1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
|
/*
* Project: The SPD Image correction and azimuthal regrouping
* http://forge.epn-campus.eu/projects/show/azimuthal
*
* Copyright (C) 2005-2010 European Synchrotron Radiation Facility
* Grenoble, France
*
* Principal authors: P. Boesecke (boesecke@esrf.fr)
* R. Wilcke (wilcke@esrf.fr)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* and the GNU Lesser General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*/
# define WAXS_VERSION "waxs : V1.12 Peter Boesecke 2011-07-23"
/*+++------------------------------------------------------------------------
NAME
waxs --- Transformation between coordinates of rotated detectors
SYNOPSIS
# include waxs.h
HISTORY
2001-04-19 V1.0 Peter Boesecke
2002-05-09 V1.1 PB kdir2sp, waxs_Waxs
2004-07-27 V1.2 PB sp2kdir and kdir2sp renamed to waxs_sp2kdir and waxs_kdir2sp,
_fprint_dir renamed to waxs_PrintDir,
WaxsDir, waxs_sp2kdir, waxs_kdir2sp, waxs_PrintDir,
waxs_s2kdir and waxs_kdir2s defined in waxs.h
2004-12-07 V1.3 PB cylindrical symmetry:
SymType, SymRot and InvSymRot added to WaxsParams,
new waxs_SymInit, waxs_ssym2kdir, waxs_kdir2ssym
waxs_saxs and waxs_waxs call waxs_ssym2kdir and
waxs_kdir2ssym if SymType is set.
waxs_Init initializes SymType, SymRot and InvSymRot with 0.
The symmetry axis is always projected to axis 1.
2004-12-08 V1.4 PB SymType 1 and 2
2004-12-11 V1.5 PB waxs_Uni2Iso, waxs_Iso2Uni
-> test status <-
2007-04-19 V1.6 PB -Wall compiler warnings resolved
2009-01-09 V1.7a PB waxs_PrintVector, waxs_kdir2svec, waxs_Saxs2Vector,
_svec_set added
2010-03-18 V1.8 PB waxs_Range, waxs_Transform, waxs_not_init added
waxs_Range and waxs_Transform arguments changed
2010-05-31 V1.9 PB waxs_kdir2svec: calculation of s corrected
2010-05-31 V1.10 PB no global WaxsParams
2011-06-27 V1.11 PB new waxs_S2S, waxs_get_transform and
waxs_Transform updated,
waxs_Saxs -> waxs_Waxs2Saxs,
waxs_Waxs -> waxs_Saxs2Waxs,
all conversion function with input and output params
2011-07-23 V1.12 PB rename functions
waxs_Saxs2Saxs -> waxs_S2S,
waxs_Waxs2Saxs -> waxs_Sp2S,
waxs_Saxs2Waxs -> waxs_S2Sp,
waxs_Uni2Iso, waxs_Iso2Uni -> no change
DESCRIPTION
These routines calculate the projection of the Ewald sphere for a scattering
pattern that was taken with an inclined 2d-detector and project it to a plane
surface. The radial distance from the center of this surface is the length of
the scattering vector s. The azimuthal angle is proportional to the azimuthal
angle of the scattered beam.
In the following, 3d vectors are followed by '~', the length of a vector
is just its name: e.g. kin = ||kin~||. Vectors with unit length are
followed by '^', e.g. kin^ = kin~/kin.
kin~ : wavevector of incident beam
(i) kout~ : wavevector of scattered beam
s~ = kout~ - kin~ : scattering vector
The scattering is elastic. The wavenumber k of kin~ and kout~ is:
(ii) k = 1/wavelength = kin = kout
Scattering Geometry and Orientation of Detector
The angles rot1, rot2 and rot3 define the orientation of the detector
in the lab coordinate system with orientation 1. The unit vectors along the
three axes are: e1^, e2^, e3^. The rotations are applied sequentially. The
first rotation is around axis 1, the second around axis 2 and the third around
axis3. All rotations are counter clockwise. The coordinate system with
orientation 1 is defined in the following way:
origin (0,0) at lower left corner of the image
axis 1: horizontally to the right
axis 2: vertically up
axis 3: against beam direction
^ 2 (vertical)
|
|
|
|
+------> 1 (horizontal)
\
\
\
_| 3 (against primary beam)
ID01: -x <=> axis 1, y <=> axis 2, -z <=> axis 3
ID02: x <=> axis 1, -y <=> axis 3, z <=> axis 2
The primary beam (kin~) is antiparallel to axis3.
(iii) kin~ = -kin * e3^
The direction of the scattered beam relative to the coordinate system
of the inclined detector image is:
The direction of the scattered beam expressed in saxs-coordinates (see *)
of the inclined detector is:
( sc_1 )
(iv) sc~ = | sc_2 |
( -k )
Here, sc_1 and sc_2 are saxs-coordinates of the detector image with respect to
the point of normal incidence ("center"). k is the wavenumber.
The direction kout^ is calculated by
(v) kout^ = A * sc^
where A is the rotation matrix that describes the inclination of the detector.
With eq. i to eq. v the scattering vector becomes
(vi) s~ = k * kout^ + k * e3^
kout^ can also be expressed by the scattering angle 2Theta and the
azimuthal angle alpha:
( sin(2Theta)*cos(alpha) )
(vii) kout^ = A * sc^ = | sin(2Theta)*sin(alpha) |
( -cos(2Theta) )
The output image is the projection of s on a plane surface. The coordinates
are sp_1 and sp_2:
(viii) sp_1 = s * cos(alpha)
sp_2 = s * sin(alpha)
From eq. viii s and cos(alpha) can be calculated:
(ix) s = sqrt(sp_1^2+sp_2^2)
cos(alpha) = sp_1/s, sin(alpha) = sp_2/s
Eq. vi allows to calculate sin(2Theta) and cos(2Theta) from s and k:
(x) s^2 = k^2 * (kout^ + e3^)^2
= k^2 * (1 + 2*kout^*e3^ + 1)
= k^2 * 2 * (1 + kout^*e3^)
= k^2 * 2 * (1 - cos(2Theta))
= k^2 * 2 * 2*sin(Theta)^2
(xi) 2*sin(Theta)^2 = s^2/(2*k^2)
(xii) cos(2Theta) = 1-s^2/(2*k^2)
sin(2Theta) = sqrt( 2*s^2/(2*k^2) - (s^2/(2*k^2))^2 )
Eq. ix and xii allow the calculation of 2Theta and alpha from the saxs-
coordinates (sp_1, sp_2) of the projection. kout can then be calculated with
eq. vii. The saxs-coordinates (sc_1,sc_2) on the inclined detector are given by:
( sin(2Theta)*cos(alpha) ) ( sc^_1 )
(xiii) sc^ = InvA * kout^ = InvA * | sin(2Theta)*sin(alpha) | = | sc^_2 |
( -cos(2Theta) ) ( sc^_3 )
(xiv) ( k * sc^_1/sc^_3 ) ( sc_1 )
sc~ = | k * sc^_2/sc^_3 | = | sc_2 |
( -k ) ( sc_3 )
*) SAXS-Coordinates
sc_1 = k * ((x_1+off_1) - cen_1) * (pix_1/dis)
sc_2 = k * ((x_2+off_2) - cen_2) * (pix_2/dis)
where x_1, x_2 are the pixel coordinates, off_1,off_2, the offsets,
cen_1,cen_2 the point of normal incidence ("poni", "center"), pix_1,pix_2,
the pixel sizes, dis the distance between the sample and the point of
normal incidence and k the wavenumber (1/wavelength).
For small scattering angles (sqrt(sc_1^2+sc_2^2) << k) (sc_1,sc_2,-k)
approximates the scattering vector.
The detector orientation is defined by three sequential ccw-rotations around
axis 1 (rot1), axis 2 (rot2) and axis 3 (rot3).
rotation around
axis 1:
| 1.0 0.0 0.0 |
ROT_1 = | 0.0 cos(angle) -sin(angle) |
| 0.0 sin(angle) cos(angle) |
axis 2:
| cos(angle) 0.0 sin(angle) |
ROT_2 = | 0.0 1.0 0.0 |
| -sin(angle) 0.0 cos(angle) |
axis 3:
| cos(angle) -sin(angle) 0.0 |
ROT_3 = | sin(angle) cos(angle) 0.0 |
| 0.0 0.0 1.0 |
Extension to Cylindrical Symmetry
The above described projection can also be interpreted as a transformation
of the scattering pattern to the s_1-s_2-plane in reciprocal space. In this
interpretation the described pattern is only correct if the sample does not
have any preferred orientation, i.e. if the scattering is isotropic, like
for a powder. If the sample has cylindrical symmetry around a symmetry axis
sym^ some parts of the reciprocal space close to the symmetry axis are not
visible by the detector and cannot be projected.
If this type of interpretation is chosen, the symmetry type symtype must be
given and the symmetry axis must be defined with a rotation matrix SymRot in
analogy to the detector rotation: symrot1, symrot2, symrot3. The default
is 0 for all rotations. symtype 0 means isotropic sample (default),
symtype 1 means cylindrical symmetry around axis sym_1^.
The scattering pattern is projected to the ssym_1-ssym_2 plane defined by
the symmetry rotation matrix.
a) Scattering pattern to projection (saxs->waxs)
The scattering vector s~ in lab space is calculated with eq. vi. It is
projected to the symmetry axis sym^ using the scalar product:
(I) ssym_1 = sym_1^ * s~
where sym_1^ is
(1)
(II) sym_1^ = SymRot * |0|
(0)
In this case axis 1 of SymRot is the symmetry axis.
The length perpendicular to sym_1^ is calculated from the condition that the
length of the projected vector ssym_1 must be s:
(III) ssym_2 = +-sqrt(s^2-ssym_1^2) (positive and negative solution)
The third component is zero.
b) Projection to scattering pattern (waxs->saxs)
The backprojection from a projection has to fulfill the following conditions:
- the length of the scattering vector s in the projection is constant
- the component sp~ of the scattering vector s that is parallel to the
axis of cylindrical symmetry sym_1~ symmetry is constant
- the k-vector lengths are constant: k1=k0=k
(IV) s~ = sp~ + ss~ => s^2 = sp^2 + ss^2
(V) k1~ = k0~ + s~ => k^2 = k^2 + 2*k0~*s~ + s^2
In the system of the symmetry axis sym_1~ sp~ and ss~ can be written as
( ssym_1 ) ( 0 )
(VI) sp~ = | 0 | and ss~ = | ssym_2 |
( 0 ) ( ssym_3 )
ssym_1 = s~*sym_1^
k0~ = InvSymRot * kin~
By substitution of sp~ and ss~ in eq. IV using eq. VI and by removing k^2
from both sides of eq. V and by rearranging both sides of the equations one
gets:
(IVa) ssym_2^2 + ssym_3^2 = s^2 - sp^2 = B
(Va) k0_2*ssym_2 + k0_3*ssym_3 = - (s^2/2 + k0~*sp~) = A
A, B and k0~ are known numbers. The equation IVa and Va can be used to
calculate ss~ (s_2 and s_3).
The solutions for ssym_3 are:
A*k0_3 +- k0_2*sqrt( (k0_2^2+k0_3^2)*B-A^2 )
(VII) ssym_3 = -------------------------------------------
k0_2^2+k0_3^2
ssym_2 can be calculated with eq. Va, s_1 is known.
Finally, the components of s~ must be expressed in the lab coordinate system:
( ssym_1 )
(VIII) s~ = SymRot * | ssym_2 |
( ssym_3 )
Extension to General Case in 3 Dimensions
...
----------------------------------------------------------------------------*/
/******************************************************************************
* Include Files *
******************************************************************************/
# include "waxs.h"
/******************************************************************************
* Private Constants *
******************************************************************************/
# define R_PI 3.1415926535897932384626
// static const double deg2rad = R_PI/180.0;
static const double rad2deg = 180.0/R_PI;
// static const double pi = R_PI;
// static const double halfpi = R_PI*0.5;
// static const double twopi = R_PI*2.0;
// static const double one = 1.0;
static const double eps = 1e-30;
/******************************************************************************
* Private Variables *
******************************************************************************/
/******************************************************************************
* Routines *
******************************************************************************/
void _fprint_mat ( FILE * out, double A[3][3] )
{ int i,j;
for (j=0;j<3;j++) {
for (i=0;i<3;i++) {
fprintf(out," %15.3f", A[i][j]);
}
fprintf(out,"\n");
}
} // _fprint_mat
void _fprint_vec ( FILE * out, double V[3] )
{ int i;
for (i=0;i<3;i++)
fprintf(out," %15g\n", V[i] );
} // _fprint_vec
void waxs_PrintDir ( FILE * out, WaxsDir Beam )
{
fprintf(out," sinAlpha = %g\n", Beam.sinAlpha );
fprintf(out," cosAlpha = %g (%g deg)\n",
Beam.cosAlpha, atan2(Beam.sinAlpha,Beam.cosAlpha)*rad2deg );
fprintf(out," sinTwoTheta = %g\n", Beam.sinTwoTheta );
fprintf(out," cosTwoTheta = %g (%g deg)\n",
Beam.cosTwoTheta, atan2(Beam.sinTwoTheta,Beam.cosTwoTheta)*rad2deg );
} // waxs_PrintDir
void waxs_PrintParams ( FILE * out, WParams Params )
{
WParams *pParams = &Params;
if ( !pParams->Init) return;
fprintf(out," Init = %d\n", pParams->Init);
_fprint_mat ( out, pParams->Rot );
_fprint_mat ( out, pParams->InvRot );
fprintf(out," k = %g\n", pParams->k);
fprintf(out," halfdk2 = %g\n", pParams->halfdk2);
fprintf(out," SymType = %d\n", pParams->SymType);
_fprint_mat ( out, pParams->SymRot );
_fprint_mat ( out, pParams->InvSymRot );
} // waxs_PrintParams
void waxs_PrintCoord ( FILE * out, WaxsCoord sp )
{
WaxsCoord *pCoord = &sp;
fprintf(out," status = %d\n", pCoord->status);
fprintf(out," s_1 = %g\n", pCoord->s_1);
fprintf(out," s_2 = %g\n", pCoord->s_2);
} // waxs_PrintCoord
void waxs_PrintVector ( FILE * out, WaxsVector svec )
{
WaxsVector *pVector = &svec;
fprintf(out," status = %d\n", pVector->status);
fprintf(out," s_1 = %g\n", pVector->s_1);
fprintf(out," s_2 = %g\n", pVector->s_2);
fprintf(out," s_3 = %g\n", pVector->s_3);
} // waxs_PrintVector
/*+++------------------------------------------------------------------------
NAME
rotation_matrix_3 --- calculates the 3-dimensional rotation matrix
SYNOPSIS
void rotation_matrix_3 ( double Rot[3][3], int axis, double angle )
DESCRIPTION
Calculates the 3-dimensional rotation matrix for a ccw rotation of
angle degrees around axis (axis = 1 | 2 | 3, double Rot[3][3]).
RETURN VALUE
none
----------------------------------------------------------------------------*/
void rotation_matrix_3 ( double Rot[3][3], int axis, double angle )
{
switch (axis) {
case 1:
Rot[0][0] = 1.0; Rot[1][0] = 0.0; Rot[2][0] = 0.0;
Rot[0][1] = 0.0; Rot[1][1] = cos(angle); Rot[2][1] = -sin(angle);
Rot[0][2] = 0.0; Rot[1][2] = sin(angle); Rot[2][2] = cos(angle);
break;
case 2:
Rot[0][0] = cos(angle); Rot[1][0] = 0.0; Rot[2][0] = sin(angle);
Rot[0][1] = 0.0; Rot[1][1] = 1.0; Rot[2][1] = 0.0;
Rot[0][2] = -sin(angle); Rot[1][2] = 0.0; Rot[2][2] = cos(angle);
break;
case 3:
Rot[0][0] = cos(angle); Rot[1][0] = -sin(angle); Rot[2][0] = 0.0;
Rot[0][1] = sin(angle); Rot[1][1] = cos(angle); Rot[2][1] = 0.0;
Rot[0][2] = 0.0; Rot[1][2] = 0.0; Rot[2][2] = 1.0;
break;
default:
printf("ERROR in rotation_matrix_3: axis = %d, 1<=axis<=3 required.\n",
axis);
exit(-1);
}
return;
} // rotation_matrix_3
/*+++------------------------------------------------------------------------
NAME
mat_mul_3 --- product of two 3-dimensional matrices
SYNOPSIS
void mat_mul_3 ( double Out[3][3], double A[3][3], double B[3][3] )
DESCRIPTION
Out[3][3] = A[3][3]*B[3][3]
RETURN VALUE
none
----------------------------------------------------------------------------*/
void mat_mul_3 ( double Out[3][3], double A[3][3], double B[3][3] )
{ int i,j,k;
for (j=0;j<3;j++)
for (k=0;k<3;k++) {
Out[j][k] = 0.0;
for (i=0;i<3;i++)
Out[j][k] += A[i][k] * B[j][i];
}
return;
} // mat_mul_3
/*+++------------------------------------------------------------------------
NAME
vec_mul --- multiplication of a 3x3 matrix with a 3d vector
SYNOPSIS
void vec_mul ( double VOut[3], double A[3][3], double V[3] )
DESCRIPTION
VOut[3] = A[3][3]*V[3]
RETURN VALUE
none
----------------------------------------------------------------------------*/
void vec_mul ( double VOut[3], double A[3][3], double V[3] )
{ int i,j;
for (j=0;j<3;j++) {
VOut[j] = 0.0;
for (i=0;i<3;i++)
VOut[j] += A[i][j] * V[i];
}
return;
} // vec_mul
/*+++------------------------------------------------------------------------
NAME
scalar_product --- scalar product of two 3-dimensional vectors
SYNOPSIS
double scalar_product ( double V[3], double W[3] );
DESCRIPTION
Calculates the scalar product of V and W
RETURN VALUE
V[0]*W[0]+V[1]*W[1]+V[2]*W[2]
----------------------------------------------------------------------------*/
double scalar_product ( double V[3], double W[3] )
{ double value;
int i;
value=0.0;
for (i=0;i<3;i++)
value += V[i] * W[i];
return(value);
} // scalar_product
/*+++------------------------------------------------------------------------
NAME
_beam_set --- set WaxsDir
SYNOPSIS
WaxsDir _beam_set( WaxsDir *pbeam, int status )
DESCRIPTION
Changes error status in WaxsDir to status.
Other parameters are not changed.
RETURN VALUE
WaxsDir *pBeam with error status
----------------------------------------------------------------------------*/
WaxsDir _beam_set( WaxsDir *pbeam, int status )
{
pbeam->status = status;
return( *pbeam );
} // _beam_set
/*+++------------------------------------------------------------------------
NAME
_s_set --- set error status in WaxsCoord
SYNOPSIS
WaxsCoord _s_set( WaxsCoord *ps, int status )
DESCRIPTION
Changes error status in WaxsCoord to status.
Other parameters are not changed.
RETURN VALUE
WaxsCoord *ps with error status
----------------------------------------------------------------------------*/
WaxsCoord _s_set( WaxsCoord *ps, int status )
{
ps->status = status;
return( *ps );
} // _s_set
/*+++------------------------------------------------------------------------
NAME
_svec_set --- set error status in WaxsVector
SYNOPSIS
WaxsVector _svec_set( WaxsVector *psvec, int status )
DESCRIPTION
Changes error status in WaxsVector to status.
Other parameters are not changed.
RETURN VALUE
WaxsVector *psvec with error status
----------------------------------------------------------------------------*/
WaxsVector _svec_set( WaxsVector *psvec, int status )
{
psvec->status = status;
return( *psvec );
} // _svec_set
/*+++------------------------------------------------------------------------
NAME
waxs_sp2kdir --- calculates the angles of kout
SYNOPSIS
WaxsDir waxs_sp2kdir ( WaxsCoord sp )
DESCRIPTION
Calculates the unit vector of the scattered beam in lab coordinates from
the saxs-coordinates (sp_1, sp_2) of the Ewald-sphere projection.
RETURN VALUE
.status==0 : sinTwoTheta, cosTwoTheta, sinAlpha, cosAlpha angles in rad
(external angles)
.status<0 : error
.status<-1 : no solution
----------------------------------------------------------------------------*/
WaxsDir waxs_sp2kdir ( WParams * pParams, WaxsCoord sp )
{
WaxsDir Beam;
double s, s2, s2d2k2;
double tmp;
if (!pParams) return(_beam_set(&Beam,-2));
// pParams initialized
if (!pParams->Init) return(_beam_set(&Beam,-1));
s2 = sp.s_1*sp.s_1+sp.s_2*sp.s_2;
s = sqrt(s2);
s2d2k2 = s2*pParams->halfdk2;
Beam.cosTwoTheta = 1.0 - s2d2k2;
tmp = 2.0*s2d2k2-s2d2k2*s2d2k2;
if (tmp<0.0) {
if (tmp>-eps) { tmp=0.0;
} else { return(_beam_set(&Beam,-2)); }
}
Beam.sinTwoTheta = sqrt(tmp);
if (s>eps) {
Beam.cosAlpha = sp.s_1/s;
Beam.sinAlpha = sp.s_2/s;
} else {
Beam.cosAlpha = 0.0;
Beam.sinAlpha = 0.0;
}
return( _beam_set( &Beam, 0 ) );
} // waxs_sp2kdir
/*+++------------------------------------------------------------------------
NAME
waxs_s2kdir --- calculates the angles of kout
SYNOPSIS
WaxsDir waxs_s2kdir ( WaxsCoord s )
DESCRIPTION
Calculates the unit vector of the scattered beam in lab coordinates
from the saxs-coordinate (s_1, s_2) of the inclined detector image
RETURN VALUE
.status==0 : sinTwoTheta, cosTwoTheta, sinAlpha, cosAlpha angles in rad
(external angles)
.status<0 : error
.status<-1 : no solution
----------------------------------------------------------------------------*/
WaxsDir waxs_s2kdir ( WParams * pParams, WaxsCoord s )
{
WaxsDir Beam;
double veclen;
double kvec[3];
double kvecout[3];
if (!pParams) return(_beam_set(&Beam,-2));
// pParams initialized
if (!pParams->Init) return( _beam_set( &Beam,-1 ) );
veclen = sqrt(s.s_1*s.s_1+s.s_2*s.s_2+pParams->k*pParams->k);
kvec[0] = s.s_1/veclen;
kvec[1] = s.s_2/veclen;
kvec[2] = -pParams->k/veclen;
vec_mul ( kvecout, pParams->Rot, kvec );
Beam.cosTwoTheta = -kvecout[2];
Beam.sinTwoTheta = sqrt(kvecout[0]*kvecout[0]+kvecout[1]*kvecout[1]);
if (fabs(Beam.sinTwoTheta)>eps) {
Beam.cosAlpha = kvecout[0]/Beam.sinTwoTheta;
Beam.sinAlpha = kvecout[1]/Beam.sinTwoTheta;
} else {
Beam.cosAlpha = 0.0;
Beam.sinAlpha = 0.0;
}
return( _beam_set( &Beam, 0 ) );
} // waxs_s2kdir
/*+++------------------------------------------------------------------------
NAME
waxs_kdir2sp --- calc's the saxs-coordinates of the Ewald-sphere projection
SYNOPSIS
WaxsCoord waxs_kdir2sp ( WaxsDir kdir )
DESCRIPTION
Calculates the saxs-coordinates (sp_1, sp_2) of the Ewald-sphere projection
from the unit vector Beam of the scattered beam in lab coordinates
RETURN VALUE
.status==0 : sp_1, sp_2
.status<0 : error
.status<-1 : no solution
----------------------------------------------------------------------------*/
WaxsCoord waxs_kdir2sp ( WParams * pParams, WaxsDir Beam )
{
WaxsCoord sp;
double s;
if (!pParams) return(_s_set(&sp,-2));
// pParams initialized
if (!pParams->Init) return(_s_set(&sp,-1));
s = sqrt(2*(1.0-Beam.cosTwoTheta))*pParams->k;
sp.s_1 = s*Beam.cosAlpha;
sp.s_2 = s*Beam.sinAlpha;
return( _s_set( &sp, 0 ) );
} // waxs_kdir2sp
/*+++------------------------------------------------------------------------
NAME
waxs_kdir2s --- calculates the saxs-coordinates
SYNOPSIS
WaxsCoord waxs_kdir2s ( WaxsDir Beam )
DESCRIPTION
Calculates the saxs-coordinates (s_1, s_2) from the unit vector Beam
of the scattered beam in lab coordinates
RETURN VALUE
.status==0 : s_1, s_2
.status<0 : error
.status<-1 : no solution
----------------------------------------------------------------------------*/
WaxsCoord waxs_kdir2s ( WParams * pParams, WaxsDir Beam )
{
WaxsCoord sout;
double kvec[3];
double kvecout[3];
if (!pParams) return(_s_set( &sout,-2));
// pParams initialized
if (!pParams->Init) return(_s_set( &sout,-1));
kvec[0] = Beam.sinTwoTheta*Beam.cosAlpha;
kvec[1] = Beam.sinTwoTheta*Beam.sinAlpha;
kvec[2] = -Beam.cosTwoTheta;
vec_mul ( kvecout, pParams->InvRot, kvec );
// no solution for positive kvecout[2]
if (kvecout[2]>-eps) return(_s_set( &sout,-3));
sout.s_1 = -(kvecout[0]/kvecout[2])*pParams->k;
sout.s_2 = -(kvecout[1]/kvecout[2])*pParams->k;
return(_s_set( &sout,0));
} // waxs_kdir2s
/*+++------------------------------------------------------------------------
NAME
waxs_ssym2kdir --- calculates the angles of kout
SYNOPSIS
WaxsDir waxs_ssym2kdir ( WaxsCoord ssym )
DESCRIPTION
Calculates the unit vector of the scattered beam in lab coordinates from
the saxs-coordinates (ssym_1, ssym_2) of the cylindrical symmetric
Ewald-sphere projection.
RETURN VALUE
.status==0 : sinTwoTheta, cosTwoTheta, sinAlpha, cosAlpha angles in rad
(external angles)
.status<0 : error
.status<-1 : no solution
----------------------------------------------------------------------------*/
WaxsDir waxs_ssym2kdir ( WParams * pParams, WaxsCoord ssym )
{
WaxsDir Beam;
double kin[3], k0[3], s[3], s0[3], kout[3];
double sp2, ss2, s2;
double A, B;
double k022pk032, arg, tmp;
if (!pParams) return(_beam_set(&Beam,-2));
// pParams initialized
if (!pParams->Init) return(_beam_set(&Beam,-1));
if ( pParams->SymType == 2 ) {
// axis 2 is symmetry axis (rotate -90_deg)
tmp = ssym.s_1;
ssym.s_1 = ssym.s_2;
ssym.s_2 = -tmp;
}
kin[0] = 0.0; kin[1] = 0.0; kin[2] = -pParams->k;
vec_mul ( k0, pParams->InvSymRot, kin );
sp2 = ssym.s_1*ssym.s_1; // s-parallel to sym
ss2 = ssym.s_2*ssym.s_2; // s-perpendicular to sym
s2 = ss2 + sp2;
A = - (s2*0.5+k0[0]*ssym.s_1);
B = ss2;
k022pk032 = k0[1]*k0[1]+k0[2]*k0[2];
if (fabs(k022pk032) < eps)
return( _beam_set( &Beam, -4 ) );
arg = k022pk032*B-A*A;
if (arg<0.0) return( _beam_set( &Beam, -5 ) );
arg = sqrt(arg);
s0[0] = ssym.s_1;
if (ssym.s_2<0) {
s0[1] = (A*k0[1] + k0[2]*arg)/k022pk032;
s0[2] = (A*k0[2] - k0[1]*arg)/k022pk032;
} else {
s0[1] = (A*k0[1] - k0[2]*arg)/k022pk032;
s0[2] = (A*k0[2] + k0[1]*arg)/k022pk032;
}
vec_mul ( s, pParams->SymRot, s0 );
// kout^ = (s~ + kin~)/k
kout[0] = s[0]/pParams->k;
kout[1] = s[1]/pParams->k;
kout[2] = s[2]/pParams->k - 1.0;
if ( pParams->SymType == 2 ) {
// axis 2 is symmetry axis (rotate +90_deg)
tmp = kout[0];
kout[0] = -kout[1];
kout[1] = tmp;
}
Beam.cosTwoTheta = -kout[2];
Beam.sinTwoTheta = sqrt(kout[0]*kout[0]+kout[1]*kout[1]);
if (fabs(Beam.sinTwoTheta)>eps) {
Beam.cosAlpha = kout[0]/Beam.sinTwoTheta;
Beam.sinAlpha = kout[1]/Beam.sinTwoTheta;
} else {
Beam.cosAlpha = 0.0;
Beam.sinAlpha = 0.0;
}
return( _beam_set( &Beam, 0 ) );
} // waxs_ssym2kdir
/*+++------------------------------------------------------------------------
NAME
waxs_kdir2ssym --- calc's the saxs-coordinates of the cylindrical projection
SYNOPSIS
WaxsCoord waxs_kdir2sym ( WaxsDir kdir )
DESCRIPTION
Calculates the saxs-coordinates (ssym_1, ssym_2) of the cylindrical
Ewald-sphere projection from the unit vector Beam of the scattered beam
in lab coordinates
RETURN VALUE
.status==0 : ssym_1, ssym_2
.status<0 : error
.status<-1 : no solution
----------------------------------------------------------------------------*/
WaxsCoord waxs_kdir2ssym ( WParams * pParams, WaxsDir Beam )
{
WaxsCoord ssym;
double sym[3], e1[3];
double kvec[3];
double svec[3];
double s1, ssym2, tmp;
if (!pParams) return(_s_set(&ssym,-2));
// pParams initialized
if (!pParams->Init) return(_s_set(&ssym,-1));
// s~ = k * kout^ + k * e3^
kvec[0] = Beam.sinTwoTheta*Beam.cosAlpha;
kvec[1] = Beam.sinTwoTheta*Beam.sinAlpha;
kvec[2] = -Beam.cosTwoTheta;
if ( pParams->SymType == 2 ) {
// axis 2 is symmetry axis (rotate -90_deg)
tmp = kvec[0];
kvec[0] = kvec[1];
kvec[1] = -tmp;
}
svec[0] = kvec[0] * pParams->k;
svec[1] = kvec[1] * pParams->k;
svec[2] = (kvec[2]+1.0) * pParams->k;
e1[0]=1.0; e1[1]=0.0; e1[2]=0.0;
vec_mul(sym, pParams->SymRot, e1);
s1 = scalar_product( svec, sym );
ssym2 = scalar_product( svec, svec );
ssym.s_1 = s1;
if (svec[1]*sym[0]-svec[0]*sym[1]>0)
ssym.s_2 = sqrt(ssym2-s1*s1);
else
ssym.s_2 = -sqrt(ssym2-s1*s1);
if ( pParams->SymType == 2 ) {
// axis 2 is symmetry axis (rotate +90_deg)
tmp = ssym.s_1;
ssym.s_1 = -ssym.s_2;
ssym.s_2 = tmp;
}
return( _s_set( &ssym, 0 ) );
} // waxs_kdir2ssym
/*+++------------------------------------------------------------------------
NAME
waxs_kdir2svec --- calc's the s-vector of the scattered beam kdir
SYNOPSIS
WaxsVector waxs_kdir2svec ( WaxsDir Beam )
DESCRIPTION
Calculates the s-vector svec = (svec_1, svec_2, svec_3) from the
unit vector Beam of the scattered beam in lab coordinates
RETURN VALUE
.status==0 : svec_1, svec_2, svec_3
.status<0 : error
.status<-1 : no solution
----------------------------------------------------------------------------*/
WaxsVector waxs_kdir2svec ( WParams * pParams, WaxsDir Beam )
{
WaxsVector svec;
if (!pParams) return(_svec_set(&svec,-2));
// pParams initialized
if (!pParams->Init) return(_svec_set(&svec,-1));
svec.s_1 = pParams->k*Beam.sinTwoTheta*Beam.cosAlpha;
svec.s_2 = pParams->k*Beam.sinTwoTheta*Beam.sinAlpha;
svec.s_3 = pParams->k*(1.0-Beam.cosTwoTheta);
return( _svec_set ( &svec, 0 ) );
} // waxs_kdir2svec
/*+++------------------------------------------------------------------------
NAME
waxs_SymInit --- Initialisation of parameters for cylindrical symmetry
SYNOPSIS
int waxs_SymInit ( int symtype,
double symrot_1, double symrot_2, double symrot_3 )
DESCRIPTION
It initializes the static parameters for cylindrical symmetry. Must be
called after waxs_Init
ARGUMENTS
k : wavenumber
symrot_1 : ccw rotation around axis 1
symrot_2 : ccw rotation around axis 2
symrot_3 : ccw rotation around axis 3
RETURN VALUE
returns 0 if OK
----------------------------------------------------------------------------*/
int waxs_SymInit ( WParams * pParams, int symtype,
double symrot_1, double symrot_2, double symrot_3 )
{
double Rot_1[3][3], Rot_2[3][3], Rot_3[3][3];
double tmp[3][3];
if (!pParams) return(-2);
// pParams initialized
if (!pParams->Init) return( -1 );
// symmetry type
pParams->SymType = symtype;
// symmetry rotation matrix
if (symtype != 2) {
rotation_matrix_3 ( Rot_1, 1, symrot_1 );
rotation_matrix_3 ( Rot_2, 2, symrot_2 );
} else {
rotation_matrix_3 ( Rot_1, 1, symrot_2 );
rotation_matrix_3 ( Rot_2, 2, -symrot_1 );
}
rotation_matrix_3 ( Rot_3, 3, symrot_3 );
mat_mul_3 ( tmp, Rot_2, Rot_1 );
mat_mul_3 ( pParams->SymRot, Rot_3, tmp );
// inverse symmetry rotation matrix
if (symtype != 2) {
rotation_matrix_3 ( Rot_1, 1, -symrot_1 );
rotation_matrix_3 ( Rot_2, 2, -symrot_2 );
} else {
rotation_matrix_3 ( Rot_1, 1, -symrot_2 );
rotation_matrix_3 ( Rot_2, 2, symrot_1 );
}
rotation_matrix_3 ( Rot_3, 3, -symrot_3 );
mat_mul_3 ( tmp, Rot_2, Rot_3 );
mat_mul_3 ( pParams->InvSymRot, Rot_1, tmp );
return( 0 );
} // waxs_SymInit
/*+++------------------------------------------------------------------------
NAME
waxs_Init --- Initialisation of parameters
SYNOPSIS
int waxs_Init ( double k, double rot_1, double rot_2, double rot_3 )
DESCRIPTION
It initializes all static parameters.
ARGUMENTS
k : wavenumber
rot_1 : ccw rotation around axis 1
rot_2 : ccw rotation around axis 2
rot_3 : ccw rotation around axis 3
RETURN VALUE
returns 0 if OK
----------------------------------------------------------------------------*/
int waxs_Init ( WParams * pParams,
double k, double rot_1, double rot_2, double rot_3 )
{
double Rot_1[3][3], Rot_2[3][3], Rot_3[3][3];
double tmp[3][3];
if (!pParams) return(-2);
pParams->Init = 0;
// rotation matrix
rotation_matrix_3 ( Rot_1, 1, rot_1 );
rotation_matrix_3 ( Rot_2, 2, rot_2 );
rotation_matrix_3 ( Rot_3, 3, rot_3 );
mat_mul_3 ( tmp, Rot_2, Rot_1 );
mat_mul_3 ( pParams->Rot, Rot_3, tmp );
// inverse rotation matrix
rotation_matrix_3 ( Rot_1, 1, -rot_1 );
rotation_matrix_3 ( Rot_2, 2, -rot_2 );
rotation_matrix_3 ( Rot_3, 3, -rot_3 );
mat_mul_3 ( tmp, Rot_2, Rot_3 );
mat_mul_3 ( pParams->InvRot, Rot_1, tmp );
// wavevector k
pParams->k = k;
pParams->halfdk2 = 0.5/(k*k);
// symmetry type default // isotropic scattering
pParams->SymType = 0;
// symmetry rotation matrix default (no rotation)
rotation_matrix_3 ( pParams->SymRot, 1, 0.0 );
rotation_matrix_3 ( pParams->InvSymRot, 1, 0.0 );
pParams->Init = 1;
return( 0 );
} // waxs_Init
/*+++------------------------------------------------------------------------
NAME
waxs_not_init --- check initialization
SYNOPSIS
int waxs_not_init ( void );
DESCRIPTION
Checks whether the parameters have been initialized.
ARGUMENTS
void
RETURN VALUE
returns 0 if initialized, otherwise 1
----------------------------------------------------------------------------*/
int waxs_not_init ( WParams *pParams )
{ if (!pParams) return(0);
else return( pParams->Init?0:1 );
} // waxs_not_init
/*+++------------------------------------------------------------------------
NAME
waxs_get_transform --- return transformation mode
SYNOPSIS
int waxs_get_transform( int proin, int proout );
DESCRIPTION
Determines the transformation mode from the input and output projection types
ARGUMENTS
input projection type proin (IO_ProSaxs, IO_ProWaxs)
output projection type proout (IO_ProSaxs, IO_ProWaxs)
RETURN VALUE
-1: inverse transformation (WAXS->SAXS_pParams)
0: no transformation
1: normal transformation (SAXS_pParams->WAXS)
2: transformation between different rotations (SAXS_pParams->SAXS_pParamsOut)
----------------------------------------------------------------------------*/
int waxs_get_transform( int proin, int proout )
{ int transform=0;
if ( proin!=proout ) {
/* There can be more projections defined as saxs and waxs */
if ((proin==IO_ProSaxs)&&(proout==IO_ProWaxs)) transform=1; // normal transformation
else if ((proin==IO_ProWaxs)&&(proout==IO_ProSaxs)) transform=-1; // inverse transformation
} else {
if ((proin==IO_ProSaxs)&&(proout==IO_ProSaxs)) transform=2; // different rotations
}
return( transform );
} // waxs_to_transform()
/*+++------------------------------------------------------------------------
NAME
waxs_Sp2S --- calculation of saxs coordinate from s-projection
SYNOPSIS
WaxsCoord waxs_Sp2S ( WParams * pParamsIn, WParams * pParamsOut,
WaxsCoord sp );
DESCRIPTION
Calculates the saxs-coordinate s of the inclined detector image
from the saxs-coordinate sp of the Ewald sphere-projection.
The parameter SymType is used.
ARGUMENT
WParams * pParams : parameters of input image (Ewald sphere projection)
WParams * pParamsOut : parameters of output image (if NULL, uses pParams)
WaxsCoord sp : saxs-coordinate of the Ewald sphere projection
RETURN VALUE
WaxsCoord s : saxs-coordinate of the inclined detector image
s.status==0 in case of success
.status<0 : error
.status<-1 : no solution
----------------------------------------------------------------------------*/
WaxsCoord waxs_Sp2S ( WParams * pParams, WParams * pParamsOut,
WaxsCoord sp )
{
WaxsDir kdir;
WaxsCoord sout;
if (!pParams) return(_s_set( &sout,-2));
// pParams initialized
if (!pParams->Init) return(_s_set( &sout,-1));
if (!pParamsOut) pParamsOut = pParams;
// pParamsOut initialized
if (!pParamsOut->Init) return(_s_set( &sout,-1));
if (pParams->SymType)
kdir = waxs_ssym2kdir ( pParams, sp );
else kdir = waxs_sp2kdir ( pParams, sp );
if (kdir.status) return( _s_set( &sout,kdir.status*10-2) );
sout = waxs_kdir2s ( pParamsOut, kdir );
if (sout.status) return( _s_set( &sout,sout.status*10-2) );
return( _s_set( &sout, 0 ) );
} // waxs_Sp2S
/*+++------------------------------------------------------------------------
NAME
waxs_S2Sp --- calculation of s-projection from saxs coordinate s
SYNOPSIS
WaxsCoord waxs_S2Sp ( WParams * pParams, WParams * pParamsOut,
WaxsCoord s );
DESCRIPTION
Calculates the saxs-coordinate sp of the Ewald sphere-projection
from the saxs-coordinate s of the inclined detector image.
The parameter SymType is used.
ARGUMENT
WParams * pParams : parameters of the input coordinate (inclined detector)
WParams * pParamsOut : parameters of the output coordinate (Ewald sphere
projection) (if NULL, pParams is used)
WaxsCoord s : saxs-coordinate s of the inclined detector image
RETURN VALUE
WaxsCoord sp : saxs-coordinate sp of the Ewald sphere-projection
s.status==0 in case of success
.status<0 : error
.status<-1 : no solution
----------------------------------------------------------------------------*/
WaxsCoord waxs_S2Sp ( WParams * pParams, WParams * pParamsOut,
WaxsCoord s )
{
WaxsDir kdir;
WaxsCoord spout;
if (!pParams) return(_s_set( &spout,-2));
// pParams initialized
if (!pParams->Init) return(_s_set( &spout,-1));
if (!pParamsOut) pParamsOut = pParams;
// pParamsOut initialized
if (!pParamsOut->Init) return(_s_set( &spout,-1));
kdir = waxs_s2kdir ( pParams, s );
if (kdir.status) return( _s_set( &spout,kdir.status*10-2) );
if (pParams->SymType)
spout = waxs_kdir2ssym ( pParamsOut, kdir );
else spout = waxs_kdir2sp ( pParamsOut, kdir );
if (spout.status) return( _s_set( &spout,spout.status*10-2) );
return( _s_set( &spout, 0 ) );
} // waxs_S2Sp
/*+++------------------------------------------------------------------------
NAME
waxs_S2S --- saxs coordinate transformation between rotated detectors
SYNOPSIS
WaxsCoord waxs_S2S ( WParams * pParams, WParams * pParamsOut,
WaxsCoord s )
DESCRIPTION
Returns the saxs-coordinate of an inclined detector (*pParamsOut)
which is calculated from the saxs-coordinate s of another inclined
detector (pParams). The parameter SymType has no effect and is not used.
If one of pParams or pParamsOut is NULL, the parameters for an
unrotated detector are used. At least one parameter set needs to
be initialized.
ARGUMENTS
WParams * pParams : Waxs Parameters of the input coordinate (inclined
detector)
if NULL: calculate for perpendicular detector
WParams * pParamsOut : Waxs Parameters of the output coordinate (inclined
detector)
if NULL: calculate for perpendicular detector
WaxsCoord s : saxs-coordinate corresponding to *pParams
RETURN VALUE
WaxsCoord s : saxs-coordinate corresponding to *pParamsOut
s.status==0 in case of success
.status<0 : error
.status<-1 : no solution
----------------------------------------------------------------------------*/
WaxsCoord waxs_S2S ( WParams * pParams, WParams * pParamsOut,
WaxsCoord s )
{
WaxsDir kdir;
WaxsCoord sout;
WParams DefaultParams;
// only 1 parameter set can be NULL
if ((!pParams)&&(!pParamsOut)) return(_s_set( &sout,-2));
// pParams initialized
if (!pParams) {
if (!pParamsOut) return(_s_set( &sout,-2));
if (!pParamsOut->Init) return(_s_set( &sout,-1));
pParams = &DefaultParams;
if ( waxs_Init ( pParams, pParamsOut->k, 0.0, 0.0, 0.0 ) )
return(_s_set( &sout,-2));
}
if (!pParams->Init) return(_s_set( &sout,-1));
// pParamsOut initialized
if (!pParamsOut) {
pParamsOut = &DefaultParams;
if ( waxs_Init ( pParamsOut, pParams->k, 0.0, 0.0, 0.0 ) )
return(_s_set( &sout,-2));
}
if (!pParamsOut->Init) return(_s_set( &sout,-1));
kdir = waxs_s2kdir ( pParams, s );
if (kdir.status) return( _s_set( &sout,kdir.status*10-2) );
sout = waxs_kdir2s ( pParamsOut, kdir );
if (sout.status) return( _s_set( &sout,sout.status*10-2) );
return( _s_set( &sout, 0 ) );
} // waxs_S2S
/*+++------------------------------------------------------------------------
NAME
waxs_Saxs2Vector --- calculation of s-projection from saxs coordinate s
SYNOPSIS
WaxsVector waxs_Saxs2Vector ( WaxsCoord s )
DESCRIPTION
Calculates the s-vector svec from the saxs-coordinate s
of the inclined detector image.
ARGUMENT
WaxsCoord s : saxs-coordinate s of the inclined detector image
RETURN VALUE
.status==0 : svec_1, svec_2, svec_3
.status<0 : error
.status<-1 : no solution
----------------------------------------------------------------------------*/
WaxsVector waxs_Saxs2Vector ( WParams * pParams, WaxsCoord s )
{
WaxsDir kdir;
WaxsVector svec;
if (!pParams) return( _svec_set ( &svec, -2 ) );
// pParams initialized
if (!pParams->Init) return(_svec_set( &svec,-1));
kdir = waxs_s2kdir ( pParams, s );
if (kdir.status) return( _svec_set( &svec,kdir.status*10-2) );
svec = waxs_kdir2svec ( pParams, kdir );
if (svec.status) return( _svec_set( &svec,svec.status*10-2) );
return( _svec_set ( &svec, 0 ) );
} // waxs_Saxs2Vector
/*+++------------------------------------------------------------------------
NAME
waxs_Uni2Iso --- uniaxial WAXS projection to isotropic WAXS projection
SYNOPSIS
WaxsCoord waxs_Uni2Iso ( WParams * pParams, WParams * pParamsOut,
WaxsCoord ssym );
DESCRIPTION
Calculates the saxs-coordinate sp of an isotropic WAXS projection
from the saxs-coordinate ssym of an uniaxial symmetric WAXS projection.
ARGUMENT
WParams * pParams : parameters of the uniaxial symmetric Ewald sphere projection
WParams * pParamsOut : parameters of the isotropic Ewald sphere projection
(if NULL, uses pParams)
WaxsCoord ssym : saxs-coordinate of the uniaxial symmetric
Ewald sphere projection
RETURN VALUE
WaxsCoord sp : saxs-coordinate of the isotropic Ewald sphere projection
s.status==0 in case of success
.status<0 : error
.status<-1 : no solution
----------------------------------------------------------------------------*/
WaxsCoord waxs_Uni2Iso ( WParams * pParams, WParams * pParamsOut,
WaxsCoord ssym )
{
WaxsDir kdir;
WaxsCoord spout;
if (!pParams) return(_s_set( &spout,-1));
// pParams initialized
if (!pParams->Init) return(_s_set( &spout,-1));
if (!pParamsOut) pParamsOut = pParams;
// pParams initialized
if (!pParamsOut->Init) return(_s_set( &spout,-1));
if (pParams->SymType) {
kdir = waxs_ssym2kdir ( pParams, ssym );
if (kdir.status) return( _s_set( &spout,kdir.status*10-2) );
spout = waxs_kdir2sp ( pParamsOut, kdir );
if (spout.status) return( _s_set( &spout,spout.status*10-2) );
} else spout = ssym;
return( _s_set( &spout, 0 ) );
} // waxs_Uni2Iso
/*+++------------------------------------------------------------------------
NAME
waxs_Iso2Uni --- isotropic WAXS projection to uniaxial WAXS projection
SYNOPSIS
WaxsCoord waxs_Iso2Uni ( WParams * pParams, WParams * pParamsOut,
WaxsCoord sp );
DESCRIPTION
Calculates the saxs-coordinate ssym of an uniaxial symmetric WAXS projection
from the saxs-coordinate sp of an isotropic WAXS projection.
ARGUMENT
WParams * pParams : parameters of the isotropic Ewald sphere projection
WParams * pParamsOut : parameters of the uniaxial symmetric Ewald sphere
projection (if NULL, uses pParams)
WaxsCoord sp : saxs-coordinate of the isotropic Ewald sphere projection
RETURN VALUE
WaxsCoord ssym : saxs-coordinate of the uniaxial symmetric
Ewald sphere projection
s.status==0 in case of success
.status<0 : error
.status<-1 : no solution
----------------------------------------------------------------------------*/
WaxsCoord waxs_Iso2Uni ( WParams * pParams, WParams * pParamsOut,
WaxsCoord sp )
{
WaxsDir kdir;
WaxsCoord ssymout;
if (!pParams) return(_s_set( &ssymout,-2));
// pParams initialized
if (!pParams->Init) return(_s_set( &ssymout,-1));
if (!pParamsOut) pParamsOut = pParams;
// pParamsOut initialized
if (!pParamsOut->Init) return(_s_set( &ssymout,-1));
if (pParams->SymType) {
kdir = waxs_sp2kdir ( pParams, sp );
if (kdir.status) return( _s_set( &ssymout,kdir.status*10-2) );
ssymout = waxs_kdir2ssym ( pParams, kdir );
if (ssymout.status) return( _s_set( &ssymout,ssymout.status*10-2) );
} else ssymout = sp;
return( _s_set( &ssymout, 0 ) );
} // waxs_Iso2Uni
/*---------------------------------------------------------------------------
NAME
waxs_Transform --- return transformed coordinate
SYNOPSIS
WaxsCoord waxs_Transform( WParams * pParams, WParams *pParamsOut,
int transform, WaxsCoord W)
DESCRIPTION
The routine calculates the transformed coordinate of W.
If transform is 0 the coordinate W is returned,
if transform is -1 the Waxs coordinate of W is returned,
if transform is 1 the SAXS coordinate of W is returned
If transform is 2 the Saxs coordinate W for a
perpendicular detector is returned,
The arguent transform can be multiplied by -1 to
invert the calculation.
ARGUMENTS
WParams * pParams : Waxs Parameters of the input coordinate
WParams * pParamsOut : Waxs Parameters of the output coordinate,
WaxsCoord s : saxs-coordinate of the inclined input detector (*pParams)
RETURN VALUE
transformed coordinate
---------------------------------------------------------------------------*/
WaxsCoord waxs_Transform( WParams *pParams, WParams * pParamsOut,
int transform, WaxsCoord W)
{ WaxsCoord WT;
if (transform) {
switch (transform) {
case -1: WT = waxs_S2Sp ( pParams, pParamsOut, W ); // inverse
break;
case 1: WT = waxs_Sp2S ( pParams, pParamsOut, W ); // direct
break;
case -2: WT = waxs_S2S ( pParams, pParamsOut, W );
break;
case 2: WT = waxs_S2S ( pParams, pParamsOut, W );
break;
default: W.status=1; WT = W; // error
}
} else { W.status=0; WT = W; } // no projection transformation
return(WT);
} // waxs_Transform
/*---------------------------------------------------------------------------
NAME
waxs_Range --- calculates waxs range from saxs image parameters
SYNOPSIS
int waxs_Range( WParams * pParams, WParams * pParamsOut,
int proin, int proout,
long dim_1, long dim_2,
float off_1, float pix_1, float cen_1,
float off_2, float pix_2, float cen_2,
float dis, float wvl,
WaxsCoord *Wmin, WaxsCoord *Wmax, int * pstatus);
DESCRIPTION
off_1 to wvl are the parameters of the untransformed image (projection
type Saxs). The range in saxs coordinates of the transformed image
(projection type Waxs) are calculated and returned in Wmin and Wmax.
Because the output area is not necessarily rectangular, parts of the
output can be outside the range described by Wmin and Wmax.
RETURN VALUE
(returns value determined with waxs_get_transform)
-1: inverse transformation (WAXS->SAXS_pParams)
0: no transformation
1: normal transformation (SAXS_pParams->WAXS)
2: transformation between different rotations (SAXS_pParams->SAXS_pParamsOut)
status returned in *pstatus : 0: success, otherwise failed
---------------------------------------------------------------------------*/
int waxs_Range( WParams * pParams, WParams * pParamsOut,
int proin, int proout,
long dim_1, long dim_2,
float off_1, float pix_1, float cen_1,
float off_2, float pix_2, float cen_2,
float dis, float wvl,
WaxsCoord *Wmin, WaxsCoord *Wmax, int * pstatus)
{ const float eps=1e-32;
WaxsCoord W, WOut;
float s_11, s_12, s_21, s_22, smin_1, smax_1, smin_2, smax_2;
int transform;
if (!pParams) return(-2);
*pstatus = -1;
transform = waxs_get_transform(proin,proout);
if (fabs(pix_1)<=eps) goto waxs_Range_error;
if (fabs(pix_2)<=eps) goto waxs_Range_error;
if (fabs(wvl)<=eps) goto waxs_Range_error;
if (fabs(dis)<=eps) goto waxs_Range_error;
/* WSaxs = INDEX2S(IIndex,Offset,Psize,Center,SampleDistance,WaveLength); */
s_11 = INDEX2S(INDEXSTART+LOWERBORDER,off_1,pix_1,cen_1,dis,wvl);
s_12 = INDEX2S(INDEXSTART+LOWERBORDER+dim_1,off_1,pix_1,cen_1,dis,wvl);
s_21 = INDEX2S(INDEXSTART+LOWERBORDER,off_2,pix_2,cen_2,dis,wvl);
s_22 = INDEX2S(INDEXSTART+LOWERBORDER+dim_2,off_2,pix_2,cen_2,dis,wvl);
W.s_1 = s_11; W.s_2 = s_21;
WOut = waxs_Transform(pParams, pParamsOut, -transform, W);
if (WOut.status) goto waxs_Range_error;
smin_1 = WOut.s_1; smax_1 = WOut.s_1;
smin_2 = WOut.s_2; smax_2 = WOut.s_2;
W.s_1 = s_12; W.s_2 = s_21;
WOut = waxs_Transform(pParams, pParamsOut, -transform, W);
if (WOut.status) goto waxs_Range_error;
smin_1 = MIN2(smin_1,WOut.s_1); smax_1 = MAX2(smax_1,WOut.s_1);
smin_2 = MIN2(smin_2,WOut.s_2); smax_2 = MAX2(smax_2,WOut.s_2);
W.s_1 = s_12; W.s_2 = s_22;
WOut = waxs_Transform(pParams, pParamsOut, -transform, W);
if (WOut.status) goto waxs_Range_error;
smin_1 = MIN2(smin_1,WOut.s_1); smax_1 = MAX2(smax_1,WOut.s_1);
smin_2 = MIN2(smin_2,WOut.s_2); smax_2 = MAX2(smax_2,WOut.s_2);
W.s_1 = s_11; W.s_2 = s_22;
WOut = waxs_Transform(pParams, pParamsOut, -transform, W);
if (WOut.status) goto waxs_Range_error;
smin_1 = MIN2(smin_1,WOut.s_1); smax_1 = MAX2(smax_1,WOut.s_1);
smin_2 = MIN2(smin_2,WOut.s_2); smax_2 = MAX2(smax_2,WOut.s_2);
/* backward or forward projection */
if (transform==1) { // direct transformation SAXS->WAXS
/* In case that the input image coordinates are transformed from Saxs to
Waxs (Inverse is FALSE) it must be checked whether the original
pattern contains the backscattering vector (180 degree scattering)
This is the case if the origin (0,0) cannot be projected on the
detector plane (transform(transform, FALSE, W) fails) and if the
the origin (0,0) lies inside the found edges (smin and smax).
In this case the modulus of the maximum scattering vector is
(2*WAVENUMBER(WaveLength). */
W.s_1 = 0.0; W.s_2 = 0.0;
WOut = waxs_Transform(pParams, pParamsOut, transform, W);
if (WOut.status) {
/* backward projection */
if ( (smin_1*smax_1<0)&&(smin_2*smax_2<0) ) {
smax_1 = 2.0*WAVENUMBER(wvl); smin_1 = -smax_1;
smax_2 = 2.0*WAVENUMBER(wvl); smin_2 = -smax_2;
}
}
}
Wmin->s_1 = smin_1; Wmin->s_2 = smin_2;
Wmax->s_1 = smax_1; Wmax->s_2 = smax_2;
*pstatus = 0;
return( transform );
waxs_Range_error:
return( transform );
} // waxs_Range
|