1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
|
// Example reported in Issue #144
// https://github.com/yixuan/spectra/issues/144
#include <iostream>
#include <Eigen/Core>
#include <Eigen/Eigenvalues>
#include <Spectra/SymEigsSolver.h>
#include <Spectra/SymEigsShiftSolver.h>
#include <Spectra/MatOp/DenseSymMatProd.h>
#include <Spectra/MatOp/DenseSymShiftSolve.h>
#include "catch.hpp"
using namespace Spectra;
using Matrix = Eigen::MatrixXd;
using Vector = Eigen::VectorXd;
Matrix construct_cycle_laplacian(int n)
{
// Initialize the Laplacian matrix
Matrix L = Matrix::Zero(n, n);
// Add the matrix entries, iterating over the rows
for (int i = 0; i < n; i++)
{
L(i, i) = 1;
L(i, (i + n - 1) % n) = -0.5;
L(i, (i + 1) % n) = -0.5;
}
return L;
}
void run_test(int n, int k, int m)
{
const Matrix M = construct_cycle_laplacian(n);
// True eigenvalues
Eigen::SelfAdjointEigenSolver<Matrix> es(M);
Vector true_evals = es.eigenvalues();
// Largest eigenvalues
DenseSymMatProd<double> op(M);
SymEigsSolver<DenseSymMatProd<double>> eigs(op, k, m);
eigs.init();
int nconv = eigs.compute(SortRule::LargestMagn, 1000, 1e-15, SortRule::SmallestAlge);
int niter = eigs.num_iterations();
int nops = eigs.num_operations();
INFO("nconv = " << nconv);
INFO("niter = " << niter);
INFO("nops = " << nops);
REQUIRE(eigs.info() == CompInfo::Successful);
Vector evals = eigs.eigenvalues();
Matrix evecs = eigs.eigenvectors();
Matrix resid = M.selfadjointView<Eigen::Lower>() * evecs - evecs * evals.asDiagonal();
double err = resid.array().abs().maxCoeff();
INFO("||AU - UD||_inf = " << err);
REQUIRE(err == Approx(0.0).margin(1e-9));
INFO("True eigenvalues =\n " << true_evals);
INFO("Estimated =\n " << evals);
double diff = (true_evals.tail(k) - evals).array().abs().maxCoeff();
INFO("diff = " << diff);
REQUIRE(diff == Approx(0.0).margin(1e-9));
// Smallest eigenvalues
DenseSymShiftSolve<double> op2(M);
SymEigsShiftSolver<DenseSymShiftSolve<double>> eigs2(op2, k, m, -1e-6);
eigs2.init();
nconv = eigs2.compute(SortRule::LargestMagn, 1000, 1e-15, SortRule::SmallestAlge);
niter = eigs2.num_iterations();
nops = eigs2.num_operations();
INFO("nconv = " << nconv);
INFO("niter = " << niter);
INFO("nops = " << nops);
REQUIRE(eigs2.info() == CompInfo::Successful);
evals = eigs2.eigenvalues();
evecs = eigs2.eigenvectors();
resid = M.selfadjointView<Eigen::Lower>() * evecs - evecs * evals.asDiagonal();
err = resid.array().abs().maxCoeff();
INFO("||AU - UD||_inf = " << err);
REQUIRE(err == Approx(0.0).margin(1e-9));
INFO("Estimated =\n " << evals);
diff = (true_evals.head(k) - evals).array().abs().maxCoeff();
INFO("diff = " << diff);
REQUIRE(diff == Approx(0.0).margin(1e-9));
}
TEST_CASE("Example #144, (n, k, m) = (20, 3, 6)", "[example_144]")
{
std::srand(123);
int n = 20;
int k = 3;
int m = 6;
run_test(n, k, m);
}
TEST_CASE("Example #144, (n, k, m) = (20, 5, 12)", "[example_144]")
{
std::srand(123);
int n = 20;
int k = 5;
int m = 12;
run_test(n, k, m);
}
TEST_CASE("Example #144, (n, k, m) = (20, 6, 12)", "[example_144]")
{
std::srand(123);
int n = 20;
int k = 6;
int m = 12;
run_test(n, k, m);
}
|