1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
#include <iostream>
#include <type_traits>
#include <random>
#include <Eigen/Core>
#include <Eigen/SparseCore>
#include <Spectra/SymEigsShiftSolver.h>
#include <Spectra/MatOp/DenseSymShiftSolve.h>
#include <Spectra/MatOp/SparseSymShiftSolve.h>
#include "catch.hpp"
using namespace Spectra;
using Matrix = Eigen::MatrixXd;
using Vector = Eigen::VectorXd;
using SpMatrix = Eigen::SparseMatrix<double>;
// Generate data for testing
Matrix gen_dense_data(int n)
{
const Matrix mat = Eigen::MatrixXd::Random(n, n);
return mat + mat.transpose();
}
SpMatrix gen_sparse_data(int n, double prob = 0.5)
{
// Eigen solver only uses the lower triangle of mat,
// so we don't need to make mat symmetric here.
SpMatrix mat(n, n);
std::default_random_engine gen;
gen.seed(0);
std::uniform_real_distribution<double> distr(0.0, 1.0);
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
if (distr(gen) < prob)
mat.insert(i, j) = distr(gen) - 0.5;
}
}
return mat;
}
template <typename MatType, typename Solver>
void run_test(const MatType& mat, Solver& eigs, SortRule selection, bool allow_fail = false)
{
eigs.init();
// maxit = 500 to reduce running time for failed cases
int nconv = eigs.compute(selection, 500);
int niter = eigs.num_iterations();
int nops = eigs.num_operations();
if (allow_fail && eigs.info() != CompInfo::Successful)
{
WARN("FAILED on this test");
std::cout << "nconv = " << nconv << std::endl;
std::cout << "niter = " << niter << std::endl;
std::cout << "nops = " << nops << std::endl;
return;
}
else
{
INFO("nconv = " << nconv);
INFO("niter = " << niter);
INFO("nops = " << nops);
REQUIRE(eigs.info() == CompInfo::Successful);
}
Vector evals = eigs.eigenvalues();
Matrix evecs = eigs.eigenvectors();
Matrix resid = mat.template selfadjointView<Eigen::Lower>() * evecs - evecs * evals.asDiagonal();
const double err = resid.array().abs().maxCoeff();
INFO("||AU - UD||_inf = " << err);
REQUIRE(err == Approx(0.0).margin(1e-9));
}
template <typename MatType>
void run_test_sets(const MatType& mat, int k, int m, double sigma)
{
constexpr bool is_dense = std::is_same<MatType, Matrix>::value;
using DenseOp = DenseSymShiftSolve<double>;
using SparseOp = SparseSymShiftSolve<double>;
using OpType = typename std::conditional<is_dense, DenseOp, SparseOp>::type;
OpType op(mat);
SymEigsShiftSolver<OpType> eigs(op, k, m, sigma);
SECTION("Largest Magnitude")
{
run_test(mat, eigs, SortRule::LargestMagn);
}
SECTION("Largest Value")
{
run_test(mat, eigs, SortRule::LargestAlge);
}
SECTION("Smallest Magnitude")
{
run_test(mat, eigs, SortRule::SmallestMagn, true);
}
SECTION("Smallest Value")
{
run_test(mat, eigs, SortRule::SmallestAlge);
}
SECTION("Both Ends")
{
run_test(mat, eigs, SortRule::BothEnds);
}
}
TEST_CASE("Eigensolver of symmetric real matrix [10x10]", "[eigs_sym]")
{
std::srand(123);
const Matrix A = gen_dense_data(10);
int k = 3;
int m = 6;
double sigma = 1.0;
run_test_sets(A, k, m, sigma);
}
TEST_CASE("Eigensolver of symmetric real matrix [100x100]", "[eigs_sym]")
{
std::srand(123);
const Matrix A = gen_dense_data(100);
int k = 10;
int m = 20;
double sigma = 10.0;
run_test_sets(A, k, m, sigma);
}
TEST_CASE("Eigensolver of symmetric real matrix [1000x1000]", "[eigs_sym]")
{
std::srand(123);
const Matrix A = gen_dense_data(1000);
int k = 20;
int m = 50;
double sigma = 100.0;
run_test_sets(A, k, m, sigma);
}
TEST_CASE("Eigensolver of sparse symmetric real matrix [10x10]", "[eigs_sym]")
{
std::srand(123);
// Eigen solver only uses the lower triangle
const SpMatrix A = gen_sparse_data(10, 0.5);
int k = 3;
int m = 6;
double sigma = 1.0;
run_test_sets(A, k, m, sigma);
}
TEST_CASE("Eigensolver of sparse symmetric real matrix [100x100]", "[eigs_sym]")
{
std::srand(123);
// Eigen solver only uses the lower triangle
const SpMatrix A = gen_sparse_data(100, 0.1);
int k = 10;
int m = 20;
double sigma = 10.0;
run_test_sets(A, k, m, sigma);
}
TEST_CASE("Eigensolver of sparse symmetric real matrix [1000x1000]", "[eigs_sym]")
{
std::srand(123);
// Eigen solver only uses the lower triangle
const SpMatrix A = gen_sparse_data(1000, 0.01);
int k = 20;
int m = 50;
double sigma = 100.0;
run_test_sets(A, k, m, sigma);
}
|