File: base_class.py

package info (click to toggle)
spectral-cube 0.6.6-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,136 kB
  • sloc: python: 13,236; makefile: 154
file content (850 lines) | stat: -rw-r--r-- 30,075 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
from astropy import units as u
from astropy import log
import numpy as np
import warnings
import abc

import astropy
from astropy.io.fits import Card
from radio_beam import Beam, Beams
import dask.array as da

from . import wcs_utils
from . import cube_utils
from .utils import BeamWarning, cached, WCSCelestialError, BeamAverageWarning, NoBeamError, BeamUnitsError
from .masks import BooleanArrayMask


__doctest_skip__ = ['SpatialCoordMixinClass.world']
__all__ = ['BaseNDClass', 'BeamMixinClass',
           'HeaderMixinClass', 'MaskableArrayMixinClass',
           'MultiBeamMixinClass', 'SpatialCoordMixinClass',
           'SpectralAxisMixinClass',
          ]

DOPPLER_CONVENTIONS = {}
DOPPLER_CONVENTIONS['radio'] = u.doppler_radio
DOPPLER_CONVENTIONS['optical'] = u.doppler_optical
DOPPLER_CONVENTIONS['relativistic'] = u.doppler_relativistic


class BaseNDClass(object):

    _cache = {}

    @property
    def _nowcs_header(self):
        """
        Return a copy of the header with no WCS information attached
        """
        log.debug("Stripping WCS from header")
        return wcs_utils.strip_wcs_from_header(self._header)

    @property
    def wcs(self):
        return self._wcs

    @property
    def meta(self):
        return self._meta

    @property
    def mask(self):
        return self._mask

    @mask.setter
    def mask(self, value):
        self._mask = value


class HeaderMixinClass(object):
    """
    A mixin class to provide header updating from WCS objects.
    The parent object must have a WCS.
    """

    def wcs(self):
        raise TypeError("Classes inheriting from HeaderMixin must define a "
                        "wcs method")

    @property
    def header(self):
        header = self._nowcs_header

        wcsheader = self.wcs.to_header() if self.wcs is not None else {}

        # When preserving metadata, copy over keywords before doing the WCS
        # keyword copying, since those have specific formatting requirements
        # and will overwrite these in many cases (e.g., BMAJ)
        for key in self.meta:
            if key.upper() not in wcsheader:
                if isinstance(key, str) and len(key) <= 8:
                    try:
                        header[key.upper()] = str(self.meta[key])
                    except ValueError as ex:
                        # need a silenced-by-default warning here?
                        # log.warn("Skipped key {0} because {1}".format(key, ex))
                        pass
                elif isinstance(key, str) and len(key) > 8:
                    header['COMMENT'] = "{0}={1}".format(key, self.meta[key])

        # Preserve non-WCS information from previous header iteration
        header.update(wcsheader)
        if self.unit == u.one and 'BUNIT' in self._meta:
            # preserve the BUNIT even though it's not technically valid
            # (Jy/Beam)
            header['BUNIT'] = self._meta['BUNIT']
        else:
            header['BUNIT'] = self.unit.to_string(format='FITS')

        if 'beam' in self._meta:
            header = self._meta['beam'].attach_to_header(header)

        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            header.insert(2, Card(keyword='NAXIS', value=self.ndim))
            for ind,sh in enumerate(self.shape[::-1]):
                header.insert(3+ind, Card(keyword='NAXIS{0:1d}'.format(ind+1),
                                          value=sh))

        return header

    def check_jybeam_smoothing(self, raise_error_jybm=True):
        '''
        This runs for spatial resolution operations (e.g. `spatial_smooth`) and either an error or warning
        when smoothing will affect brightness in Jy/beam operations.

        This is also true for using the `with_beam` and `with_beams` methods, including 1D spectra with
        Jy/beam units.

        Parameters
        ----------
        raise_error_jybm : bool, optional
            Raises a `~spectral_cube.utils.BeamUnitsError` when True (default). When False, it triggers a
            `~spectral_cube.utils.BeamWarning`.

            .. note: This is a reminder to expose raise_error_jybm to top-level functions.

        '''

        if self.unit.is_equivalent(u.Jy / u.beam) and raise_error_jybm:
            if raise_error_jybm:
                raise BeamUnitsError("Attempting to change the spatial resolution of a cube with Jy/beam units."
                                     " To ignore this error, set `raise_error_jybm=False`.")
            else:
                warnings.warn("Changing the spatial resolution of a cube with Jy/beam units."
                              " The brightness units may be wrong!", BeamWarning)

class SpatialCoordMixinClass(object):

    @property
    def _has_wcs_celestial(self):
        return self.wcs.has_celestial

    def _raise_wcs_no_celestial(self):
        if not self._has_wcs_celestial:
            raise WCSCelestialError("WCS does not contain two spatial axes.")

    def _celestial_axes(self):
        '''
        Return the spatial axes in the data from the WCS object. The order of
        the spatial axes returned is [y, x].

        '''

        self._raise_wcs_no_celestial()

        # This works for astropy >v3
        # wcs_cel_axis = [self.wcs.world_axis_physical_types.index(axtype)
        #                 for axtype in
        #                 self.wcs.celestial.world_axis_physical_types]

        # This works for all LTS releases
        wcs_cel_axis = [ax for ax, ax_type in enumerate(self.wcs.get_axis_types()) if
                        ax_type['coordinate_type'] == 'celestial']

        # Swap to numpy ordering
        # Since we're mapping backwards to get the numpy convention, we need to
        # reverse the order at the end.
        # 0 is the y spatial axis and 1 is the x spatial axis
        np_order_cel_axis = [self.ndim - 1 - ind for ind in wcs_cel_axis][::-1]

        return np_order_cel_axis

    @cube_utils.slice_syntax
    def world(self, view):
        """
        Return a list of the world coordinates in a cube, projection, or a view
        of it.

        SpatialCoordMixinClass.world is called with *bracket notation*, like
        a NumPy array::

            c.world[0:3, :, :]

        Returns
        -------
        [v, y, x] : list of NumPy arrays
            The 3 world coordinates at each pixel in the view. For a 2D image,
            the output is ``[y, x]``.


        Examples
        --------
        Extract the first 3 velocity channels of the cube:

        >>> v, y, x = c.world[0:3]

        Extract all the world coordinates:

        >>> v, y, x = c.world[:, :, :]

        Extract every other pixel along all axes:

        >>> v, y, x = c.world[::2, ::2, ::2]

        Extract all the world coordinates for a 2D image:

        >>> y, x = c.world[:, :]

        """

        self._raise_wcs_no_celestial()

        # the next 3 lines are equivalent to (but more efficient than)
        # inds = np.indices(self._data.shape)
        # inds = [i[view] for i in inds]
        inds = np.ogrid[[slice(0, s) for s in self.shape]]
        inds = np.broadcast_arrays(*inds)
        inds = [i[view] for i in inds[::-1]]  # numpy -> wcs order

        shp = inds[0].shape
        inds = np.column_stack([i.ravel() for i in inds])
        world = self._wcs.all_pix2world(inds, 0).T

        world = [w.reshape(shp) for w in world]  # 1D->3D

        # apply units
        world = [w * u.Unit(self._wcs.wcs.cunit[i])
                 for i, w in enumerate(world)]

        # convert spectral unit if needed
        if hasattr(self, "_spectral_unit"):
            if self._spectral_unit is not None:
                specind = self.wcs.wcs.spec
                world[specind] = world[specind].to(self._spectral_unit)

        return world[::-1]  # reverse WCS -> numpy order

    def flattened_world(self, view=()):
        """
        Retrieve the world coordinates corresponding to the extracted flattened
        version of the cube
        """

        self._raise_wcs_no_celestial()

        return [wd_dim.ravel() for wd_dim in self.world[view]]

    def world_spines(self):
        """
        Returns a list of 1D arrays, for the world coordinates
        along each pixel axis.

        Raises error if this operation is ill-posed (e.g. rotated world
        coordinates, strong distortions)

        This method is not currently implemented. Use
        ``world`` instead.
        """
        raise NotImplementedError()

    @property
    def spatial_coordinate_map(self):
        view = tuple([0 for ii in range(self.ndim - 2)] + [slice(None)] * 2)
        return self.world[view][self.ndim - 2:]

    @property
    @cached
    def world_extrema(self):

        y_ax, x_ax = self._celestial_axes()

        corners = [(0, self.shape[x_ax]-1),
                   (self.shape[y_ax]-1, 0),
                   (self.shape[y_ax]-1, self.shape[x_ax]-1),
                   (0,0)]

        if len(self.shape) == 2:
            latlon_corners = [self.world[y, x] for y,x in corners]
        else:
            latlon_corners = [self.world[0, y, x][1:] for y,x in corners]

        lon = u.Quantity([x for y,x in latlon_corners])
        lat = u.Quantity([y for y,x in latlon_corners])

        _lon_min = lon.min()
        _lon_max = lon.max()
        _lat_min = lat.min()
        _lat_max = lat.max()

        return u.Quantity(((_lon_min.to(u.deg).value, _lon_max.to(u.deg).value),
                           (_lat_min.to(u.deg).value, _lat_max.to(u.deg).value)),
                          u.deg)

    @property
    @cached
    def longitude_extrema(self):
        return self.world_extrema[0]

    @property
    @cached
    def latitude_extrema(self):
        return self.world_extrema[1]


class SpectralAxisMixinClass(object):

    def _new_spectral_wcs(self, unit, velocity_convention=None,
                          rest_value=None):
        """
        Returns a new WCS with a different Spectral Axis unit

        Parameters
        ----------
        unit : :class:`~astropy.units.Unit`
            Any valid spectral unit: velocity, (wave)length, or frequency.
            Only vacuum units are supported.
        velocity_convention : 'relativistic', 'radio', or 'optical'
            The velocity convention to use for the output velocity axis.
            Required if the output type is velocity. This can be either one
            of the above strings, or an `astropy.units` equivalency.
        rest_value : :class:`~astropy.units.Quantity`
            A rest wavelength or frequency with appropriate units.  Required if
            output type is velocity.  The cube's WCS should include this
            already if the *input* type is velocity, but the WCS's rest
            wavelength/frequency can be overridden with this parameter.

            .. note: This must be the rest frequency/wavelength *in vacuum*,
                     even if your cube has air wavelength units

        """
        from .spectral_axis import (convert_spectral_axis,
                                    determine_ctype_from_vconv)

        # Allow string specification of units, for example
        if not isinstance(unit, u.Unit):
            unit = u.Unit(unit)

        # Velocity conventions: required for frq <-> velo
        # convert_spectral_axis will handle the case of no velocity
        # convention specified & one is required
        if velocity_convention in DOPPLER_CONVENTIONS:
            velocity_convention = DOPPLER_CONVENTIONS[velocity_convention]
        elif (velocity_convention is not None and
              velocity_convention not in DOPPLER_CONVENTIONS.values()):
            raise ValueError("Velocity convention must be radio, optical, "
                             "or relativistic.")

        # If rest value is specified, it must be a quantity
        if (rest_value is not None and
            (not hasattr(rest_value, 'unit') or
             not rest_value.unit.is_equivalent(u.m, u.spectral()))):
            raise ValueError("Rest value must be specified as an astropy "
                             "quantity with spectral equivalence.")

        # Shorter versions to keep lines under 80
        ctype_from_vconv = determine_ctype_from_vconv

        meta = self._meta.copy()
        if 'Original Unit' not in self._meta:
            meta['Original Unit'] = self._wcs.wcs.cunit[self._wcs.wcs.spec]
            meta['Original Type'] = self._wcs.wcs.ctype[self._wcs.wcs.spec]

        out_ctype = ctype_from_vconv(self._wcs.wcs.ctype[self._wcs.wcs.spec],
                                     unit,
                                     velocity_convention=velocity_convention)

        newwcs = convert_spectral_axis(self._wcs, unit, out_ctype,
                                       rest_value=rest_value)

        newwcs.wcs.set()
        return newwcs, meta

    @property
    def spectral_axis(self):
        # spectral objects should be forced to implement this
        raise NotImplementedError


class MaskableArrayMixinClass(object):
    """
    Mixin class for maskable arrays
    """

    def _get_filled_data(self, view=(), fill=np.nan, check_endian=False,
                         use_memmap=None):
        """
        Return the underlying data as a numpy array.
        Always returns the spectral axis as the 0th axis

        Sets masked values to *fill*
        """
        if check_endian:
            if not self._data.dtype.isnative:
                kind = str(self._data.dtype.kind)
                sz = str(self._data.dtype.itemsize)
                dt = '=' + kind + sz
                data = self._data.astype(dt)
            else:
                data = self._data
        else:
            data = self._data

        if self._mask is None:
            return data[view]

        if use_memmap is None and hasattr(self, '_is_huge'):
            use_memmap = self._is_huge

        return self._mask._filled(data=data, wcs=self._wcs, fill=fill,
                                  view=view, wcs_tolerance=self._wcs_tolerance,
                                  use_memmap=use_memmap
                                 )

    @cube_utils.slice_syntax
    def filled_data(self, view):
        """
        Return a portion of the data array, with excluded mask values
        replaced by ``fill_value``.

        Returns
        -------
        data : Quantity
            The masked data.
        """
        return u.Quantity(self._get_filled_data(view, fill=self._fill_value),
                          self.unit, copy=False)

    def filled(self, fill_value=None):
        if fill_value is not None:
            return u.Quantity(self._get_filled_data(fill=fill_value),
                              self.unit, copy=False)
        return self.filled_data[:]

    @cube_utils.slice_syntax
    def unitless_filled_data(self, view):
        """
        Return a portion of the data array, with excluded mask values
        replaced by ``fill_value``.

        Returns
        -------
        data : numpy.array
            The masked data.
        """
        return self._get_filled_data(view, fill=self._fill_value)

    @property
    def fill_value(self):
        """ The replacement value used by `~spectral_cube.base_class.MaskableArrayMixinClass.filled_data`.

        fill_value is immutable; use `~spectral_cube.base_class.MaskableArrayMixinClass.with_fill_value`
        to create a new cube with a different fill value.
        """
        return self._fill_value

    def with_fill_value(self, fill_value):
        """
        Create a new object with a different ``fill_value``.

        Notes
        -----
        This method is fast (it does not copy any data)
        """
        return self._new_thing_with(fill_value=fill_value)

    @abc.abstractmethod
    def _new_thing_with(self):
        raise NotImplementedError


class MultiBeamMixinClass(object):
    """
    A mixin class to handle multibeam objects.  To be used by
    VaryingResolutionSpectralCube's and OneDSpectrum's """

    def jtok_factors(self, equivalencies=()):
        """
        Compute an array of multiplicative factors that will convert from
        Jy/beam to K
        """

        factors = []
        for bm,frq in zip(self.beams,
                          self.with_spectral_unit(u.Hz).spectral_axis):

            # create a beam equivalency for brightness temperature
            bmequiv = bm.jtok_equiv(frq)
            factor = (u.Jy).to(u.K, equivalencies=bmequiv+list(equivalencies))
            factors.append(factor)
        factor = np.array(factors)

        return factor

    @property
    def beams(self):
        return self._beams[self.goodbeams_mask]

    @beams.setter
    def beams(self, obj):

        if not isinstance(obj, Beams):
            raise TypeError("beam must be a radio_beam.Beams object.")

        if not obj.size == self.shape[0]:
            raise ValueError("The Beams object must have the same size as the "
                             "data. Found a size of {0} and the data have a "
                             "size of {1}".format(obj.size, self.size))

        self._beams = obj

    @property
    @cached
    def pixels_per_beam(self):
        pixels_per_beam = [(beam.sr /
                (astropy.wcs.utils.proj_plane_pixel_area(self.wcs) *
                 u.deg**2)).to(u.one).value for beam in self.beams]

        return pixels_per_beam

    @property
    def unmasked_beams(self):
        return self._beams

    @property
    def goodbeams_mask(self):
        if hasattr(self, '_goodbeams_mask'):
            return self._goodbeams_mask
        else:
            return self.unmasked_beams.isfinite

    @goodbeams_mask.setter
    def goodbeams_mask(self, value):
        if value.size != self.shape[0]:
            raise ValueError("The 'good beams' mask must have the same size "
                             "as the cube's spectral dimension")

        self._goodbeams_mask = value

    def identify_bad_beams(self, threshold, reference_beam=None,
                           criteria=['sr','major','minor'],
                           mid_value=np.nanmedian):
        """
        Mask out any layers in the cube that have beams that differ from the
        central value of the beam by more than the specified threshold.

        Parameters
        ----------
        threshold : float
            Fractional threshold
        reference_beam : Beam
            A beam to use as the reference.  If unspecified, ``mid_value`` will
            be used to select a middle beam
        criteria : list
            A list of criteria to compare.  Can include
            'sr','major','minor','pa' or any subset of those.
        mid_value : function
            The function used to determine the 'mid' value to compare to.  This
            will identify the middle-valued beam area/major/minor/pa.

        Returns
        -------
        includemask : np.array
            A boolean array where ``True`` indicates the good beams
        """

        includemask = np.ones(self.unmasked_beams.size, dtype='bool')

        all_criteria = {'sr','major','minor','pa'}
        if not set.issubset(set(criteria), set(all_criteria)):
            raise ValueError("Criteria must be one of the allowed options: "
                             "{0}".format(all_criteria))

        props = {prop: u.Quantity([getattr(beam, prop) for beam in self.unmasked_beams])
                 for prop in all_criteria}

        if reference_beam is None:
            reference_beam = Beam(major=mid_value(props['major']),
                                  minor=mid_value(props['minor']),
                                  pa=mid_value(props['pa'])
                                 )

        for prop in criteria:
            val = props[prop]
            mid = getattr(reference_beam, prop)

            diff = np.abs((val-mid)/mid)

            assert diff.shape == includemask.shape

            includemask[diff > threshold] = False

        return includemask

    def average_beams(self, threshold, mask='compute', warn=False):
        """
        Average the beams.  Note that this operation only makes sense in
        limited contexts!  Generally one would want to convolve all the beams
        to a common shape, but this method is meant to handle the "simple" case
        when all your beams are the same to within some small factor and can
        therefore be arithmetically averaged.

        Parameters
        ----------
        threshold : float
            The fractional difference between beam major, minor, and pa to
            permit
        mask : 'compute', None, or boolean array
            The mask to apply to the beams.  Useful for excluding bad channels
            and edge beams.
        warn : bool
            Warn if successful?

        Returns
        -------
        new_beam : radio_beam.Beam
            A new radio beam object that is the average of the unmasked beams
        """

        use_dask = isinstance(self._data, da.Array)

        if mask == 'compute':
            if use_dask:
                # If we are dealing with dask arrays, we compute the beam
                # mask once and for all since it is used multiple times in its
                # entirety in the remainder of this method.
                beam_mask = da.any(da.logical_and(self._mask_include,
                                                  self.goodbeams_mask[:, None, None]),
                                   axis=(1, 2))
                # da.any appears to return an object dtype instead of a bool
                beam_mask = self._compute(beam_mask).astype('bool')
            elif self.mask is not None:
                beam_mask = np.any(np.logical_and(self.mask.include(),
                                                  self.goodbeams_mask[:, None, None]),
                                   axis=(1, 2))
            else:
                beam_mask = self.goodbeams_mask
        else:
            if mask.ndim > 1:
                beam_mask = np.logical_and(mask, self.goodbeams_mask[:, None, None])
            else:
                beam_mask = np.logical_and(mask, self.goodbeams_mask)

        if not any(beam_mask):
            raise ValueError("All beams were excluded using threshold {threshold}"
                             .format(threshold=threshold))

        # use private _beams here because the public one excludes the bad beams
        # by default
        new_beam = self._beams.average_beam(includemask=beam_mask)

        if np.isnan(new_beam):
            raise ValueError("Beam was not finite after averaging.  "
                             "This either indicates that there was a problem "
                             "with the include mask, one of the beam's values, "
                             "or a bug.")

        self._check_beam_areas(threshold, mean_beam=new_beam, mask=beam_mask)
        if warn:
            warnings.warn("Arithmetic beam averaging is being performed.  This is "
                          "not a mathematically robust operation, but is being "
                          "permitted because the beams differ by "
                          "<{0}".format(threshold),
                          BeamAverageWarning
                         )
        return new_beam


    def _handle_beam_areas_wrapper(self, function, beam_threshold=None):
        """
        Wrapper: if the function takes "axis" and is operating over axis 0 (the
        spectral axis), check that the beam threshold is not exceeded before
        performing the operation

        Also, if the operation *is* valid, average the beam appropriately to
        get the output
        """
        # deferred import to avoid a circular import problem
        from .lower_dimensional_structures import LowerDimensionalObject

        if beam_threshold is None:
            beam_threshold = self.beam_threshold

        def newfunc(*args, **kwargs):
            """ Wrapper function around the standard operations to handle beams
            when creating projections """

            # check that the spectral axis is being operated over.  If it is,
            # we need to average beams
            # moments are a special case b/c they default to axis=0
            need_to_handle_beams = (('axis' in kwargs and
                                     ((kwargs['axis']==0) or
                                      (hasattr(kwargs['axis'], '__len__') and
                                       0 in kwargs['axis']))) or
                                    ('axis' not in kwargs and 'moment' in
                                     function.__name__))

            if need_to_handle_beams:
                # do this check *first* so we don't do an expensive operation
                # and crash afterward
                avg_beam = self.average_beams(beam_threshold, warn=True)

            result = function(*args, **kwargs)

            if not isinstance(result, LowerDimensionalObject):
                # numpy arrays are sometimes returned; these have no metadata
                return result

            elif need_to_handle_beams:
                result.meta['beam'] = avg_beam
                result._beam = avg_beam

            return result

        return newfunc

    def _check_beam_areas(self, threshold, mean_beam, mask=None):
        """
        Check that the beam areas are the same to within some threshold
        """

        if mask is not None:
            assert len(mask) == len(self.unmasked_beams)
            mask = np.array(mask, dtype='bool')
        else:
            mask = np.ones(len(self.unmasked_beams), dtype='bool')

        qtys = dict(sr=self.unmasked_beams.sr,
                    major=self.unmasked_beams.major.to(u.deg),
                    minor=self.unmasked_beams.minor.to(u.deg),
                    # position angles are not really comparable
                    #pa=u.Quantity([bm.pa for bm in self.unmasked_beams], u.deg),
                   )

        errormessage = ""

        for (qtyname, qty) in (qtys.items()):
            minv = qty[mask].min()
            maxv = qty[mask].max()
            mn = getattr(mean_beam, qtyname)
            maxdiff = (np.max(np.abs(u.Quantity((maxv-mn, minv-mn))))/mn).decompose()

            if isinstance(threshold, dict):
                th = threshold[qtyname]
            else:
                th = threshold

            if maxdiff > th:
                errormessage += ("Beam {2}s differ by up to {0}x, which is greater"
                                 " than the threshold {1}\n".format(maxdiff,
                                                                    threshold,
                                                                    qtyname
                                                                   ))
        if errormessage != "":
            raise ValueError(errormessage)

    def mask_out_bad_beams(self, threshold, reference_beam=None,
                           criteria=['sr','major','minor'],
                           mid_value=np.nanmedian):
        """
        See `identify_bad_beams`.  This function returns a masked cube

        Returns
        -------
        newcube : VaryingResolutionSpectralCube
            The cube with bad beams masked out
        """

        goodbeams = self.identify_bad_beams(threshold=threshold,
                                            reference_beam=reference_beam,
                                            criteria=criteria,
                                            mid_value=mid_value)

        includemask = BooleanArrayMask(goodbeams[:, None, None],
                                       self._wcs,
                                       shape=self._data.shape)

        use_dask = isinstance(self._data, da.Array)
        if use_dask:
            newmask = da.logical_and(self._mask_include,
                                     includemask)
        elif self.mask is None:
            newmask = includemask
        else:
            newmask = np.bitwise_and(self.mask, includemask)

        return self._new_thing_with(mask=newmask,
                                    beam_threshold=threshold,
                                    goodbeams_mask=np.bitwise_and(self.goodbeams_mask, goodbeams),
                                   )

    def with_beams(self, beams, goodbeams_mask=None, raise_error_jybm=True):
        '''
        Attach a new beams object to the VaryingResolutionSpectralCube.

        Parameters
        ----------
        beams : `~radio_beam.Beams`
            A new beams object.
        '''

        # Catch cases with units in Jy/beam where new beams will alter the units.
        self.check_jybeam_smoothing(raise_error_jybm=raise_error_jybm)

        meta = self.meta.copy()
        meta['beams'] = beams

        return self._new_thing_with(beams=beams, meta=meta)

    @abc.abstractmethod
    def _new_thing_with(self):
        # since the above two methods require this method, it's an ABC of this
        # mixin as well
        raise NotImplementedError



class BeamMixinClass(object):
    """
    Functionality for objects with a single beam.

    Specific objects (cubes, LDOs) still need to define their own ``with_beam``
    methods.
    """

    @property
    def beam(self):
        if self._beam is None:
            raise NoBeamError("No beam is defined for this SpectralCube or the"
                              " beam information could not be parsed from the"
                              " header. A `~radio_beam.Beam` object can be"
                              " added using `cube.with_beam`.")

        return self._beam

    @beam.setter
    def beam(self, obj):

        if not isinstance(obj, Beam) and obj is not None:
            raise TypeError("beam must be a radio_beam.Beam object.")

        self._beam = obj


    @property
    @cached
    def pixels_per_beam(self):
        return (self.beam.sr /
                (astropy.wcs.utils.proj_plane_pixel_area(self.wcs) *
                 u.deg**2)).to(u.one).value