1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
Manipulating cubes and extracting subcubes
==========================================
Modifying the spectral axis
---------------------------
As mentioned in :doc:`accessing`, it is straightforward to find the
coordinates along the spectral axis using the
:attr:`~spectral_cube.spectral_cube.BaseSpectralCube.spectral_axis` attribute::
>>> cube.spectral_axis # doctest: +SKIP
[ -2.97198762e+03 -2.63992044e+03 -2.30785327e+03 -1.97578610e+03
-1.64371893e+03 -1.31165176e+03 -9.79584583e+02 -6.47517411e+02
...
3.15629983e+04 3.18950655e+04 3.22271326e+04 3.25591998e+04
3.28912670e+04 3.32233342e+04] m / s
The default units of a spectral axis are determined from the FITS header or
WCS object used to initialize the cube, but it is also possible to change the
spectral axis unit using :meth:`~spectral_cube.SpectralCube.with_spectral_unit`::
>>> from astropy import units as u
>>> cube2 = cube.with_spectral_unit(u.km / u.s) # doctest: +SKIP
>>> cube2.spectral_axis # doctest: +SKIP
[ -2.97198762e+00 -2.63992044e+00 -2.30785327e+00 -1.97578610e+00
-1.64371893e+00 -1.31165176e+00 -9.79584583e-01 -6.47517411e-01
...
3.02347296e+01 3.05667968e+01 3.08988639e+01 3.12309311e+01
3.15629983e+01 3.18950655e+01 3.22271326e+01 3.25591998e+01
3.28912670e+01 3.32233342e+01] km / s
It is also possible to change from velocity to frequency for example, but
this requires specifying the rest frequency or wavelength as well as a
convention for the doppler shift calculation::
>>> cube3 = cube.with_spectral_unit(u.GHz, velocity_convention='radio',
... rest_value=200 * u.GHz) # doctest: +SKIP
[ 220.40086492 220.40062079 220.40037667 220.40013254 220.39988841
220.39964429 220.39940016 220.39915604 220.39891191 220.39866778
...
220.37645231 220.37620818 220.37596406 220.37571993 220.3754758
220.37523168 220.37498755 220.37474342 220.3744993 220.37425517] GHz
The new cubes will then preserve the new spectral units when computing
moments for example (see :doc:`moments`).
Extracting a spectral slab
--------------------------
Given a spectral cube, it is easy to extract a sub-cube covering only a subset
of the original range in the spectral axis. To do this, you can use the
:meth:`~spectral_cube.SpectralCube.spectral_slab` method. This
method takes lower and upper bounds for the spectral axis, as well as an
optional rest frequency, and returns a new
:class:`~spectral_cube.SpectralCube` instance. The bounds can
be specified as a frequency, wavelength, or a velocity but the units have to
match the type of the spectral units in the cube (if they do not match, first
use :meth:`~spectral_cube.SpectralCube.with_spectral_unit` to ensure that they
are in the same units). The bounds should be given as Astropy
:class:`Quantities <astropy.units.Quantity>` as follows::
>>> from astropy import units as u
>>> subcube = cube.spectral_slab(-50 * u.km / u.s, +50 * u.km / u.s) # doctest: +SKIP
The resulting cube ``subcube`` (which is also a
:class:`~spectral_cube.SpectralCube` instance) then contains all channels
that overlap with the range -50 to 50 km/s relative to the rest frequency
assumed by the world coordinates, or the rest frequency specified by a prior
call to :meth:`~spectral_cube.SpectralCube.with_spectral_unit`.
Extracting a sub-cube by indexing
---------------------------------
It is also easy to extract a sub-cube from pixel coordinates using standard
Numpy slicing notation::
>>> sub_cube = cube[:100, 10:50, 10:50] # doctest: +SKIP
This returns a new :class:`~spectral_cube.SpectralCube` object
with updated WCS information.
.. _reg:
Extracting a subcube from a DS9/CRTF region
-------------------------------------------
You can use `DS9
<http://ds9.si.edu/doc/ref/region.html>`_/`CRTF
<https://casaguides.nrao.edu/index.php/CASA_Region_Format>`_ regions to extract
subcubes. The minimal enclosing subcube will be extracted with a two-dimensional
mask corresponding to the DS9/CRTF region. `Regions
<https://astropy-regions.readthedocs.io/en/latest/>`_ is required for region
parsing. CRTF regions may also contain spectral cutout information.
This example shows extraction of a subcube from a ds9 region file ``file.reg``.
`~regions.read_ds9` parses the ds9 file and converts it to a list of
`~regions.Region` objects::
>>> import regions # doctest: +SKIP
>>> region_list = regions.read_ds9('file.reg') # doctest: +SKIP
>>> sub_cube = cube.subcube_from_regions(region_list) # doctest: +SKIP
This one shows extraction of a subcube from a CRTF region file ``file.crtf``,
parsed using `~regions.read_crtf`::
>>> import regions # doctest: +SKIP
>>> region_list = regions.read_crtf('file.reg') # doctest: +SKIP
>>> sub_cube = cube.subcube_from_regions(region_list) # doctest: +SKIP
If you want to loop over individual regions with a single region file, you need
to convert the individual regions to lists of that region::
>>> region_list = regions.read_ds9('file.reg') #doctest: +SKIP
>>> for region in region_list: #doctest: +SKIP
>>> sub_cube = cube.subcube_from_regions([region]) #doctest: +SKIP
You can also directly use a ds9 region string. This example extracts a 0.1
degree circle around the Galactic Center::
>>> region_str = "galactic; circle(0, 0, 0.1)" # doctest: +SKIP
>>> sub_cube = cube.subcube_from_ds9region(region_str) # doctest: +SKIP
Similarly, you can also use a CRTF region string::
>>> region_str = "circle[[0deg, 0deg], 0.1deg], coord=galactic, range=[150km/s, 300km/s]" # doctest: +SKIP
>>> sub_cube = cube.subcube_from_crtfregion(region_str) # doctest: +SKIP
CRTF regions that specify a subset in the spectral dimension can be used to
produce full 3D cutouts. The ``meta`` attribute of a `regions.Region` object
contains the spectral information for that region in the three special keywords
``range``, ``restfreq``, and ``veltype``::
>>> import regions # doctest: +SKIP
>>> from astropy import units as u
>>> regpix = regions.RectanglePixelRegion(regions.PixCoord(0.5, 1), width=4, height=2) # doctest: +SKIP
>>> regpix.meta['range'] = [150 * u.km/u.s, 300 * u.km/u.s] # spectral range # doctest: +SKIP
>>> regpix.meta['restfreq'] = [100 * u.GHz] # rest frequency # doctest: +SKIP
>>> regpix.meta['veltype'] = 'OPTICAL' # velocity convention # doctest: +SKIP
>>> subcube = cube.subcube_from_regions([regpix]) # doctest: +SKIP
If ``range`` is specified, but the other two keywords are not, the code will
likely crash.
Extract the minimal valid subcube
---------------------------------
If you have a mask that masks out some of the cube edges, such that the
resulting sub-cube might be smaller in memory, it can be useful to extract the
minimal enclosing sub-cube::
>>> sub_cube = cube.minimal_subcube() # doctest: +SKIP
You can also shrink any cube by this mechanism::
>>> sub_cube = cube.with_mask(smaller_region).minimal_subcube() # doctest: +SKIP
Extract a spatial and spectral subcube
--------------------------------------
There is a generic subcube function that allows slices in the spatial and
spectral axes simultaneously, as long as the spatial axes are aligned with the
pixel axes. An arbitrary example looks like this::
>>> sub_cube = cube.subcube(xlo=5*u.deg, xhi=6*u.deg, # doctest: +SKIP
ylo=2*u.deg, yhi=2.1*u.deg, # doctest: +SKIP
zlo=50*u.GHz, zhi=51*u.GHz) # doctest: +SKIP
|