1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
# specreduce/tests/test_wavecal1d.py
import astropy.units as u
import numpy as np
import pytest
from astropy.modeling import models
from astropy.nddata import StdDevUncertainty
from matplotlib import pyplot as plt
from matplotlib.figure import Figure
from numpy import array
from specreduce.compat import Spectrum
from specreduce.wavecal1d import WavelengthCalibration1D
ref_pixel = 250
pix_bounds = (0, 500)
p2w = models.Shift(-ref_pixel) | models.Polynomial1D(degree=3, c0=1, c1=0.2, c2=0.001)
@pytest.fixture
def mk_lines():
obs_lines = ref_pixel + array([1, 2, 5, 8, 10])
cat_lines = p2w(ref_pixel + array([1, 3, 5, 7, 8, 10]))
return obs_lines, cat_lines
@pytest.fixture
def mk_matched_lines():
obs_lines = ref_pixel + array([1, 2, 5, 8, 10])
cat_lines = p2w(obs_lines)
return obs_lines, cat_lines
@pytest.fixture
def mk_wc(mk_lines):
obs_lines, cat_lines = mk_lines
return WavelengthCalibration1D(
obs_lines=obs_lines,
line_lists=cat_lines,
pix_bounds=(0, 10),
ref_pixel=ref_pixel,
)
@pytest.fixture
def mk_good_wc_with_transform(mk_lines):
obs_lines, cat_lines = mk_lines
wc = WavelengthCalibration1D(
obs_lines=obs_lines,
line_lists=cat_lines,
pix_bounds=pix_bounds,
ref_pixel=ref_pixel,
)
wc.solution.p2w = p2w
return wc
@pytest.fixture
def mk_arc():
return Spectrum(
flux=np.ones(pix_bounds[1]) * u.DN,
spectral_axis=np.arange(pix_bounds[1]) * u.pix,
uncertainty=StdDevUncertainty(np.ones(pix_bounds[1])),
)
def test_init(mk_arc, mk_lines):
arc = mk_arc
obs_lines, cat_lines = mk_lines
WavelengthCalibration1D(arc_spectra=arc, line_lists=cat_lines, ref_pixel=ref_pixel)
WavelengthCalibration1D(
obs_lines=obs_lines,
line_lists=cat_lines,
pix_bounds=(0, 10),
ref_pixel=ref_pixel,
)
with pytest.raises(ValueError, match="Only one of arc_spectra or obs_lines can be provided."):
WavelengthCalibration1D(arc_spectra=arc, obs_lines=obs_lines, ref_pixel=ref_pixel)
arc = Spectrum(
flux=np.array([[1, 2, 3, 4, 5]]) * u.DN,
spectral_axis=np.array([1, 2, 3, 4, 5]) * u.angstrom,
)
with pytest.raises(ValueError, match="The arc spectrum must be one dimensional."):
WavelengthCalibration1D(arc_spectra=arc, ref_pixel=ref_pixel)
with pytest.raises(ValueError, match="Must give pixel bounds when"):
WavelengthCalibration1D(obs_lines=obs_lines, ref_pixel=ref_pixel)
@pytest.mark.remote_data
def test_init_line_list(mk_arc):
arc = mk_arc
WavelengthCalibration1D(arc_spectra=arc, line_lists=["ArI"])
WavelengthCalibration1D(arc_spectra=arc, line_lists="ArI")
WavelengthCalibration1D(arc_spectra=arc, line_lists=[array([0.1])])
WavelengthCalibration1D(arc_spectra=arc, line_lists=array([0.1]))
WavelengthCalibration1D(arc_spectra=[arc, arc], line_lists=[["ArI"], ["ArI"]])
WavelengthCalibration1D(arc_spectra=[arc, arc], line_lists=["ArI", ["ArI"]])
WavelengthCalibration1D(arc_spectra=[arc, arc], line_lists=["ArI", "ArI"])
WavelengthCalibration1D(arc_spectra=[arc, arc], line_lists=[array([0.1]), array([0.1])])
WavelengthCalibration1D(arc_spectra=[arc, arc], line_lists=[array([0.1, 0.3]), ["ArI"]])
with pytest.raises(ValueError, match="The number of line lists"):
WavelengthCalibration1D(arc_spectra=[arc, arc], line_lists=[["ArI"]])
def test_find_lines(mocker, mk_arc):
wc = WavelengthCalibration1D(arc_spectra=mk_arc)
mock_find_arc_lines = mocker.patch("specreduce.wavecal1d.find_arc_lines")
mock_find_arc_lines.return_value = {"centroid": np.array([5.0]) * u.angstrom}
wc.find_lines(fwhm=2.0, noise_factor=1.5)
assert wc._obs_lines is not None
assert len(wc._obs_lines) == 1
wc = WavelengthCalibration1D()
with pytest.raises(ValueError, match="Must provide arc spectra to find lines."):
wc.find_lines(fwhm=2.0, noise_factor=1.5)
def test_fit_lines(mk_matched_lines):
lo, lc = mk_matched_lines
wc = WavelengthCalibration1D(pix_bounds=pix_bounds, ref_pixel=ref_pixel)
wc.fit_lines(pixels=lo, wavelengths=lc)
assert wc.solution.p2w is not None
assert wc.solution.p2w[1].degree == wc.degree
wc = WavelengthCalibration1D(
obs_lines=lo, line_lists=lc, pix_bounds=pix_bounds, ref_pixel=ref_pixel
)
wc.fit_lines(pixels=lo, wavelengths=lc, match_cat=True, match_obs=True)
assert wc.solution.p2w is not None
assert wc.solution.p2w[1].degree == wc.degree
wc = WavelengthCalibration1D(pix_bounds=pix_bounds, ref_pixel=ref_pixel)
with pytest.warns(UserWarning, match="The degree of the polynomial"):
wc.fit_lines(degree=5, pixels=lo[:3], wavelengths=lc[:3])
with pytest.raises(ValueError, match="Cannot fit without catalog"):
wc.fit_lines(pixels=lo, wavelengths=lc, match_cat=True, match_obs=True)
with pytest.raises(ValueError, match="Cannot fit without observed"):
wc.fit_lines(pixels=lo, wavelengths=lc, match_cat=False, match_obs=True)
def test_observed_lines(mk_lines):
wc = WavelengthCalibration1D()
assert wc.observed_lines is None
obs_lines, cat_lines = mk_lines
wc = WavelengthCalibration1D(obs_lines=obs_lines, pix_bounds=pix_bounds, ref_pixel=ref_pixel)
assert len(wc.observed_lines) == 1
assert wc.observed_lines[0].shape == (len(obs_lines), 2)
assert wc.observed_lines[0].mask.shape == (len(obs_lines), 2)
np.testing.assert_allclose(wc.observed_lines[0].data[:, 0], obs_lines)
assert np.all(wc.observed_lines[0].mask[:, 0] == 0)
wc.observed_lines = obs_lines
assert len(wc.observed_lines) == 1
assert wc.observed_lines[0].mask.shape == (len(obs_lines), 2)
np.testing.assert_allclose(wc.observed_lines[0].data[:, 0], obs_lines)
assert np.all(wc.observed_lines[0].mask[:, 0] == 0)
wc.observed_lines = wc.observed_lines
assert len(wc.observed_lines) == 1
assert wc.observed_lines[0].mask.shape == (len(obs_lines), 2)
np.testing.assert_allclose(wc.observed_lines[0].data[:, 0], obs_lines)
assert np.all(wc.observed_lines[0].mask[:, 0] == 0)
# Line locations and amplitudes
assert wc.observed_line_locations[0].shape == (len(obs_lines),)
np.testing.assert_allclose(wc.observed_line_locations[0], obs_lines)
assert wc.observed_line_amplitudes[0].shape == (len(obs_lines),)
np.testing.assert_allclose(wc.observed_line_amplitudes[0], 0.0)
def test_catalog_lines(mk_lines):
wc = WavelengthCalibration1D(ref_pixel=ref_pixel)
assert wc.catalog_lines is None
obs_lines, cat_lines = mk_lines
wc = WavelengthCalibration1D(
obs_lines=obs_lines, line_lists=cat_lines, pix_bounds=pix_bounds, ref_pixel=ref_pixel
)
assert len(wc.catalog_lines) == 1
assert wc.catalog_lines[0].shape == (len(cat_lines), 2)
np.testing.assert_allclose(wc.catalog_lines[0].data[:, 0], cat_lines)
assert np.all(wc.catalog_lines[0].data[:, 1] == 0)
wc.catalog_lines = cat_lines
assert len(wc.catalog_lines) == 1
np.testing.assert_allclose(wc.catalog_lines[0].data[:, 0], cat_lines)
assert np.all(wc.catalog_lines[0].data[:, 1] == 0)
wc.catalog_lines = wc.catalog_lines
assert len(wc.catalog_lines) == 1
np.testing.assert_allclose(wc.catalog_lines[0].data[:, 0], cat_lines)
assert np.all(wc.catalog_lines[0].data[:, 1] == 0)
def test_fit_lines_raises_error_for_mismatched_sizes():
pixels = array([2, 4, 6])
wavelengths = p2w(array([2, 4, 5, 6]))
wc = WavelengthCalibration1D(pix_bounds=pix_bounds, ref_pixel=ref_pixel)
with pytest.raises(ValueError, match="The sizes of pixel and wavelength arrays must match."):
wc.fit_lines(pixels=pixels, wavelengths=wavelengths)
def test_fit_lines_raises_error_for_insufficient_lines():
pixels = [5]
wavelengths = p2w(pixels)
wc = WavelengthCalibration1D(pix_bounds=pix_bounds, ref_pixel=ref_pixel)
with pytest.raises(ValueError, match="Need at least two lines for a fit"):
wc.fit_lines(pixels=pixels, wavelengths=wavelengths)
def test_fit_lines_raises_error_for_missing_pixel_bounds():
pixels = [2, 4, 6, 8]
wavelengths = p2w(pixels)
wc = WavelengthCalibration1D(ref_pixel=ref_pixel)
with pytest.raises(ValueError, match="Cannot fit without pixel bounds set."):
wc.fit_lines(pixels=pixels, wavelengths=wavelengths)
def test_fit_global():
p2w = models.Shift(-ref_pixel) | models.Polynomial1D(degree=3, c0=650, c1=50.0, c2=-0.001)
lines_obs = ref_pixel + array([2, 4, 4.5, 5, 6, 6.3, 8])
lines_cat = p2w(ref_pixel + array([1, 2, 2.3, 4, 5, 6, 6.3, 7, 8, 9, 10]))
wavelength_bounds = (649, 651)
dispersion_bounds = (49, 51)
wc = WavelengthCalibration1D(
obs_lines=lines_obs, line_lists=lines_cat, pix_bounds=pix_bounds, ref_pixel=ref_pixel
)
ws = wc.fit_dispersion(wavelength_bounds, dispersion_bounds, popsize=10, refine_fit=True)
np.testing.assert_allclose(ws.p2w[1].parameters, [650.0, 50.0, -0.001, 0.0], atol=1e-4)
assert wc._fit is not None
assert wc._fit.success
assert wc.solution.p2w is not None
wc = WavelengthCalibration1D(
obs_lines=lines_obs, line_lists=lines_cat, pix_bounds=pix_bounds, ref_pixel=ref_pixel
)
wc.fit_dispersion(wavelength_bounds, dispersion_bounds, popsize=10, refine_fit=False)
def test_rms(mk_good_wc_with_transform):
wc = mk_good_wc_with_transform
assert np.isclose(wc.rms(space="wavelength"), 0) # Perfect match, so RMS should be zero
assert np.isclose(wc.rms(space="pixel"), 0) # Perfect match, so RMS should be zero
with pytest.raises(ValueError, match="Space must be either 'pixel' or 'wavelength'"):
wc.rms(space="wavelenght")
def test_remove_unmatched_lines(mk_good_wc_with_transform):
wc = mk_good_wc_with_transform
wc.match_lines()
wc.remove_unmatched_lines()
assert wc.catalog_lines[0].size == wc.observed_lines[0].size
def test_plot_lines_with_valid_input():
wc = WavelengthCalibration1D(ref_pixel=ref_pixel)
wc.observed_lines = [np.ma.masked_array([100, 200, 300], mask=[False, True, False])]
wc._cat_lines = wc.observed_lines
fig = wc._plot_lines(kind="observed", frames=0, figsize=(8, 4), plot_labels=True)
assert isinstance(fig, Figure)
assert fig.axes[0].has_data()
fig = wc._plot_lines(kind="catalog", frames=0, figsize=(8, 4), plot_labels=True)
assert isinstance(fig, Figure)
assert fig.axes[0].has_data()
fig, ax = plt.subplots(1, 1)
fig = wc._plot_lines(kind="catalog", frames=0, axes=ax, plot_labels=True)
assert isinstance(fig, Figure)
assert fig.axes[0].has_data()
fig, axs = plt.subplots(1, 2)
fig = wc._plot_lines(kind="catalog", frames=0, axes=axs, plot_labels=True)
assert isinstance(fig, Figure)
assert fig.axes[0].has_data()
fig = wc._plot_lines(kind="observed", frames=0, axes=axs, plot_labels=True)
assert isinstance(fig, Figure)
assert fig.axes[0].has_data()
def test_plot_lines_raises_for_missing_transform(mk_wc):
wc = mk_wc
with pytest.raises(ValueError, match="Cannot map between pixels and"):
wc._plot_lines(kind="observed", map_x=True)
def test_plot_lines_calls_transform_correctly(mk_good_wc_with_transform):
wc = mk_good_wc_with_transform
wc._plot_lines(kind="observed", map_x=True)
wc._plot_lines(kind="catalog", map_x=True)
def test_plot_catalog_lines(mk_wc):
wc = mk_wc
wc.catalog_lines = [np.ma.masked_array([400, 500, 600], mask=[False, True, False])]
fig = wc.plot_catalog_lines(frames=0, figsize=(10, 6), plot_labels=True, map_to_pix=False)
assert isinstance(fig, Figure)
assert fig.axes[0].has_data()
fig, ax = plt.subplots(1, 1)
fig = wc.plot_catalog_lines(frames=0, axes=ax, plot_labels=True)
assert isinstance(fig, Figure)
assert fig.axes[0].has_data()
fig, axs = plt.subplots(1, 2)
fig = wc.plot_catalog_lines(frames=[0], axes=axs, plot_labels=False)
assert isinstance(fig, Figure)
assert fig.axes[0].has_data()
def test_plot_observed_lines(mk_good_wc_with_transform, mk_arc):
wc = mk_good_wc_with_transform
wc.observed_lines = [np.ma.masked_array([100, 200, 300], mask=[False, True, False])]
wc.arc_spectra = [mk_arc]
for frames in [None, 0]:
fig = wc.plot_observed_lines(frames=frames, figsize=(10, 5), plot_labels=True)
assert isinstance(fig, Figure)
assert fig.axes[0].has_data()
assert len(fig.axes) == 1
def test_plot_fit(mk_arc, mk_good_wc_with_transform):
wc = mk_good_wc_with_transform
wc.arc_spectra = [mk_arc]
for frames in [None, 0]:
fig = wc.plot_fit(frames=frames, figsize=(12, 6), plot_labels=True)
assert isinstance(fig, Figure)
assert len(fig.axes) == 2
assert fig.axes[0].has_data()
assert fig.axes[1].has_data()
wc.plot_fit(frames=frames, figsize=(12, 6), plot_labels=True, obs_to_wav=True)
def test_plot_residuals(mk_good_wc_with_transform):
wc = mk_good_wc_with_transform
fig = wc.plot_residuals(space="pixel", figsize=(8, 4))
assert isinstance(fig, Figure)
assert fig.axes[0].has_data()
fig = wc.plot_residuals(space="wavelength", figsize=(8, 4))
assert isinstance(fig, Figure)
assert fig.axes[0].has_data()
fig, ax = plt.subplots(1, 1)
wc.plot_residuals(ax=ax, space="wavelength", figsize=(8, 4))
with pytest.raises(ValueError, match="Invalid space specified"):
wc.plot_residuals(space="wavelenght", figsize=(8, 4))
|