s1 c13 - c1 c2 s13      s2 s13 |
                       = | -s1 c2 c13 + c1 s13     c1 c2 c13 + s1 s13     -s2 c13 |
                         | -s1 s2                  c1 s2                   c2     |

  (c13=cos(tilt1+tilt3), s13=sin(tilt1+tilt3), c1=cos(tilt1), s1=sin(tilt1), c2=cos(tilt2) etc.)

  principal ranges of the angles tilt1, tilt2, tilt3:

    tilt1  ] -Pi .. +Pi ]
    tilt2  [   0 .. +Pi ]
    tilt3  ] -Pi .. +Pi ]

Tilt1[R_] := 
 If[1 - Abs[R[[3, 3]]] > Eps, ArcTan[R[[3, 2]], -R[[3, 1]]], 
   If[Abs[1 - R[[3, 3]]] < Eps, 
    0, (ArcTan[R[[1, 1]], R[[1, 2]]] - tilt3 + 2 Pi)/2]] /. {tilt3 -> 
    0}
Tilt2[R_] := 
 If[Abs[Sin[Tilt1[R]]] > Eps, 
  ArcTan[R[[3, 3]], -R[[3, 1]]/Sin[Tilt1[R]]], 
  ArcTan[R[[3, 3]], R[[3, 2]]/Cos[Tilt1[R]]]]
Tilt3[R_] := 
 If[Abs[Sin[Tilt2[R]]] > Eps, 
  ArcTan[-R[[2, 3]]/Sin[Tilt2[R]], R[[1, 3]]/Sin[Tilt2[R]]] - 
   Tilt1[R], 
  If[Cos[Tilt2[R]] > 0, ArcTan[R[[2, 2]], R[[2, 1]]], 
   ArcTan[R[[1, 1]], R[[1, 2]]] - 2 Tilt1[R]]]

History

  2010-05-10 Peter Boesecke creation
  2010-05-17 PB V1.0
  2011-04-18 PB V1.0 tilt3d_version() added
  2011-06-01 PB V1.01 suggested parentheses added 
  2011-06-15 PB V1.1 tilt1 axis -> tilt1f plane (pi/2 difference)
  2011-06-15 PB V1.11 tilt1 calculation corrected

---------------------------------------------------------------------------*/

/***************************************************************************
* Include                                                                  *
***************************************************************************/
# include "tilt3d.h"

/***************************************************************************
* Internal                                                                 *
***************************************************************************/

/****************************************************************************
* Static Variables and Numbers                                              *
****************************************************************************/
static double tilt3d_eps=1e-8;
static double tilt3d_pi=3.1415926535897932384626;

/****************************************************************************
* Routines                                                                  *
****************************************************************************/

/*--------------------------------------------------------------------------
NAME

  tilt3d_version --- returns pointer to the version string

SYNOPSIS

  const char *tilt3d_version ( void );

DESCRPTION

  Returns pointer to the version string.

--------------------------------------------------------------------------*/
const char *tilt3d_version ( void )
{
  return ( TILT3D_VERSION );
} /* tilt3d_version */

/*---------------------------------------------------------------------------
NAME

  tilt3d_determinante

SYNOPSIS

  double tilt3d_determinante ( double A[3][3] )

DESCRIPTION

  input: double A[3][3] (3d matrix)

RETURN VALUE

  determinante of A 

---------------------------------------------------------------------------*/
double tilt3d_determinante ( double A[3][3] )
{ double determinante=0.0;

  if (!A) {
    fprintf( stderr, "ERROR: tilt3d_determinante: NULL pointer\n" );
    goto tilt3d_determinante_error;
  }

  determinante  =  A[0][0]*(A[1][1]*A[2][2]-A[2][1]*A[1][2]);
  determinante -=  A[0][1]*(A[1][0]*A[2][2]-A[1][2]*A[2][0]);
  determinante +=  A[0][2]*(A[1][0]*A[2][1]-A[1][1]*A[2][0]);

tilt3d_determinante_error:

  return( determinante );

} // tilt3d_determinante

/*---------------------------------------------------------------------------
NAME

  tilt3d_mat_scale

SYNOPSIS

  int tilt3d_mat_scale ( double A[3][3], double scale )

DESCRIPTION

  Multiplies each element of A with scale.

  input: double A[3][3] (3d matrix)
         double scale (scale factor)
  updated: A

RETURN VALUE

  status

---------------------------------------------------------------------------*/
int tilt3d_mat_scale ( double A[3][3], double scale )
{ int status=-1;
  int i,j;

  if (!A) {
    fprintf( stderr, "ERROR: tilt3d_mat_scale: NULL pointer\n" );
    goto tilt3d_mat_scale_error;
  }

  if (scale!=1.0)
    for (i=0;i<3;i++)
      for (j=0;j<3;j++)
        A[i][j] *= scale;

  status = 0;

tilt3d_mat_scale_error:

  return( status );

} // tilt3d_mat_scale

/*+++------------------------------------------------------------------------
NAME
  tilt3d_mat_transpose --- transpose a 3-dimensional matrix

SYNOPSIS

  int tilt3d_mat_transpose ( double A[3][3] )

DESCRIPTION

  A[3][3] = Transpose(A[3][3])

RETURN VALUE
  status

----------------------------------------------------------------------------*/
int tilt3d_mat_transpose ( double A[3][3] )
{ int j,k;
  double tmp;
  for (j=0;j<3;j++)
    for (k=0;k<j;k++) {
      tmp=A[j][k];
      A[j][k] = A[k][j];
      A[k][j] = tmp;
    }
  return(0);
} // tilt3d_mat_transpose

/*---------------------------------------------------------------------------
NAME

  tilt3d_isnottilt

SYNOPSIS

  int tilt3d_isnottilt ( double R[3][3] )

DESCRIPTION

  Returns 1 if R is a rotation

RETURN VALUE

  is rotation 0
  no rotation 1
  error      -1

---------------------------------------------------------------------------*/
int tilt3d_isnottilt ( double R[3][3] )
{ int is_not_tilt=-1;
  int i,j; 
  double len;

  if (!R) {
    fprintf( stderr, "ERROR:  tilt3d_isnottilt: NULL pointer\n" );
    goto  tilt3d_isnottilt_error;
  }

  if ( fabs(tilt3d_determinante(R)-1.0)>tilt3d_eps )
    is_not_tilt=1;
  else {
    is_not_tilt=0;
    for (i=0;i<3;i++) {
      len=0.0;
      for (j=0;j<3;j++)
        len+=R[i][j]*R[i][j];
      if (fabs(len-1.0)>tilt3d_eps) { 
        is_not_tilt=1; 
        break; 
      }
    }
  }

tilt3d_isnottilt_error:

  return( is_not_tilt );
  
} // tilt3d_isnottilt

/*---------------------------------------------------------------------------
NAME

  tilt3d_matrix 

SYNOPSIS

  int tilt3d_matrix(double TILT[3], double R[3][3]);

DESCRIPTION

  input:   double TILT[3] (angles tilt1f, tilt2f, tilt3f)
  updated: double R[3][3] (3d rotation matrix)

RETURN VALUE

  status

---------------------------------------------------------------------------*/
int tilt3d_matrix(double TILT[3], double R[3][3])
{ int status=-1;
  double c1, c2, c3, c13;
  double s1, s2, s3, s13;
  double tilt1, tilt2, tilt3;

  if ((!TILT)||(!R)) {
    fprintf( stderr, "ERROR: tilt3d_matrix: NULL pointer\n" );
    goto tilt3d_matrix_error;
  }

  // tilt1 = TILT[0]+pi/2 = tilt1f+pi/2
  tilt1=TILT[0]+tilt3d_pi*0.5;
  tilt2=TILT[1];
  tilt3=TILT[2];

  c1 = cos(tilt1); c2 = cos(tilt2); c3 = cos(tilt3);
  s1 = sin(tilt1); s2 = sin(tilt2); s3 = sin(tilt3);
  c13 = cos(tilt1+tilt3); s13 = sin(tilt1+tilt3);

  R[0][0] =  c1 * c13 + s1 * c2 * s13;
  R[1][0] =  s1 * c13 - c1 * c2 * s13;
  R[2][0] =  s2 * s13;

  R[0][1] = -s1 * c2 * c13 + c1 * s13;
  R[1][1] =  c1 * c2 * c13 + s1 * s13;
  R[2][1] = -s2 * c13;

  R[0][2] = -s1 * s2;
  R[1][2] =  c1 * s2;
  R[2][2] =  c2;

  status = 0;

tilt3d_matrix_error:

  return( status );

} //  tilt3d_matrix

/*---------------------------------------------------------------------------
NAME
  
  tilt3d_inverse_matrix 

SYNOPSIS 

  int tilt3d_inverse_matrix(double TILT[3], double R[3][3]);

DESCRIPTION

  input:   double TILT[3]  (angles tilt1f, tilt2, tilt3)
  updated: double R[3][3] (inverse 3d rotation matrix)

RETURN VALUE

  status

---------------------------------------------------------------------------*/
int tilt3d_inverse_matrix(double TILT[3], double R[3][3])
{ int status=-1;

  if ( (status=tilt3d_matrix(TILT, R)) ) goto tilt3d_inverse_matrix_error;
  if ( (status=tilt3d_mat_transpose (R)) ) goto tilt3d_inverse_matrix_error;

tilt3d_inverse_matrix_error:

  return( status );

} //  tilt3d_inverse_matrix

/*---------------------------------------------------------------------------
NAME

   tilt3d_angles

SYNOPSIS

  int tilt3d_angles(double TILT[3], double R[3][3]);

DESCRIPTION

  input:    double R[3][3]  (rotation matrix)
  output:   double TILT[3]  (angles tilt1f, tilt2f, tilt3f)

  Calculate Tilt[] from an arbitrary 3d rotation matrix R[][].

  t11 -> R[0][0]
  t12 -> R[1][0]
  t13 -> R[2][0] 

  t21 -> R[0][1]
  t22 -> R[1][1]
  t23 -> R[2][1] 

  t31 -> R[0][2]
  t32 -> R[1][2]
  t33 -> R[2][2]

  Tilt1[R_] := 
   If [ ( 1 - Abs[t33] ) > Eps, 
        ArcTan[t32, -t31], 
        If [ t33 > 0, 
             0, 
             (If [ t12 >= 0, 
                   ArcTan[t11, t12], 
                   ArcTan[t11, t12] + 2 Pi
                 ] - tilt3)/2
           ]
      ] /. {tilt3 -> 0}

  Tilt2[R_] := 
   If [ Abs[Sin[Tilt1[R]]] > Eps, 
        ArcTan[t33, -t31/Sin[Tilt1[R]]], 
        ArcTan[t33,  t32/Cos[Tilt1[R]]]
      ]

  if (tilt2<0) tilt1+=Pi and recalculate tilt2

  Tilt3[R_] := 
   If [ Abs[Sin[Tilt2[R]]] > Eps, 
        ArcTan[-t23/Sin[Tilt2[R]], t13/Sin[Tilt2[R]]] - Tilt1[R], 
        If [ t33 > 0, 
             ArcTan[t22, t21], 
             If [ t12 > 0, 
                  ArcTan[t11, t12] - 2 Tilt1[R], 
                  ArcTan[t11, t12] - 2 Tilt1[R] + 2 Pi
                ]
           ]
      ]
  
  updated:   double TILT[3]  (angles tilt1f, tilt2, tilt3)
  input:     double R[3][3] (3d rotation matrix)

  principal ranges of the output Tilt[] angles:

    Tilt[0] ] -Pi .. +Pi ] (Tilt[0]=tilt1-pi/2)
    Tilt[1] [  0  .. +Pi ] (Tilt[1]=tilt2)
    Tilt[2] ] -Pi .. +Pi ] (Tilt[2]=tilt3)

RETURN VALUE

  status

---------------------------------------------------------------------------*/
int tilt3d_angles(double TILT[3], double R[3][3])
{ int status=-1;
  double tilt1=0.0, tilt2=0.0, tilt3=0.0; // set defaults
  double c1;
  double s1, s2;
  double determinante=0.0, scale=1.0;

  if ((!TILT)||(!R)) {
    fprintf( stderr, "ERROR: tilt3d_angles: NULL pointer\n" );
    goto tilt3d_angle_error;
  }

  determinante =  tilt3d_determinante( R );

  if ( determinante < tilt3d_eps ) {
    fprintf( stderr, "ERROR: tilt3d_angles: Det(R) = %lg is not positive\n", 
             determinante );
    goto tilt3d_angle_error;
  }

  scale = pow( determinante, 1.0/3.0 );

  // TILT[0] = tilt1f = tilt1-pi/2
  TILT[0] = tilt1-tilt3d_pi*0.5;
  TILT[1] = tilt2;
  TILT[2] = tilt3;

  if ( (status=tilt3d_mat_scale ( R, scale )) ) {
    goto tilt3d_angle_error;
  }

  if ( tilt3d_isnottilt ( R ) ) {
    fprintf( stderr, "ERROR: tilt3d_angles: R is not a rotation matrix\n");
    goto tilt3d_angle_error;
  }

  // tilt1 (default tilt3->0)
   if ( ( 1.0 - fabs(R[2][2]) ) > tilt3d_eps ) {
     tilt1 = atan2(-R[0][2],R[1][2]);
   } else {
     if ( R[2][2] > 0.0 ) {
       tilt1 = 0.0;
     } else {
       if ( R[1][0] >= 0.0 ) {
         tilt1 = (atan2(R[1][0],R[0][0]) - tilt3)*0.5;
       } else {
         tilt1 = (atan2(R[1][0],R[0][0]) + 2.0*tilt3d_pi - tilt3)*0.5 ;
       }
     } 
   }
  if (fabs(tilt1+tilt3d_pi)<tilt3d_eps) tilt1=-tilt3d_pi;
  if (tilt1>tilt3d_pi) tilt1-=tilt3d_pi*2.0;
  if (tilt1<=-tilt3d_pi) tilt1+=tilt3d_pi*2.0;
  c1 = cos(tilt1); s1 = sin(tilt1);

  // tilt2
  do {
    if ( fabs(s1) > tilt3d_eps ) {
      tilt2 = atan2(-R[0][2]/s1, R[2][2]);
    } else {
      tilt2 = atan2(R[1][2]/c1, R[2][2]);
    }
    if (fabs(tilt2+tilt3d_pi)<tilt3d_eps) tilt2=-tilt3d_pi;
    if ( tilt2>tilt3d_pi ) tilt2-=tilt3d_pi*2.0;
    if (tilt2<=-tilt3d_pi) tilt2+=tilt3d_pi*2.0;
    if ( tilt2<0.0 ) {
      if (tilt2<=-tilt3d_eps) {
        tilt1 += tilt3d_pi;
        if (tilt1>tilt3d_pi) tilt1-=tilt3d_pi*2.0;
      } else tilt2=0.0;
    }
  } while ( tilt2<0.0 );
  s2 = sin(tilt2);

  // tilt3
  if ( fabs(s2) > tilt3d_eps ) {
    tilt3 = atan2(R[2][0]/s2,-R[2][1]/s2) - tilt1;
  } else {
    if ( R[2][2] > 0.0 ) {
      tilt3 = atan2(R[0][1],R[1][1]);
    } else {
      tilt3 = atan2(R[1][0],R[0][0]) - 2.0*tilt1;               
    }
  }
  if (fabs(tilt3+tilt3d_pi)<tilt3d_eps) tilt3=-tilt3d_pi;
  if (tilt3>tilt3d_pi) tilt3-=tilt3d_pi*2.0;
  if (tilt3<=-tilt3d_pi) tilt3+=tilt3d_pi*2.0;

  // TILT[0] = tilt1f = tilt1-pi/2
  TILT[0] = tilt1-tilt3d_pi*0.5;
  TILT[1] = tilt2;
  TILT[2] = tilt3;

  if ( (TILT[0]) > tilt3d_pi ) TILT[0]-=tilt3d_pi*2.0;
  else if ( (TILT[0]) <= -tilt3d_pi ) TILT[0]+=tilt3d_pi*2.0;

  status = 0;

tilt3d_angle_error:

  return( status );

} // tilt3d_angles