1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
|
#include <iostream>
#include <random>
#include <Eigen/Core>
#include <Eigen/SparseCore>
#include <Eigen/SVD>
#include <Spectra/contrib/PartialSVDSolver.h>
#include "catch.hpp"
using namespace Spectra;
using Matrix = Eigen::MatrixXd;
using Vector = Eigen::VectorXd;
using SpMatrix = Eigen::SparseMatrix<double>;
// Generate random sparse matrix
SpMatrix gen_sparse_data(int m, int n, double prob = 0.5)
{
SpMatrix mat(m, n);
std::default_random_engine gen;
gen.seed(0);
std::uniform_real_distribution<double> distr(0.0, 1.0);
for (int i = 0; i < m; i++)
{
for (int j = 0; j < n; j++)
{
if (distr(gen) < prob)
mat.insert(i, j) = distr(gen) - 0.5;
}
}
return mat;
}
template <typename MatType>
void run_test(const MatType& mat, int k, int m)
{
PartialSVDSolver<MatType> svds(mat, k, m);
int nconv = svds.compute();
INFO("nconv = " << nconv);
REQUIRE(nconv == k);
Vector svals = svds.singular_values();
Matrix U = svds.matrix_U(k);
Matrix V = svds.matrix_V(k);
// SVD solver from Eigen
// Requires dense matrices
Matrix mat_dense = Matrix(mat);
Eigen::JacobiSVD<Matrix> svd(mat, Eigen::ComputeThinU | Eigen::ComputeThinV);
Vector svals_eigen = svd.singularValues();
Matrix U_eigen = svd.matrixU();
Matrix V_eigen = svd.matrixV();
double err = (svals - svals_eigen.head(k)).array().abs().maxCoeff();
INFO("Residual of singular values = " << err);
REQUIRE(err == Approx(0.0).margin(1e-9));
err = (U.array().abs() - U_eigen.leftCols(k).array().abs()).abs().maxCoeff();
INFO("Residual of left singular vectors = " << err);
REQUIRE(err == Approx(0.0).margin(1e-9));
err = (V.array().abs() - V_eigen.leftCols(k).array().abs()).abs().maxCoeff();
INFO("Residual of right singular vectors = " << err);
REQUIRE(err == Approx(0.0).margin(1e-9));
}
TEST_CASE("Partial SVD of tall dense matrix [1000x100]", "[svds_dense_tall]")
{
std::srand(123);
const Matrix A = Matrix::Random(1000, 100);
int k = 5;
int m = 10;
run_test<Matrix>(A, k, m);
}
TEST_CASE("Partial SVD of wide dense matrix [1000x100]", "[svds_dense_wide]")
{
std::srand(123);
const Matrix A = Matrix::Random(100, 1000);
int k = 5;
int m = 10;
run_test<Matrix>(A, k, m);
}
TEST_CASE("Partial SVD of tall sparse matrix [1000x100]", "[svds_sparse_tall]")
{
std::srand(123);
const SpMatrix A = gen_sparse_data(1000, 100, 0.1);
int k = 5;
int m = 10;
run_test<SpMatrix>(A, k, m);
}
TEST_CASE("Partial SVD of wide sparse matrix [1000x100]", "[svds_sparse_wide]")
{
std::srand(123);
const SpMatrix A = gen_sparse_data(100, 1000, 0.1);
int k = 5;
int m = 10;
run_test<SpMatrix>(A, k, m);
}
|