File: QR.cpp

package info (click to toggle)
spectra 1.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,788 kB
  • sloc: cpp: 23,044; ansic: 175; fortran: 131; makefile: 90
file content (189 lines) | stat: -rw-r--r-- 6,605 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
// Test ../include/Spectra/LinAlg/UpperHessenbergQR.h and
//      ../include/Spectra/LinAlg/DoubleShiftQR.h
#include <complex>
#include <Eigen/Core>
#include <Eigen/QR>
#include <Spectra/LinAlg/UpperHessenbergQR.h>
#include <Spectra/LinAlg/DoubleShiftQR.h>

#include "catch.hpp"

using namespace Spectra;

using Matrix = Eigen::MatrixXd;
using Vector = Eigen::VectorXd;
using MapMat = Eigen::Map<Matrix>;
using Complex = std::complex<double>;
using ComplexMatrix = Eigen::MatrixXcd;
using ComplexMapMat = Eigen::Map<ComplexMatrix>;

template <typename Solver, typename MatType>
void run_test(const MatType &H, typename MatType::Scalar shift)
{
    // In case MatType is a Map type, PlainMatrix is always the actual matrix type
    using PlainMatrix = typename MatType::PlainObject;
    using PlainVector = Eigen::Matrix<typename MatType::Scalar, Eigen::Dynamic, 1>;

    Solver decomp(H, shift);
    const int n = H.rows();
    constexpr double tol = 1e-12;
    // H - s * I
    PlainMatrix Hs = H - shift * PlainMatrix::Identity(n, n);

    // Obtain Q matrix
    PlainMatrix I = PlainMatrix::Identity(n, n);
    PlainMatrix Q = I;
    decomp.apply_QY(Q);

    // Test orthogonality
    PlainMatrix QtQ = Q.adjoint() * Q;
    INFO("||Q'Q - I||_inf = " << (QtQ - I).cwiseAbs().maxCoeff());
    REQUIRE((QtQ - I).cwiseAbs().maxCoeff() == Approx(0.0).margin(tol));

    PlainMatrix QQt = Q * Q.adjoint();
    INFO("||QQ' - I||_inf = " << (QQt - I).cwiseAbs().maxCoeff());
    REQUIRE((QQt - I).cwiseAbs().maxCoeff() == Approx(0.0).margin(tol));

    // Obtain R matrix and test whether it is upper triangular
    PlainMatrix R = decomp.matrix_R();
    PlainMatrix Rlower = R.template triangularView<Eigen::StrictlyLower>();
    INFO("Whether R is upper triangular, error = " << Rlower.cwiseAbs().maxCoeff());
    REQUIRE(Rlower.cwiseAbs().maxCoeff() == Approx(0.0).margin(tol));

    // Compare Hs = H - s * I and QR
    INFO("||Hs - QR||_inf = " << (Hs - Q * R).cwiseAbs().maxCoeff());
    REQUIRE((Hs - Q * R).cwiseAbs().maxCoeff() == Approx(0.0).margin(tol));

    // Obtain Q'HQ
    PlainMatrix QtHQ_true = Q.adjoint() * H * Q;
    PlainMatrix QtHQ;
    decomp.matrix_QtHQ(QtHQ);
    INFO("max error of Q'HQ = " << (QtHQ - QtHQ_true).cwiseAbs().maxCoeff());
    REQUIRE((QtHQ - QtHQ_true).cwiseAbs().maxCoeff() == Approx(0.0).margin(tol));

    // Test "apply" functions
    PlainMatrix Y = PlainMatrix::Random(n, n);

    PlainMatrix QY = Y;
    decomp.apply_QY(QY);
    INFO("max error of QY = " << (QY - Q * Y).cwiseAbs().maxCoeff());
    REQUIRE((QY - Q * Y).cwiseAbs().maxCoeff() == Approx(0.0).margin(tol));

    PlainMatrix YQ = Y;
    decomp.apply_YQ(YQ);
    INFO("max error of YQ = " << (YQ - Y * Q).cwiseAbs().maxCoeff());
    REQUIRE((YQ - Y * Q).cwiseAbs().maxCoeff() == Approx(0.0).margin(tol));

    PlainMatrix QtY = Y;
    decomp.apply_QtY(QtY);
    INFO("max error of Q'Y = " << (QtY - Q.adjoint() * Y).cwiseAbs().maxCoeff());
    REQUIRE((QtY - Q.adjoint() * Y).cwiseAbs().maxCoeff() == Approx(0.0).margin(tol));

    PlainMatrix YQt = Y;
    decomp.apply_YQt(YQt);
    INFO("max error of YQ' = " << (YQt - Y * Q.adjoint()).cwiseAbs().maxCoeff());
    REQUIRE((YQt - Y * Q.adjoint()).cwiseAbs().maxCoeff() == Approx(0.0).margin(tol));

    // Test "apply" functions for vectors
    PlainVector y = PlainVector::Random(n);

    PlainVector Qy = y;
    decomp.apply_QY(Qy);
    INFO("max error of Qy = " << (Qy - Q * y).cwiseAbs().maxCoeff());
    REQUIRE((Qy - Q * y).cwiseAbs().maxCoeff() == Approx(0.0).margin(tol));

    PlainVector Qty = y;
    decomp.apply_QtY(Qty);
    INFO("max error of Q'y = " << (Qty - Q.adjoint() * y).cwiseAbs().maxCoeff());
    REQUIRE((Qty - Q.adjoint() * y).cwiseAbs().maxCoeff() == Approx(0.0).margin(tol));
}

TEST_CASE("QR of real upper Hessenberg matrix", "[QR]")
{
    std::srand(123);
    const int n = 100;
    Matrix M = Matrix::Random(n, n);
    Matrix H = M.triangularView<Eigen::Upper>();
    H.diagonal(-1) = M.diagonal(-1);

    run_test<UpperHessenbergQR<double>>(H, 1.2345);

    MapMat Hmap(H.data(), H.rows(), H.cols());
    run_test<UpperHessenbergQR<double>>(Hmap, 0.6789);
}

TEST_CASE("QR of real tridiagonal matrix", "[QR]")
{
    std::srand(123);
    const int n = 100;
    Matrix M = Matrix::Random(n, n);
    Matrix H = Matrix::Zero(n, n);
    H.diagonal() = M.diagonal();
    H.diagonal(-1) = M.diagonal(-1);
    H.diagonal(1) = M.diagonal(-1);

    run_test<TridiagQR<double>>(H, 1.2345);

    MapMat Hmap(H.data(), H.rows(), H.cols());
    run_test<TridiagQR<double>>(Hmap, 0.6789);
}

TEST_CASE("QR decomposition with double shifts", "[QR]")
{
    std::srand(123);
    const int n = 100;
    constexpr double tol = 1e-12;

    Matrix M = Matrix::Random(n, n);
    Matrix H = M.triangularView<Eigen::Upper>();
    H.diagonal(-1) = M.diagonal(-1);
    H(1, 0) = 0;  // Test for the case when sub-diagonal element is zero

    const double s = 2, t = 3;

    Matrix Hst = H * H - s * H + t * Matrix::Identity(n, n);
    Eigen::HouseholderQR<Matrix> qr(Hst);
    Matrix Q0 = qr.householderQ();

    DoubleShiftQR<double> decomp(H, s, t);
    Matrix Q = Matrix::Identity(n, n);
    decomp.apply_YQ(Q);

    // Equal up to signs
    INFO("max error of Q = " << (Q.cwiseAbs() - Q0.cwiseAbs()).cwiseAbs().maxCoeff());
    REQUIRE((Q.cwiseAbs() - Q0.cwiseAbs()).cwiseAbs().maxCoeff() == Approx(0.0).margin(tol));

    // Test Q'HQ
    Matrix QtHQ;
    decomp.matrix_QtHQ(QtHQ);
    INFO("max error of Q'HQ = " << (QtHQ - Q.transpose() * H * Q).cwiseAbs().maxCoeff());
    REQUIRE((QtHQ - Q.transpose() * H * Q).cwiseAbs().maxCoeff() == Approx(0.0).margin(tol));

    // Test apply functions
    Vector y = Vector::Random(n);
    Matrix Y = Matrix::Random(n / 2, n);

    Vector Qty = y;
    decomp.apply_QtY(Qty);
    INFO("max error of Q'y = " << (Qty - Q.transpose() * y).cwiseAbs().maxCoeff());
    REQUIRE((Qty - Q.transpose() * y).cwiseAbs().maxCoeff() == Approx(0.0).margin(tol));

    Matrix YQ = Y;
    decomp.apply_YQ(YQ);
    INFO("max error of YQ = " << (YQ - Y * Q).cwiseAbs().maxCoeff());
    REQUIRE((YQ - Y * Q).cwiseAbs().maxCoeff() == Approx(0.0).margin(tol));
}

TEST_CASE("QR of complex upper Hessenberg matrix", "[QR]")
{
    std::srand(123);
    const int n = 100;
    ComplexMatrix M = ComplexMatrix::Random(n, n);
    ComplexMatrix H = M.triangularView<Eigen::Upper>();
    H.diagonal(-1) = M.diagonal(-1);

    run_test<UpperHessenbergQR<Complex>>(H, Complex(1.2345, -5.4321));

    ComplexMapMat Hmap(H.data(), H.rows(), H.cols());
    run_test<UpperHessenbergQR<Complex>>(Hmap, Complex(0.6789, -0.9876));
}