File: conftest.py

package info (click to toggle)
spectral-cube 0.6.6-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,136 kB
  • sloc: python: 13,236; makefile: 154
file content (659 lines) | stat: -rw-r--r-- 19,762 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
# this contains imports plugins that configure py.test for astropy tests.
# by importing them here in conftest.py they are discoverable by py.test
# no matter how it is invoked within the source tree.

import os
from astropy.units.equivalencies import pixel_scale

# Import casatools and casatasks here if available as they can otherwise
# cause a segfault if imported later on during tests.
try:
    import casatools
    import casatasks
except ImportError:
    pass

import pytest
import numpy as np
from astropy.io import fits
from astropy import wcs
from astropy import units

from astropy.version import version as astropy_version

if astropy_version < '3.0':
    from astropy.tests.pytest_plugins import *
    del pytest_report_header
else:
    from pytest_astropy_header.display import PYTEST_HEADER_MODULES, TESTED_VERSIONS


@pytest.fixture(params=[False, True])
def use_dask(request):
    # Fixture to run tests that use this fixture with both SpectralCube and
    # DaskSpectralCube
    return request.param


def pytest_configure(config):

    config.option.astropy_header = True

    PYTEST_HEADER_MODULES['Astropy'] = 'astropy'
    PYTEST_HEADER_MODULES['regions'] = 'regions'
    PYTEST_HEADER_MODULES['APLpy'] = 'aplpy'

HEADER_FILENAME = os.path.join(os.path.dirname(__file__), 'tests',
                               'data', 'header_jybeam.hdr')


def transpose(d, h, axes):
    d = d.transpose(np.argsort(axes))
    h2 = h.copy()

    for i in range(len(axes)):
        for key in ['NAXIS', 'CDELT', 'CRPIX', 'CRVAL', 'CTYPE', 'CUNIT']:
            h2['%s%i' % (key, i + 1)] = h['%s%i' % (key, axes[i] + 1)]

    return d, h2


def prepare_4_beams():
    beams = np.recarray(4, dtype=[('BMAJ', '>f4'), ('BMIN', '>f4'),
                                  ('BPA', '>f4'), ('CHAN', '>i4'),
                                  ('POL', '>i4')])
    beams['BMAJ'] = [0.4,0.3,0.3,0.4] # arcseconds
    beams['BMIN'] = [0.1,0.2,0.2,0.1]
    beams['BPA'] = [0,45,60,30] # degrees
    beams['CHAN'] = [0,1,2,3]
    beams['POL'] = [0,0,0,0]
    beams = fits.BinTableHDU(beams, name='BEAMS')

    beams.header['TTYPE1'] = 'BMAJ'
    beams.header['TUNIT1'] = 'arcsec'
    beams.header['TTYPE2'] = 'BMIN'
    beams.header['TUNIT2'] = 'arcsec'
    beams.header['TTYPE3'] = 'BPA'
    beams.header['TUNIT3'] = 'deg'

    return beams


def prepare_4_beams_withfullpol():

    nchan = 4
    npol = 4

    beams = np.recarray(nchan*npol, dtype=[('BMAJ', '>f4'), ('BMIN', '>f4'),
                                           ('BPA', '>f4'), ('CHAN', '>i4'),
                                           ('POL', '>i4')])
    beams['BMAJ'] = [0.4,0.3,0.3,0.4] * npol # arcseconds
    beams['BMIN'] = [0.1,0.2,0.2,0.1] * npol
    beams['BPA'] = [0,45,60,30] * npol # degrees
    beams['CHAN'] = [0,1,2,3] * npol

    pol_codes = []
    for i in range(npol):
        pol_codes.extend([i] * nchan)

    beams['POL'] = pol_codes

    beams = fits.BinTableHDU(beams, name='BEAMS')

    beams.header['TTYPE1'] = 'BMAJ'
    beams.header['TUNIT1'] = 'arcsec'
    beams.header['TTYPE2'] = 'BMIN'
    beams.header['TUNIT2'] = 'arcsec'
    beams.header['TTYPE3'] = 'BPA'
    beams.header['TUNIT3'] = 'deg'
    beams.header['TTYPE4'] = 'CHAN'
    beams.header['TTYPE5'] = 'POL'

    return beams


def prepare_advs_data():
    # Single Stokes
    h = fits.header.Header.fromtextfile(HEADER_FILENAME)
    h['BUNIT'] = 'K' # Kelvins are a valid unit, JY/BEAM are not: they should be tested separately
    h['NAXIS1'] = 2
    h['NAXIS2'] = 3
    h['NAXIS3'] = 4
    h['NAXIS4'] = 1
    np.random.seed(42)
    d = np.random.random((1, 2, 3, 4))
    return d, h


def prepare_advs_fullstokes_data():
    # Full Stokes
    h = fits.header.Header.fromtextfile(HEADER_FILENAME)
    h['BUNIT'] = 'K' # Kelvins are a valid unit, JY/BEAM are not: they should be tested separately
    h['NAXIS1'] = 2
    h['NAXIS2'] = 3
    h['NAXIS3'] = 4
    h['NAXIS4'] = 4

    # Add the most basic stokes information to the header
    h['CTYPE4'] = 'STOKES'
    h['CRVAL4'] = 1.0
    h['CDELT4'] = 1.0
    h['CRPIX4'] = 1.0
    h['CUNIT4'] = ''

    np.random.seed(42)
    d = np.random.random((4, 4, 3, 2))
    return d, h


@pytest.fixture
def data_advs(tmp_path):
    d, h = prepare_advs_data()
    fits.writeto(tmp_path / 'advs.fits', d, h)
    return tmp_path / 'advs.fits'


@pytest.fixture
def data_dvsa(tmp_path):
    d, h = prepare_advs_data()
    d, h = transpose(d, h, [1, 2, 3, 0])
    fits.writeto(tmp_path / 'dvsa.fits', d, h)
    return tmp_path / 'dvsa.fits'

@pytest.fixture
def data_vsad(tmp_path):
    d, h = prepare_advs_data()
    d, h = transpose(d, h, [1, 2, 3, 0])
    d, h = transpose(d, h, [1, 2, 3, 0])
    fits.writeto(tmp_path / 'vsad.fits', d, h)
    return tmp_path / 'vsad.fits'

@pytest.fixture
def data_sadv(tmp_path):
    d, h = prepare_advs_data()
    d, h = transpose(d, h, [1, 2, 3, 0])
    d, h = transpose(d, h, [1, 2, 3, 0])
    d, h = transpose(d, h, [1, 2, 3, 0])
    fits.writeto(tmp_path / 'sadv.fits', d, h)
    return tmp_path / 'sadv.fits'


@pytest.fixture
def data_sdav(tmp_path):
    d, h = prepare_advs_data()
    d, h = transpose(d, h, [1, 2, 3, 0])
    d, h = transpose(d, h, [1, 2, 3, 0])
    d, h = transpose(d, h, [1, 2, 3, 0])
    d, h = transpose(d, h, [0, 2, 1, 3])
    fits.writeto(tmp_path / 'sdav.fits', d, h)
    return tmp_path / 'sdav.fits'


@pytest.fixture
def data_sdav_beams_nounits(tmp_path):
    """
    For testing io when units are not specified
    (they should be arcsec by default
    """
    d, h = prepare_advs_data()
    d, h = transpose(d, h, [1, 2, 3, 0])
    d, h = transpose(d, h, [1, 2, 3, 0])
    d, h = transpose(d, h, [1, 2, 3, 0])
    d, h = transpose(d, h, [0, 2, 1, 3])
    del h['BMAJ'], h['BMIN'], h['BPA']
    # want 4 spectral channels
    np.random.seed(42)
    d = np.random.random((4, 3, 2, 1))
    beams = prepare_4_beams()
    for ii in (1,2,3):
        del beams.header[f'TUNIT{ii}']
    hdul = fits.HDUList([fits.PrimaryHDU(data=d, header=h),
                         beams])
    hdul.writeto(tmp_path / 'sdav_beams_nounits.fits')
    return tmp_path / 'sdav_beams_nounits.fits'


@pytest.fixture
def data_sdav_beams(tmp_path):
    d, h = prepare_advs_data()
    d, h = transpose(d, h, [1, 2, 3, 0])
    d, h = transpose(d, h, [1, 2, 3, 0])
    d, h = transpose(d, h, [1, 2, 3, 0])
    d, h = transpose(d, h, [0, 2, 1, 3])
    del h['BMAJ'], h['BMIN'], h['BPA']
    # want 4 spectral channels
    np.random.seed(42)
    d = np.random.random((4, 3, 2, 1))
    beams = prepare_4_beams()
    hdul = fits.HDUList([fits.PrimaryHDU(data=d, header=h),
                         beams])
    hdul.writeto(tmp_path / 'sdav_beams.fits')
    return tmp_path / 'sdav_beams.fits'


@pytest.fixture
def data_advs_nobeam(tmp_path):
    d, h = prepare_advs_data()
    del h['BMAJ']
    del h['BMIN']
    del h['BPA']
    fits.writeto(tmp_path / 'advs_nobeam.fits', d, h)
    return tmp_path / 'advs_nobeam.fits'


@pytest.fixture
def data_advs_beams_fullstokes(tmp_path):
    d, h = prepare_advs_fullstokes_data()

    beams = prepare_4_beams_withfullpol()

    hdu = fits.HDUList()
    hdu.append(fits.PrimaryHDU(d, h))
    hdu.append(beams)

    hdu.writeto(tmp_path / 'advs_beams_fullstokes.fits')

    return tmp_path / 'advs_beams_fullstokes.fits'


def prepare_adv_data():
    h = fits.header.Header.fromtextfile(HEADER_FILENAME)
    h['BUNIT'] = 'K' # Kelvins are a valid unit, JY/BEAM are not: they should be tested separately
    h['NAXIS1'] = 2
    h['NAXIS2'] = 3
    h['NAXIS3'] = 4
    h['NAXIS'] = 3
    for k in list(h.keys()):
        if k.endswith('4'):
            del h[k]
    np.random.seed(96)
    d = np.random.random((4, 3, 2))
    return d, h


@pytest.fixture
def data_adv(tmp_path):
    d, h = prepare_adv_data()
    fits.writeto(tmp_path / 'adv.fits', d, h)
    return tmp_path / 'adv.fits'


@pytest.fixture
def data_adv_simple(tmp_path):
    d, h = prepare_adv_data()
    d.flat[:] = np.arange(d.size)
    fits.writeto(tmp_path / 'adv_simple.fits', d, h)
    return tmp_path / 'adv_simple.fits'


@pytest.fixture
def data_adv_jybeam_upper(tmp_path):
    d, h = prepare_adv_data()
    h['BUNIT'] = 'JY/BEAM'
    fits.writeto(tmp_path / 'adv_JYBEAM_upper.fits', d, h)
    return tmp_path / 'adv_JYBEAM_upper.fits'


@pytest.fixture
def data_adv_jybeam_lower(tmp_path):
    d, h = prepare_adv_data()
    h['BUNIT'] = 'Jy/beam'
    fits.writeto(tmp_path / 'adv_Jybeam_lower.fits', d, h)
    return tmp_path / 'adv_Jybeam_lower.fits'


@pytest.fixture
def data_adv_jybeam_whitespace(tmp_path):
    d, h = prepare_adv_data()
    h['BUNIT'] = ' Jy / beam '
    fits.writeto(tmp_path / 'adv_Jybeam_whitespace.fits', d, h)
    return tmp_path / 'adv_Jybeam_whitespace.fits'


@pytest.fixture
def data_adv_beams(tmp_path):
    d, h = prepare_adv_data()
    bmaj, bmin, bpa = h['BMAJ'], h['BMIN'], h['BPA']
    del h['BMAJ'], h['BMIN'], h['BPA']
    beams = prepare_4_beams()
    hdul = fits.HDUList([fits.PrimaryHDU(data=d, header=h),
                         beams])
    hdul.writeto(tmp_path / 'adv_beams.fits')
    return tmp_path / 'adv_beams.fits'


@pytest.fixture
def data_vad(tmp_path):
    d, h = prepare_adv_data()
    d, h = transpose(d, h, [2, 0, 1])
    fits.writeto(tmp_path / 'vad.fits', d, h)
    return tmp_path / 'vad.fits'

@pytest.fixture
def data_vda(tmp_path):
    d, h = prepare_adv_data()
    d, h = transpose(d, h, [2, 0, 1])
    d, h = transpose(d, h, [2, 1, 0])
    fits.writeto(tmp_path / 'vda.fits', d, h)
    return tmp_path / 'vda.fits'


@pytest.fixture
def data_vda_jybeam_upper(tmp_path):
    d, h = prepare_adv_data()
    d, h = transpose(d, h, [2, 0, 1])
    d, h = transpose(d, h, [2, 1, 0])
    h['BUNIT'] = 'JY/BEAM'
    fits.writeto(tmp_path / 'vda_JYBEAM_upper.fits', d, h)
    return tmp_path / 'vda_JYBEAM_upper.fits'


@pytest.fixture
def data_vda_jybeam_lower(tmp_path):
    d, h = prepare_adv_data()
    d, h = transpose(d, h, [2, 0, 1])
    d, h = transpose(d, h, [2, 1, 0])
    h['BUNIT'] = 'Jy/beam'
    fits.writeto(tmp_path / 'vda_Jybeam_lower.fits', d, h)
    return tmp_path / 'vda_Jybeam_lower.fits'


@pytest.fixture
def data_vda_jybeam_whitespace(tmp_path):
    d, h = prepare_adv_data()
    d, h = transpose(d, h, [2, 0, 1])
    d, h = transpose(d, h, [2, 1, 0])
    h['BUNIT'] = ' Jy / beam '
    fits.writeto(tmp_path / 'vda_Jybeam_whitespace.fits', d, h)
    return tmp_path / 'vda_Jybeam_whitespace.fits'


@pytest.fixture
def data_vda_beams(tmp_path):
    d, h = prepare_adv_data()
    d, h = transpose(d, h, [2, 0, 1])
    d, h = transpose(d, h, [2, 1, 0])
    h['BUNIT'] = ' Jy / beam '
    del h['BMAJ'], h['BMIN'], h['BPA']
    beams = prepare_4_beams()
    hdul = fits.HDUList([fits.PrimaryHDU(data=d, header=h),
                         beams])
    hdul.writeto(tmp_path / 'vda_beams.fits')
    return tmp_path / 'vda_beams.fits'


@pytest.fixture
def data_vda_beams_image(tmp_path):
    d, h = prepare_adv_data()
    d, h = transpose(d, h, [2, 0, 1])
    d, h = transpose(d, h, [2, 1, 0])
    h['BUNIT'] = ' Jy / beam '
    del h['BMAJ'], h['BMIN'], h['BPA']
    beams = prepare_4_beams()
    hdul = fits.HDUList([fits.PrimaryHDU(data=d, header=h),
                         beams])
    hdul.writeto(tmp_path / 'vda_beams.fits')
    from casatools import image
    ia = image()
    ia.fromfits(infile=str(tmp_path / 'vda_beams.fits'),
                outfile=str(tmp_path / 'vda_beams.image'),
                overwrite=True)
    for (bmaj, bmin, bpa, chan, pol) in beams.data:
        ia.setrestoringbeam(beam={'major': {'unit': 'arcsec', 'value': float(bmaj)},
                                  'minor': {'unit': 'arcsec', 'value': float(bmin)},
                                  'positionangle': {'unit': 'deg', 'value': float(bpa)}},
                            channel=int(chan),
                            polarization=int(pol))
    ia.close()
    return tmp_path / 'vda_beams.image'


def prepare_255_header():
    # make a version with spatial pixels
    h = fits.header.Header.fromtextfile(HEADER_FILENAME)
    for k in list(h.keys()):
        if k.endswith('4'):
            del h[k]
    h['BUNIT'] = 'K' # Kelvins are a valid unit, JY/BEAM are not: they should be tested separately
    return h


@pytest.fixture
def data_255(tmp_path):
    h = prepare_255_header()
    d = np.arange(2*5*5, dtype='float').reshape((2,5,5))
    fits.writeto(tmp_path / '255.fits', d, h)
    return tmp_path / '255.fits'


@pytest.fixture
def data_255_delta(tmp_path):
    h = prepare_255_header()
    # test cube for convolution, regridding
    d = np.zeros([2,5,5], dtype='float')
    d[0,2,2] = 1.0
    fits.writeto(tmp_path / '255_delta.fits', d, h)
    return tmp_path / '255_delta.fits'


@pytest.fixture
def data_455_delta_beams(tmp_path):
    h = prepare_255_header()
    # test cube for convolution, regridding
    d = np.zeros([4,5,5], dtype='float')
    d[:,2,2] = 1.0
    beams = prepare_4_beams()
    hdul = fits.HDUList([fits.PrimaryHDU(data=d, header=h),
                         beams])
    hdul.writeto(tmp_path / '455_delta_beams.fits')
    return tmp_path / '455_delta_beams.fits'


@pytest.fixture
def data_455_degree_beams(tmp_path):
    """
    Test cube for AIPS-style beam specfication
    """
    h = prepare_255_header()
    d = np.zeros([4,5,5], dtype='float')
    beams = prepare_4_beams()
    beams.data['BMAJ'] /= 3600
    beams.data['BMIN'] /= 3600
    beams.header['TTYPE1'] = 'BMAJ'
    beams.header['TUNIT1'] = 'DEGREES'
    beams.header['TTYPE2'] = 'BMIN'
    beams.header['TUNIT2'] = 'DEGREES'

    hdul = fits.HDUList([fits.PrimaryHDU(data=d, header=h),
                         beams])
    hdul.writeto(tmp_path / '455_degree_beams.fits')
    return tmp_path / '455_degree_beams.fits'


@pytest.fixture
def data_522_delta(tmp_path):
    h = prepare_255_header()
    d = np.zeros([5,2,2], dtype='float')
    d[2,:,:] = 1.0
    fits.writeto(tmp_path / '522_delta.fits', d, h)
    return tmp_path / '522_delta.fits'


def prepare_5_beams():
    beams = np.recarray(5, dtype=[('BMAJ', '>f4'), ('BMIN', '>f4'),
                                ('BPA', '>f4'), ('CHAN', '>i4'),
                                ('POL', '>i4')])
    beams['BMAJ'] = [0.5,0.4,0.3,0.4,0.5] # arcseconds
    beams['BMIN'] = [0.1,0.2,0.3,0.2,0.1]
    beams['BPA'] = [0,45,60,30,0] # degrees
    beams['CHAN'] = [0,1,2,3,4]
    beams['POL'] = [0,0,0,0,0]
    beams = fits.BinTableHDU(beams, name='BEAMS')
    beams.header['TTYPE1'] = 'BMAJ'
    beams.header['TUNIT1'] = 'arcsec'
    beams.header['TTYPE2'] = 'BMIN'
    beams.header['TUNIT2'] = 'arcsec'
    beams.header['TTYPE3'] = 'BPA'
    beams.header['TUNIT3'] = 'deg'
    return beams


@pytest.fixture
def data_522_delta_beams(tmp_path):
    h = prepare_255_header()
    d = np.zeros([5,2,2], dtype='float')
    d[2,:,:] = 1.0
    beams = prepare_5_beams()
    hdul = fits.HDUList([fits.PrimaryHDU(data=d, header=h),
                         beams])
    hdul.writeto(tmp_path / '522_delta_beams.fits')
    return tmp_path / '522_delta_beams.fits'


def prepare_55_header():
    h = fits.header.Header.fromtextfile(HEADER_FILENAME)
    for k in list(h.keys()):
        if k.endswith('4') or k.endswith('3'):
            del h[k]
    h['BUNIT'] = 'K'
    return h


@pytest.fixture
def data_55(tmp_path):
    # Make a 2D spatial version
    h = prepare_55_header()
    d = np.arange(5 * 5, dtype='float').reshape((5, 5))
    fits.writeto(tmp_path / '55.fits', d, h)
    return tmp_path / '55.fits'


@pytest.fixture
def data_55_delta(tmp_path):
    # test cube for convolution, regridding
    h = prepare_55_header()
    d = np.zeros([5, 5], dtype='float')
    d[2, 2] = 1.0
    fits.writeto(tmp_path / '55_delta.fits', d, h)
    return tmp_path / '55_delta.fits'


def prepare_5_header():
    h = wcs.WCS(fits.Header.fromtextfile(HEADER_FILENAME)).sub([wcs.WCSSUB_SPECTRAL]).to_header()
    return h


@pytest.fixture
def data_5_spectral(tmp_path):
    # oneD spectra
    h = prepare_5_header()
    d = np.arange(5, dtype='float')
    fits.writeto(tmp_path / '5_spectral.fits', d, h)
    return tmp_path / '5_spectral.fits'

@pytest.fixture
def data_5_spectral_beams(tmp_path):
    h = prepare_5_header()
    d = np.arange(5, dtype='float')
    beams = prepare_5_beams()
    hdul = fits.HDUList([fits.PrimaryHDU(data=d, header=h),
                         beams])
    hdul.writeto(tmp_path / '5_spectral_beams.fits')
    return tmp_path / '5_spectral_beams.fits'


def prepare_5_beams_with_pixscale(pixel_scale):
    beams = np.recarray(5, dtype=[('BMAJ', '>f4'), ('BMIN', '>f4'),
                                ('BPA', '>f4'), ('CHAN', '>i4'),
                                ('POL', '>i4')])

    pixel_scale = pixel_scale.to(units.arcsec).value

    beams['BMAJ'] = [3.5 * pixel_scale,3 * pixel_scale,3 * pixel_scale,3 * pixel_scale,3 * pixel_scale] # arcseconds
    beams['BMIN'] = [2 * pixel_scale,2.5 * pixel_scale,3 * pixel_scale,2.5 * pixel_scale,2 * pixel_scale]
    beams['BPA'] = [0,45,60,30,0] # degrees
    beams['CHAN'] = [0,1,2,3,4]
    beams['POL'] = [0,0,0,0,0]
    beams = fits.BinTableHDU(beams, name='BEAMS')

    beams.header['TTYPE1'] = 'BMAJ'
    beams.header['TUNIT1'] = 'arcsec'
    beams.header['TTYPE2'] = 'BMIN'
    beams.header['TUNIT2'] = 'arcsec'
    beams.header['TTYPE3'] = 'BPA'
    beams.header['TUNIT3'] = 'deg'

    return beams


@pytest.fixture
def point_source_5_spectral_beams(tmp_path):

    from radio_beam import Beams
    from astropy.convolution import convolve_fft

    h = fits.header.Header.fromtextfile(HEADER_FILENAME)
    h['BUNIT'] = "Jy/beam"

    d = np.zeros((5, 11, 11), dtype=float)
    d[:, 5, 5] = 1.

    # NOTE: this matches the header. Should take that directly from the header instead of setting.
    pixel_scale = 2. * units.arcsec

    beams = prepare_5_beams_with_pixscale(pixel_scale)

    for i, beam in enumerate(Beams.from_fits_bintable(beams)):
        # Convolve point source to the beams.
        d[i] = convolve_fft(d[i], beam.as_kernel(pixel_scale))

        # Correct for the beam area in Jy/beam
        # So effectively Jy / pixel -> Jy/beam
        pix_to_beam = beam.sr.to(units.arcsec**2) / pixel_scale**2
        d[i] *= pix_to_beam.value

    # Ensure that the scaling is correct. The center pixel should remain ~1.
    np.testing.assert_allclose(d[:, 5, 5], 1., atol=1e-5)

    hdul = fits.HDUList([fits.PrimaryHDU(data=d, header=h),
                         beams])
    hdul.writeto(tmp_path / 'point_source_conv_5_spectral_beams.fits')
    return tmp_path / 'point_source_conv_5_spectral_beams.fits'


@pytest.fixture
def point_source_5_one_beam(tmp_path):

    from radio_beam import Beam
    from astropy.convolution import convolve_fft

    h = fits.header.Header.fromtextfile(HEADER_FILENAME)
    h['BUNIT'] = "Jy/beam"

    d = np.zeros((5, 11, 11), dtype=float)
    d[:, 5, 5] = 1.

    # NOTE: this matches the header. Should take that directly from the header instead of setting.
    pixel_scale = 2. * units.arcsec

    beam = Beam(3 * pixel_scale)

    beamprops = beam.to_header_keywords()
    for key in beamprops:
        h[key] = beamprops[key]

    for i in range(5):
        # Convolve point source to the beams.
        d[i] = convolve_fft(d[i], beam.as_kernel(pixel_scale))

        # Correct for the beam area in Jy/beam
        # So effectively Jy / pixel -> Jy/beam
        pix_to_beam = beam.sr.to(units.arcsec**2) / pixel_scale**2
        d[i] *= pix_to_beam.value

    # Ensure that the scaling is correct. The center pixel should remain ~1.
    np.testing.assert_allclose(d[:, 5, 5], 1., atol=1e-5)

    hdul = fits.PrimaryHDU(data=d, header=h)
    hdul.writeto(tmp_path / 'point_source_conv_5_one_beam.fits')
    return tmp_path / 'point_source_conv_5_one_beam.fits'