File: HermEigs.cpp

package info (click to toggle)
spectra 1.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,788 kB
  • sloc: cpp: 23,044; ansic: 175; fortran: 131; makefile: 90
file content (174 lines) | stat: -rw-r--r-- 4,363 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#include <iostream>
#include <type_traits>
#include <random>
#include <Eigen/Core>
#include <Eigen/SparseCore>
#include <Spectra/HermEigsSolver.h>
#include <Spectra/MatOp/DenseHermMatProd.h>
#include <Spectra/MatOp/SparseHermMatProd.h>

#include "catch.hpp"

using namespace Spectra;

using Matrix = Eigen::MatrixXcd;
using Vector = Eigen::VectorXcd;
using SpMatrix = Eigen::SparseMatrix<std::complex<double>>;
using RealMatrix = Eigen::MatrixXd;
using RealVector = Eigen::VectorXd;

// Generate data for testing
Matrix gen_dense_data(int n)
{
    const Matrix mat = Matrix::Random(n, n);
    return mat + mat.adjoint();
}

SpMatrix gen_sparse_data(int n, double prob = 0.5)
{
    // Eigen solver only uses the lower triangular part of mat,
    // so we don't need to make mat an Hermitian matrix here,
    // but diagonal elements must have a zero imaginary part
    SpMatrix mat(n, n);
    std::default_random_engine gen;
    gen.seed(0);
    std::uniform_real_distribution<double> distr(0.0, 1.0);
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < n; j++)
        {
            if (distr(gen) < prob)
            {
                double re = distr(gen) - 0.5;
                double im = (i == j) ? 0.0 : (distr(gen) - 0.5);
                mat.insert(i, j) = std::complex<double>(re, im);
            }
        }
    }
    return mat;
}

template <typename MatType, typename Solver>
void run_test(const MatType& mat, Solver& eigs, SortRule selection)
{
    eigs.init();
    int nconv = eigs.compute(selection);
    int niter = eigs.num_iterations();
    int nops = eigs.num_operations();

    INFO("nconv = " << nconv);
    INFO("niter = " << niter);
    INFO("nops  = " << nops);
    REQUIRE(eigs.info() == CompInfo::Successful);

    RealVector evals = eigs.eigenvalues();
    Matrix evecs = eigs.eigenvectors();

    Matrix resid = mat.template selfadjointView<Eigen::Lower>() * evecs - evecs * evals.asDiagonal();
    const double err = resid.array().abs().maxCoeff();

    INFO("||AU - UD||_inf = " << err);
    REQUIRE(err == Approx(0.0).margin(1e-9));
}

template <typename MatType>
void run_test_sets(const MatType& mat, int k, int m)
{
    constexpr bool is_dense = std::is_same<MatType, Matrix>::value;
    using DenseOp = DenseHermMatProd<std::complex<double>>;
    using SparseOp = SparseHermMatProd<std::complex<double>>;
    using OpType = typename std::conditional<is_dense, DenseOp, SparseOp>::type;

    OpType op(mat);
    HermEigsSolver<OpType> eigs(op, k, m);

    SECTION("Largest Magnitude")
    {
        run_test(mat, eigs, SortRule::LargestMagn);
    }
    SECTION("Largest Value")
    {
        run_test(mat, eigs, SortRule::LargestAlge);
    }
    SECTION("Smallest Magnitude")
    {
        run_test(mat, eigs, SortRule::SmallestMagn);
    }
    SECTION("Smallest Value")
    {
        run_test(mat, eigs, SortRule::SmallestAlge);
    }
    SECTION("Both Ends")
    {
        run_test(mat, eigs, SortRule::BothEnds);
    }
}

TEST_CASE("Eigensolver of Hermitian matrix [10x10]", "[eigs_herm]")
{
    std::srand(123);

    const Matrix A = gen_dense_data(10);
    int k = 3;
    int m = 6;

    run_test_sets(A, k, m);
}

TEST_CASE("Eigensolver of Hermitian matrix [100x100]", "[eigs_herm]")
{
    std::srand(123);

    const Matrix A = gen_dense_data(100);
    int k = 10;
    int m = 20;

    run_test_sets(A, k, m);
}

TEST_CASE("Eigensolver of Hermitian matrix [1000x1000]", "[eigs_herm]")
{
    std::srand(123);

    const Matrix A = gen_dense_data(1000);
    int k = 20;
    int m = 50;

    run_test_sets(A, k, m);
}

TEST_CASE("Eigensolver of sparse Hermitian matrix [10x10]", "[eigs_herm]")
{
    std::srand(123);

    // Eigen solver only uses the lower triangle
    const SpMatrix A = gen_sparse_data(10, 0.5);
    int k = 3;
    int m = 6;

    run_test_sets(A, k, m);
}

TEST_CASE("Eigensolver of sparse Hermitian matrix [100x100]", "[eigs_herm]")
{
    std::srand(123);

    // Eigen solver only uses the lower triangle
    const SpMatrix A = gen_sparse_data(100, 0.1);
    int k = 10;
    int m = 20;

    run_test_sets(A, k, m);
}

TEST_CASE("Eigensolver of sparse Hermitian matrix [1000x1000]", "[eigs_herm]")
{
    std::srand(123);

    // Eigen solver only uses the lower triangle
    const SpMatrix A = gen_sparse_data(1000, 0.01);
    int k = 20;
    int m = 50;

    run_test_sets(A, k, m);
}