File: dask_spectral_cube.py

package info (click to toggle)
spectral-cube 0.6.6-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,136 kB
  • sloc: python: 13,236; makefile: 154
file content (1634 lines) | stat: -rw-r--r-- 65,500 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
"""
A class to represent a 3-d position-position-velocity spectral cube.
"""

import uuid
import inspect
import warnings
import tempfile
import textwrap

from functools import wraps
from contextlib import contextmanager

from astropy import units as u
from astropy.io.fits import PrimaryHDU, HDUList
from astropy.wcs.utils import proj_plane_pixel_area

import numpy as np

import dask
import dask.array as da

from astropy import stats
from astropy import convolution
from astropy import wcs

from . import wcs_utils
from .spectral_cube import SpectralCube, VaryingResolutionSpectralCube, SIGMA2FWHM, np2wcs
from .utils import cached, VarianceWarning, SliceWarning, BeamWarning, SmoothingWarning, BeamUnitsError, PossiblySlowWarning
from .lower_dimensional_structures import Projection
from .masks import BooleanArrayMask, is_broadcastable_and_smaller
from .np_compat import allbadtonan

__all__ = ['DaskSpectralCube', 'DaskVaryingResolutionSpectralCube']

try:
    from scipy import ndimage
    import scipy.interpolate
    SCIPY_INSTALLED = True
except ImportError:
    SCIPY_INSTALLED = False

try:
    import zarr
    import fsspec
except ImportError:
    ZARR_INSTALLED = False
else:
    ZARR_INSTALLED = True


def nansum_allbadtonan(dask_array, axis=None, keepdims=None):
    return da.reduction(dask_array,
                        allbadtonan(np.nansum),
                        allbadtonan(np.nansum),
                        axis=axis,
                        dtype=dask_array.dtype)


def ignore_warnings(function):

    @wraps(function)
    def wrapper(self, *args, **kwargs):
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')
            return function(self, *args, **kwargs)

    return wrapper


def _warn_slow_dask(functionname):
    """
    Dask has a different 'slow' warning than non-dask.  It is only expected to
    be slow for statistics that require sorting (and possibly cube arithmetic).
    """
    warnings.warn(message=textwrap.dedent(f"""
    Dask requires loading the whole cube into memory for {functionname}
    calculations.  This may result in slow computation.
    """).strip(),
        category=PossiblySlowWarning)


def add_save_to_tmp_dir_option(function):

    @wraps(function)
    def wrapper(self, *args, **kwargs):
        save_to_tmp_dir = kwargs.pop('save_to_tmp_dir', False)
        cube = function(self, *args, **kwargs)
        if save_to_tmp_dir and isinstance(cube, DaskSpectralCubeMixin):
            if not ZARR_INSTALLED:
                raise ImportError("saving the cube to a temporary directory "
                                  "requires the zarr and fsspec packages to "
                                  "be installed.")
            filename = tempfile.mktemp()
            with dask.config.set(**cube._scheduler_kwargs):
                cube._data.to_zarr(filename)
            cube._data = da.from_zarr(filename)
        return cube

    return wrapper


def projection_if_needed(function):

    # check if function defines default projection kwargs
    parameters = inspect.signature(function).parameters

    if 'projection' in parameters:
        default_projection = parameters['projection'].default
    else:
        default_projection = True

    if 'unit' in parameters:
        default_unit = parameters['unit'].default
    else:
        default_unit = 'self'

    @wraps(function)
    def wrapper(self, *args, **kwargs):

        projection = kwargs.get('projection', default_projection)
        unit = kwargs.get('unit', default_unit)

        if unit == 'self':
            unit = self.unit

        out = function(self, *args, **kwargs)

        axis = kwargs.get('axis')

        if isinstance(out, da.Array):
            out = self._compute(out)

        if axis is None:

            # return is scalar
            if unit is not None:
                return u.Quantity(out, unit=unit)
            else:
                return out

        elif projection and axis is not None and self._naxes_dropped(axis) in (1, 2):

            meta = {'collapse_axis': axis}
            meta.update(self._meta)

            if hasattr(axis, '__len__') and len(axis) == 2:
                # if operation is over two spatial dims
                if set(axis) == set((1, 2)):
                    new_wcs = self._wcs.sub([wcs.WCSSUB_SPECTRAL])
                    header = self._nowcs_header
                    if hasattr(self, '_beam') and self._beam is not None:
                        bmarg = {'beam': self.beam}
                    elif hasattr(self, '_beams') and self._beams is not None:
                        bmarg = {'beams': self.unmasked_beams}
                    else:
                        bmarg = {}
                    return self._oned_spectrum(value=out,
                                               wcs=new_wcs,
                                               copy=False,
                                               unit=unit,
                                               header=header,
                                               meta=meta,
                                               spectral_unit=self._spectral_unit,
                                               **bmarg
                                              )
                else:
                    warnings.warn("Averaging over a spatial and a spectral "
                                  "dimension cannot produce a Projection "
                                  "quantity (no units or WCS are preserved).",
                                  SliceWarning)
                    return out

            else:
                new_wcs = wcs_utils.drop_axis(self._wcs, np2wcs[axis])
                header = self._nowcs_header

                return Projection(out, copy=False, wcs=new_wcs,
                                  meta=meta,  unit=unit,
                                  header=header)

        else:

            return out

    return wrapper


class FilledArrayHandler:
    """
    This class is a wrapper for the data and mask which can be used to
    initialize a dask array. It provides a way for the filled data to be
    constructed just for the requested chunks.
    """

    def __init__(self, cube, fill=np.nan):
        self._data = cube._data
        self._mask = cube._mask
        self._fill = fill
        self._wcs = cube._wcs
        self._wcs_tolerance = cube._wcs_tolerance
        self.shape = cube._data.shape
        self.dtype = cube._data.dtype
        self.ndim = len(self.shape)

    def __getitem__(self, view):
        if self._data[view].size == 0:
            return 0.
        else:
            return self._mask._filled(data=self._data,
                                      view=view,
                                      wcs=self._wcs,
                                      fill=self._fill,
                                      wcs_tolerance=self._wcs_tolerance)


class MaskHandler:
    """
    This class is a wrapper for the mask which can be used to initialize a dask
    array. It provides a way for the mask to be computed just for the requested
    chunk.
    """

    def __init__(self, cube):
        self._data = cube._data
        self._mask = cube.mask
        self.shape = cube._data.shape
        self.dtype = cube._data.dtype
        self.ndim = len(self.shape)

    def __getitem__(self, view):
        if self._data[view].size == 0:
            return False
        else:
            result = self._mask.include(view=view)
            if isinstance(result, da.Array):
                result = result.compute()
        return result


class DaskSpectralCubeMixin:

    _scheduler_kwargs = {'scheduler': 'synchronous'}

    def _new_cube_with(self, *args, **kwargs):
        # The scheduler should be preserved for cubes produced as a result
        # of this one.
        new_cube = super()._new_cube_with(*args, **kwargs)
        new_cube._scheduler_kwargs = self._scheduler_kwargs
        return new_cube

    @property
    def _data(self):
        return self.__data

    @_data.setter
    def _data(self, value):
        if not isinstance(value, da.Array):
            raise TypeError('_data should be set to a dask array')
        self.__data = value

    def use_dask_scheduler(self, scheduler, num_workers=None):
        """
        Set the dask scheduler to use.

        Can be used as a function or a context manager.

        Parameters
        ----------
        scheduler : str
            Any valid dask scheduler. See https://docs.dask.org/en/latest/scheduler-overview.html
            for an overview of available schedulers.
        num_workers : int
            Number of workers to use for the 'threads' and 'processes' schedulers.
        """

        original_scheduler_kwargs = self._scheduler_kwargs
        self._scheduler_kwargs = {'scheduler': scheduler}
        if num_workers is not None:
            self._scheduler_kwargs['num_workers'] = num_workers

        self._num_workers = num_workers

        class SchedulerHandler:

            def __init__(self, cube, original_scheduler_kwargs):
                self.cube = cube
                self.original_scheduler_kwargs = original_scheduler_kwargs

            def __enter__(self):
                pass

            def __exit__(self, *args):
                self.cube._scheduler_kwargs = self.original_scheduler_kwargs

        return SchedulerHandler(self, original_scheduler_kwargs)

    def _compute(self, array):
        return array.compute(**self._scheduler_kwargs)

    def _get_filled_data(self, view=(), fill=np.nan, check_endian=None, use_memmap=None):

        if check_endian:
            if not self._data.dtype.isnative:
                kind = str(self._data.dtype.kind)
                sz = str(self._data.dtype.itemsize)
                dt = '=' + kind + sz
                data = self._data.astype(dt)
            else:
                data = self._data
        else:
            data = self._data

        if self._mask is None:
            return data[view]
        else:
            return da.from_array(FilledArrayHandler(self, fill=fill), name='FilledArrayHandler ' + str(uuid.uuid4()), chunks=data.chunksize)[view]

    def __repr__(self):
        default_repr = super().__repr__()
        lines = default_repr.splitlines()
        lines[0] = lines[0][:-1] + ' and chunk size {0}:'.format(self._data.chunksize)
        return '\n'.join(lines)

    def display_dask_array(self):
        try:
            from IPython.display import display
            return display(self._data)
        except ImportError:
            warnings.warn("Requires IPython to display.")

    @add_save_to_tmp_dir_option
    def rechunk(self, chunks='auto', threshold=None, block_size_limit=None,
                **kwargs):
        """
        Rechunk the underlying dask array and return a new cube.

        For more details about the parameters below, see the dask documentation
        about `rechunking <https://docs.dask.org/en/latest/array-chunks.html>`_.

        Parameters
        ----------
        chunks:  int, tuple, dict or str, optional
            The new block dimensions to create. -1 indicates the full size of
            the corresponding dimension. Default is "auto" which automatically
            determines chunk sizes. This can also be a tuple with a different
            value along each dimension - for example if computing moment maps,
            you could use e.g. ``chunks=(-1, 'auto', 'auto')``
        threshold: int, optional
            The graph growth factor under which we don't bother introducing an
            intermediate step.
        block_size_limit: int, optional
            The maximum block size (in bytes) we want to produce
            Defaults to the dask configuration value ``array.chunk-size``
        save_to_tmp_dir : bool
            If `True`, the rechunking will be carried out straight away and
            saved to a temporary directory. This can improve performance,
            especially if carrying out several operations sequentially. If
            `False`, the rechunking is added as a step in the dask tree.
        kwargs
            Additional keyword arguments are passed to the dask rechunk method.
        """

        newdata = self._data.rechunk(chunks=chunks,
                                     threshold=threshold,
                                     block_size_limit=block_size_limit)

        return self._new_cube_with(data=newdata)

    @add_save_to_tmp_dir_option
    @projection_if_needed
    def apply_function(self, function, axis=None, unit=None,
                       projection=False,
                       keep_shape=False, **kwargs):
        """
        Apply a function to valid data along the specified axis or to the whole
        cube, optionally using a weight array that is the same shape (or at
        least can be sliced in the same way)

        Parameters
        ----------
        function : function
            A function that can be applied to a numpy array.  Does not need to
            be nan-aware
        axis : 1, 2, 3, or None
            The axis to operate along.  If None, the return is scalar.
        unit : (optional) `~astropy.units.Unit`
            The unit of the output projection or value.  Not all functions
            should return quantities with units.
        projection : bool
            Return a projection if the resulting array is 2D?
        keep_shape : bool
            If `True`, the returned object will be the same dimensionality as
            the cube.
        save_to_tmp_dir : bool
            If `True`, the computation will be carried out straight away and
            saved to a temporary directory. This can improve performance,
            especially if carrying out several operations sequentially. If
            `False`, the computation is only carried out when accessing
            specific parts of the data or writing to disk.

        Returns
        -------
        result : :class:`~spectral_cube.lower_dimensional_structures.Projection` or `~astropy.units.Quantity` or float
            The result depends on the value of ``axis``, ``projection``, and
            ``unit``.  If ``axis`` is None, the return will be a scalar with or
            without units.  If axis is an integer, the return will be a
            :class:`~spectral_cube.lower_dimensional_structures.Projection` if ``projection`` is set
        """

        if axis is None:
            out = function(self.flattened(), **kwargs)
            if unit is not None:
                return u.Quantity(out, unit=unit)
            else:
                return out

        data = self._get_filled_data(fill=self._fill_value)

        if keep_shape:
            newdata = da.apply_along_axis(function, axis, data, shape=(self.shape[axis],))
        else:
            newdata = da.apply_along_axis(function, axis, data)

        return newdata

    @add_save_to_tmp_dir_option
    @projection_if_needed
    def apply_numpy_function(self, function, fill=np.nan,
                             projection=False,
                             unit=None,
                             check_endian=False,
                             **kwargs):
        """
        Apply a numpy function to the cube

        Parameters
        ----------
        function : Numpy ufunc
            A numpy ufunc to apply to the cube
        fill : float
            The fill value to use on the data
        projection : bool
            Return a :class:`~spectral_cube.lower_dimensional_structures.Projection` if the resulting array is 2D or a
            OneDProjection if the resulting array is 1D and the sum is over both
            spatial axes?
        unit : None or `astropy.units.Unit`
            The unit to include for the output array.  For example,
            `SpectralCube.max` calls
            ``SpectralCube.apply_numpy_function(np.max, unit=self.unit)``,
            inheriting the unit from the original cube.
            However, for other numpy functions, e.g. `numpy.argmax`, the return
            is an index and therefore unitless.
        check_endian : bool
            A flag to check the endianness of the data before applying the
            function.  This is only needed for optimized functions, e.g. those
            in the `bottleneck <https://pypi.python.org/pypi/Bottleneck>`_ package.
        save_to_tmp_dir : bool
            If `True`, the computation will be carried out straight away and
            saved to a temporary directory. This can improve performance,
            especially if carrying out several operations sequentially. If
            `False`, the computation is only carried out when accessing
            specific parts of the data or writing to disk.
        kwargs : dict
            Passed to the numpy function.

        Returns
        -------
        result : :class:`~spectral_cube.lower_dimensional_structures.Projection` or `~astropy.units.Quantity` or float
            The result depends on the value of ``axis``, ``projection``, and
            ``unit``.  If ``axis`` is None, the return will be a scalar with or
            without units.  If axis is an integer, the return will be a
            :class:`~spectral_cube.lower_dimensional_structures.Projection` if ``projection`` is set
        """

        data = self._get_filled_data(fill=fill, check_endian=check_endian)

        # Numpy ufuncs know how to deal with dask arrays
        if function.__module__.startswith('numpy'):
            return function(data, **kwargs)
        else:
            # TODO: implement support for bottleneck? or arbitrary ufuncs?
            raise NotImplementedError()

    @add_save_to_tmp_dir_option
    def apply_function_parallel_spatial(self,
                                        function,
                                        accepts_chunks=False,
                                        **kwargs):
        """
        Apply a function in parallel along the spatial dimension.  The
        function will be performed on data with masked values replaced with the
        cube's fill value.

        Parameters
        ----------
        function : function
            The function to apply in the spatial dimension.  It must take
            two arguments: an array representing an image and a boolean array
            representing the mask.  It may also accept ``**kwargs``.  The
            function must return an object with the same shape as the input
            image.
        accepts_chunks : bool
            Whether the function can take chunks with shape (ns, ny, nx) where
            ``ns`` is the number of spectral channels in the cube and ``nx``
            and ``ny`` may be greater than one.
        save_to_tmp_dir : bool
            If `True`, the computation will be carried out straight away and
            saved to a temporary directory. This can improve performance,
            especially if carrying out several operations sequentially. If
            `False`, the computation is only carried out when accessing
            specific parts of the data or writing to disk.
        kwargs : dict
            Passed to ``function``
        """

        if accepts_chunks:
            def wrapper(data_slices, **kwargs):
                if data_slices.size > 0:
                    return function(data_slices, **kwargs)
                else:
                    return data_slices
        else:
            def wrapper(data_slices, **kwargs):
                if data_slices.size > 0:
                    out = np.zeros_like(data_slices)
                    for index in range(data_slices.shape[0]):
                        out[index] = function(data_slices[index], **kwargs)
                    return out
                else:
                    return data_slices

        # Rechunk so that there is only one chunk in the image plane
        return self._map_blocks_to_cube(wrapper,
                                        rechunk=('auto', -1, -1),
                                        fill=self._fill_value, **kwargs)

    @add_save_to_tmp_dir_option
    def apply_function_parallel_spectral(self,
                                         function,
                                         accepts_chunks=False,
                                         return_new_cube=True,
                                         **kwargs):
        """
        Apply a function in parallel along the spectral dimension.  The
        function will be performed on data with masked values replaced with the
        cube's fill value.

        Parameters
        ----------
        function : function
            The function to apply in the spectral dimension.  It must take
            two arguments: an array representing a spectrum and a boolean array
            representing the mask.  It may also accept ``**kwargs``.  The
            function must return an object with the same shape as the input
            spectrum.
        accepts_chunks : bool
            Whether the function can take chunks with shape (ns, ny, nx) where
            ``ns`` is the number of spectral channels in the cube and ``nx``
            and ``ny`` may be greater than one.
        save_to_tmp_dir : bool
            If `True`, the computation will be carried out straight away and
            saved to a temporary directory. This can improve performance,
            especially if carrying out several operations sequentially. If
            `False`, the computation is only carried out when accessing
            specific parts of the data or writing to disk.
        return_new_cube : bool
            If `True`, a new `~SpectralCube` object will be returned. This is the default
            for when the function will return another version of the new spectral cube
            with the operation applied (for example, spectral smoothing). If `False`,
            an array will be returned from `function`. This is useful, for example,
            when fitting a model to spectra and the output is the fitted model parameters.
        kwargs : dict
            Passed to ``function``
        """

        # NOTE: `block_info` should always be available for `dask.array.map_blocks` to pass to
        # Because we use this wrapper, this always should be an available kwarg, then we check
        # if that kwarg should be passed to `function`
        _has_blockinfo = 'block_info' in inspect.signature(function).parameters

        # if/else to avoid an if/else in every single wrapper call.
        if _has_blockinfo:
            def wrapper(data, block_info=None, **kwargs):
                if data.size > 0:
                    return function(data, block_info=block_info, **kwargs)
                else:
                    return data
        else:
            def wrapper(data, **kwargs):
                if data.size > 0:
                    return function(data, **kwargs)
                else:
                    return data

        if accepts_chunks:
            # Check if the spectral axis is already one chunk. If it is, there is no need to rechunk the data
            current_chunksize = self._data.chunksize
            if current_chunksize[0] == self.shape[0]:
                rechunk = None
            else:
                rechunk = (-1, 'auto', 'auto')

            return self._map_blocks_to_cube(wrapper,
                                            return_new_cube=return_new_cube,
                                            rechunk=rechunk, **kwargs)

        else:
            data = self._get_filled_data(fill=self._fill_value)
            # apply_along_axis returns an array with a single chunk, but we
            # need to rechunk here to avoid issues when writing out the data
            # even if it results in a poorer performance.
            data = data.rechunk((-1, 'auto', 'auto'))
            newdata = da.apply_along_axis(wrapper, 0, data, shape=(self.shape[0],),
                                          **kwargs)

            if return_new_cube:
                return self._new_cube_with(data=newdata, wcs=self.wcs,
                                           mask=self.mask, meta=self.meta,
                                           fill_value=self.fill_value)
            else:
                return newdata


    @projection_if_needed
    @ignore_warnings
    def sum(self, axis=None, **kwargs):
        """
        Return the sum of the cube, optionally over an axis.
        """
        return self._compute(nansum_allbadtonan(self._get_filled_data(fill=np.nan), axis=axis, **kwargs))

    @projection_if_needed
    @ignore_warnings
    def mean(self, axis=None, **kwargs):
        """
        Return the mean of the cube, optionally over an axis.
        """
        return self._compute(da.nanmean(self._get_filled_data(fill=np.nan), axis=axis, **kwargs))

    @projection_if_needed
    def median(self, axis=None, **kwargs):
        """
        Return the median of the cube, optionally over an axis.
        """
        data = self._get_filled_data(fill=np.nan)

        if axis is None:
            # da.nanmedian raises NotImplementedError since it is not possible
            # to do efficiently, so we use Numpy instead.
            _warn_slow_dask('median')
            return np.nanmedian(self._compute(data), **kwargs)
        else:
            return self._compute(da.nanmedian(self._get_filled_data(fill=np.nan), axis=axis, **kwargs))

    @projection_if_needed
    def percentile(self, q, axis=None, **kwargs):
        """
        Return percentiles of the data.

        Parameters
        ----------
        q : float
            The percentile to compute
        axis : int, or None
            Which axis to compute percentiles over
        """

        data = self._get_filled_data(fill=np.nan)

        if axis is None:
            # There is no way to compute the percentile of the whole array in
            # chunks.
            _warn_slow_dask('percentile')
            return np.nanpercentile(data, q, **kwargs)
        else:
            # Rechunk so that there is only one chunk along the desired axis
            data = data.rechunk([-1 if i == axis else 'auto' for i in range(3)])
            return self._compute(data.map_blocks(np.nanpercentile, q=q, drop_axis=axis, axis=axis, **kwargs))

    @projection_if_needed
    @ignore_warnings
    def std(self, axis=None, ddof=0, **kwargs):
        """
        Return the mean of the cube, optionally over an axis.

        Other Parameters
        ----------------
        ddof : int
            Means Delta Degrees of Freedom.  The divisor used in calculations
            is ``N - ddof``, where ``N`` represents the number of elements.  By
            default ``ddof`` is zero.
        """
        return self._compute(da.nanstd(self._get_filled_data(fill=np.nan), axis=axis, ddof=ddof, **kwargs))

    @projection_if_needed
    def mad_std(self, axis=None, ignore_nan=True, **kwargs):
        """
        Use astropy's mad_std to compute the standard deviation
        """

        data = self._get_filled_data(fill=np.nan)

        if axis is None:
            # In this case we have to load the full data - even dask's
            # nanmedian doesn't work efficiently over the whole array.
            _warn_slow_dask('mad_std')
            return stats.mad_std(data, ignore_nan=ignore_nan, **kwargs)
        else:
            # Rechunk so that there is only one chunk along the desired axis
            data = data.rechunk([-1 if i == axis else 'auto' for i in range(3)])
            return self._compute(data.map_blocks(stats.mad_std, drop_axis=axis,
                                                 axis=axis,
                                                 ignore_nan=ignore_nan,
                                                 **kwargs))

    @projection_if_needed
    @ignore_warnings
    def max(self, axis=None, **kwargs):
        """
        Return the maximum data value of the cube, optionally over an axis.
        """
        return self._compute(da.nanmax(self._get_filled_data(fill=np.nan), axis=axis, **kwargs))

    @projection_if_needed
    @ignore_warnings
    def min(self, axis=None, **kwargs):
        """
        Return the minimum data value of the cube, optionally over an axis.
        """
        return self._compute(da.nanmin(self._get_filled_data(fill=np.nan), axis=axis, **kwargs))

    @ignore_warnings
    def argmax(self, axis=None, **kwargs):
        """
        Return the index of the maximum data value.

        The return value is arbitrary if all pixels along ``axis`` are
        excluded from the mask.
        """
        return self._compute(da.nanargmax(self._get_filled_data(fill=-np.inf), axis=axis, **kwargs))

    @ignore_warnings
    def argmin(self, axis=None, **kwargs):
        """
        Return the index of the minimum data value.

        The return value is arbitrary if all pixels along ``axis`` are
        excluded from the mask.
        """
        return self._compute(da.nanargmin(self._get_filled_data(fill=np.inf), axis=axis))

    @ignore_warnings
    def statistics(self):
        """
        Return a dictinary of global basic statistics for the data.

        This method is designed to minimize the number of times each chunk is
        accessed. The statistics are computed for each chunk in turn before
        being aggregated.

        The names for each statistic are adopted from CASA's ia.statistics
        (see https://casa.nrao.edu/Release4.1.0/doc/CasaRef/image.statistics.html)
        """

        data = self._get_filled_data(fill=np.nan)

        def compute_stats(chunk, *args):
            # NOTE: we used to but do not use bottleneck here anymore, as it
            # does not seem to provide any performance improvements and also
            # has a memory leak when dealing with >f4 dtypes.
            return np.array([[[[np.sum(~np.isnan(chunk)),
                                np.nanmin(chunk),
                                np.nanmax(chunk),
                                np.nansum(chunk),
                                np.nansum(chunk * chunk)]]]])

        with dask.config.set(**self._scheduler_kwargs):
            results = da.map_blocks(compute_stats, data, new_axis=3).compute()

        count_values, min_values, max_values, sum_values, ssum_values = results.reshape((-1, 5)).T

        # all-NAN chunks are possible, so we need to use nan<stat> here
        stats = {'npts': count_values.sum(),
                 'min': np.nanmin(min_values) * self._unit,
                 'max': np.nanmax(max_values) * self._unit,
                 'sum': np.nansum(sum_values) * self._unit,
                 'sumsq': np.nansum(ssum_values) * self._unit ** 2}

        stats['mean'] = stats['sum'] / stats['npts']

        # FIXME: for now this uses the simple 'textbook' algorithm which is not
        # numerically stable, so this should be replaced by a more robust approach
        stats['sigma'] = ((stats['sumsq'] - stats['sum'] ** 2 / stats['npts']) / (stats['npts'] - 1)) ** 0.5

        stats['rms'] = np.sqrt(stats['sumsq'] / stats['npts'])

        return stats

    def _map_blocks_to_cube(self, function, additional_arrays=None, fill=np.nan, rechunk=None,
                            return_new_cube=True,
                            **kwargs):
        """
        Call dask's map_blocks, returning a new spectral cube.
        """

        data = self._get_filled_data(fill=fill)

        if rechunk is not None:
            data = data.rechunk(rechunk)

        if additional_arrays is None:
            newdata = da.map_blocks(function, data, dtype=data.dtype, **kwargs)
        else:
            additional_arrays = [array.rechunk(data.chunksize) for array in additional_arrays]
            newdata = da.map_blocks(function, data, *additional_arrays, dtype=data.dtype, **kwargs)

        # Create final output cube
        if return_new_cube:
            newcube = self._new_cube_with(data=newdata,
                                          wcs=self.wcs,
                                          mask=self.mask,
                                          meta=self.meta,
                                          fill_value=self.fill_value)

            return newcube
        else:
            return newdata

    # NOTE: the following three methods could also be implemented spaxel by
    # spaxel using apply_function_parallel_spectral but then take longer (but
    # less memory)

    @add_save_to_tmp_dir_option
    def sigma_clip_spectrally(self,
                              threshold,
                              **kwargs):
        """
        Run astropy's sigma clipper along the spectral axis, converting all bad
        (excluded) values to NaN.

        Parameters
        ----------
        threshold : float
            The ``sigma`` parameter in `astropy.stats.sigma_clip`, which refers
            to the number of sigma above which to cut.
        save_to_tmp_dir : bool
            If `True`, the computation will be carried out straight away and
            saved to a temporary directory. This can improve performance,
            especially if carrying out several operations sequentially. If
            `False`, the computation is only carried out when accessing
            specific parts of the data or writing to disk.
        kwargs : dict
            Passed to the sigma_clip function
        """

        def spectral_sigma_clip(array):
            return stats.sigma_clip(array, sigma=threshold, axis=0,
                                    masked=False, copy=True, **kwargs)

        return self.apply_function_parallel_spectral(spectral_sigma_clip,
                                                     accepts_chunks=True)

    @add_save_to_tmp_dir_option
    def spectral_smooth(self,
                        kernel,
                        convolve=convolution.convolve,
                        **kwargs):
        """
        Smooth the cube along the spectral dimension

        Note that the mask is left unchanged in this operation.

        Parameters
        ----------
        kernel : `~astropy.convolution.Kernel1D`
            A 1D kernel from astropy
        convolve : function
            The astropy convolution function to use, either
            `astropy.convolution.convolve` or
            `astropy.convolution.convolve_fft`
        save_to_tmp_dir : bool
            If `True`, the computation will be carried out straight away and
            saved to a temporary directory. This can improve performance,
            especially if carrying out several operations sequentially. If
            `False`, the computation is only carried out when accessing
            specific parts of the data or writing to disk.
        kwargs : dict
            Passed to the convolve function
        """

        if isinstance(kernel.array, u.Quantity):
            raise u.UnitsError("The convolution kernel should be defined "
                               "without a unit.")

        def spectral_smooth(array):
            kernel_3d = kernel.array.reshape((len(kernel.array), 1, 1))
            return convolve(array, kernel_3d, normalize_kernel=True)

        return self.apply_function_parallel_spectral(spectral_smooth,
                                                     accepts_chunks=True)

    @add_save_to_tmp_dir_option
    def spectral_smooth_median(self, ksize, raise_error_jybm=True,
                               filter=ndimage.median_filter, **kwargs):
        return self.spectral_filter(ksize, filter=filter,
                                    raise_error_jybm=raise_error_jybm,
                                    **kwargs)

    @add_save_to_tmp_dir_option
    def spectral_filter(self, ksize, filter, raise_error_jybm=True,
                        **kwargs):
        """
        Smooth the cube along the spectral dimension using a scipy.ndimage filter.

        Parameters
        ----------
        ksize : int
            Size of the median filter in spectral channels (scipy.ndimage.median_filter).
        filter : function
            A filter from `scipy.ndimage <https://docs.scipy.org/doc/scipy/reference/ndimage.html#filters>`_.
        save_to_tmp_dir : bool
            If `True`, the computation will be carried out straight away and
            saved to a temporary directory. This can improve performance,
            especially if carrying out several operations sequentially. If
            `False`, the computation is only carried out when accessing
            specific parts of the data or writing to disk.
        kwargs : dict
            Not used at the moment.
        """

        if not SCIPY_INSTALLED:
            raise ImportError("Scipy could not be imported: this function won't work.")

        if float(ksize).is_integer():
            ksize = int(ksize)
        else:
            raise TypeError('ksize should be an integer (got {0})'.format(ksize))

        def median_filter_wrapper(img, **kwargs):
            return filter(img, (ksize, 1, 1), **kwargs)

        return self.apply_function_parallel_spectral(median_filter_wrapper,
                                                     accepts_chunks=True)

    @add_save_to_tmp_dir_option
    def spatial_smooth(self, kernel, convolve=convolution.convolve, raise_error_jybm=True, **kwargs):
        """
        Smooth the image in each spatial-spatial plane of the cube.

        Parameters
        ----------
        kernel : `~astropy.convolution.Kernel2D`
            A 2D kernel from astropy
        convolve : function
            The astropy convolution function to use, either
            `astropy.convolution.convolve` or
            `astropy.convolution.convolve_fft`
        raise_error_jybm : bool, optional
            Raises a `~spectral_cube.utils.BeamUnitsError` when smoothing a cube in Jy/beam units,
            since the brightness is dependent on the spatial resolution.
        save_to_tmp_dir : bool
            If `True`, the computation will be carried out straight away and
            saved to a temporary directory. This can improve performance,
            especially if carrying out several operations sequentially. If
            `False`, the computation is only carried out when accessing
            specific parts of the data or writing to disk.
        kwargs : dict
            Passed to the convolve function
        """

        self.check_jybeam_smoothing(raise_error_jybm=raise_error_jybm)

        def convolve_wrapper(data, kernel=None, **kwargs):
            return convolve(data, kernel, normalize_kernel=True, **kwargs)

        return self.apply_function_parallel_spatial(convolve_wrapper, kernel=kernel.array)

    @add_save_to_tmp_dir_option
    def spatial_filter(self, ksize, filter, raise_error_jybm=True, **kwargs):
        """
        Smooth the image in each spatial-spatial plane of the cube using a median filter.

        Parameters
        ----------
        ksize : int
            Size of the filter in pixels.
        filter : function
            A filter from `scipy.ndimage <https://docs.scipy.org/doc/scipy/reference/ndimage.html#filters>`_.
        raise_error_jybm : bool, optional
            Raises a `~spectral_cube.utils.BeamUnitsError` when smoothing a cube in Jy/beam units,
            since the brightness is dependent on the spatial resolution.
        kwargs : dict
            Passed to the median_filter function
        """

        if not SCIPY_INSTALLED:
            raise ImportError("Scipy could not be imported: this function won't work.")

        self.check_jybeam_smoothing(raise_error_jybm=raise_error_jybm)

        def median_filter_wrapper(data, ksize=None, **kwargs):
            return filter(data, ksize, **kwargs)

        return self.apply_function_parallel_spatial(median_filter_wrapper, ksize=ksize)

    def spatial_smooth_median(self, ksize, raise_error_jybm=True,
            filter=ndimage.median_filter, **kwargs):
        """
        Smooth the image in each spatial-spatial plane of the cube using a median filter.
        """
        return self.spatial_filter(ksize=ksize, filter=filter,
                raise_error_jybm=raise_error_jybm, **kwargs)

    def moment(self, order=0, axis=0, **kwargs):
        """
        Compute moments along the spectral axis.

        Moments are defined as follows:

        Moment 0:

        .. math:: M_0 \\int I dl

        Moment 1:

        .. math:: M_1 = \\frac{\\int I l dl}{M_0}

        Moment N:

        .. math:: M_N = \\frac{\\int I (l - M_1)^N dl}{M_0}

        .. warning:: Note that these follow the mathematical definitions of
                     moments, and therefore the second moment will return a
                     variance map. To get linewidth maps, you can instead use
                     the :meth:`~SpectralCube.linewidth_fwhm` or
                     :meth:`~SpectralCube.linewidth_sigma` methods.

        Parameters
        ----------
        order : int
           The order of the moment to take. Default=0

        axis : int
           The axis along which to compute the moment. Default=0

        Returns
        -------
        map [, wcs]
           The moment map (numpy array) and, if wcs=True, the WCS object
           describing the map

        Notes
        -----
        For the first moment, the result for axis=1, 2 is the angular
        offset *relative to the cube face*. For axis=0, it is the
        *absolute* velocity/frequency of the first moment.
        """

        if axis == 0 and order == 2:
            warnings.warn("Note that the second moment returned will be a "
                          "variance map. To get a linewidth map, use the "
                          "SpectralCube.linewidth_fwhm() or "
                          "SpectralCube.linewidth_sigma() methods instead.",
                          VarianceWarning)

        data = self._get_filled_data(fill=np.nan).astype(np.float64)
        pix_size = self._pix_size_slice(axis)
        pix_cen = self._pix_cen()[axis]

        if order == 0:
            out = nansum_allbadtonan(data * pix_size, axis=axis)
        else:
            denominator = self._compute(nansum_allbadtonan(data * pix_size, axis=axis))
            mom1 = (nansum_allbadtonan(data * pix_size * pix_cen, axis=axis) /
                    denominator)
            if order > 1:
                # insert an axis so it broadcasts properly
                shp = list(mom1.shape)
                shp.insert(axis, 1)
                mom1 = self._compute(mom1.reshape(shp))
                out = (nansum_allbadtonan(data * pix_size * (pix_cen - mom1) ** order, axis=axis) /
                       denominator)
            else:
                out = mom1

        # force computation, and convert back to original dtype (but native)
        out = self._compute(out)

        # apply units
        if order == 0:
            if axis == 0 and self._spectral_unit is not None:
                axunit = unit = self._spectral_unit
            else:
                axunit = unit = u.Unit(self._wcs.wcs.cunit[np2wcs[axis]])
            out = u.Quantity(out, self.unit * axunit, copy=False)
        else:
            if axis == 0 and self._spectral_unit is not None:
                unit = self._spectral_unit ** max(order, 1)
            else:
                unit = u.Unit(self._wcs.wcs.cunit[np2wcs[axis]]) ** max(order, 1)
            out = u.Quantity(out, unit, copy=False)

        # special case: for order=1, axis=0, you usually want
        # the absolute velocity and not the offset
        if order == 1 and axis == 0:
            out += self.world[0, :, :][0]

        new_wcs = wcs_utils.drop_axis(self._wcs, np2wcs[axis])

        meta = {'moment_order': order,
                'moment_axis': axis}
        meta.update(self._meta)

        return Projection(out, copy=False, wcs=new_wcs, meta=meta,
                          header=self._nowcs_header)

    def subcube_slices_from_mask(self, region_mask, spatial_only=False):
        """
        Given a mask, return the slices corresponding to the minimum subcube
        that encloses the mask

        Parameters
        ----------
        region_mask: `~spectral_cube.masks.MaskBase` or boolean `numpy.ndarray`
            The mask with appropriate WCS or an ndarray with matched
            coordinates
        spatial_only: bool
            Return only slices that affect the spatial dimensions; the spectral
            dimension will be left unchanged
        """

        # We need to use a slightly different approach to SpectralCube here
        # because there isn't yet a dask-friendly version of find_objects
        # https://github.com/dask/dask-image/issues/96

        if isinstance(region_mask, np.ndarray):
            if is_broadcastable_and_smaller(region_mask.shape, self.shape):
                region_mask = BooleanArrayMask(region_mask, self._wcs)
            else:
                raise ValueError("Mask shape does not match cube shape.")

        include = region_mask.include(self._data, self._wcs,
                                      wcs_tolerance=self._wcs_tolerance)

        include = da.broadcast_to(include, self.shape)

        slices = []
        for axis in range(3):
            if axis == 0 and spatial_only:
                slices.append(slice(None))
                continue
            collapse_axes = tuple(index for index in range(3) if index != axis)
            valid = self._compute(da.any(include, axis=collapse_axes))
            if np.any(valid):
                indices = np.where(valid)[0]
                slices.append(slice(np.min(indices), np.max(indices) + 1))
            else:
                slices.append(slice(0))

        return tuple(slices)

    @add_save_to_tmp_dir_option
    def downsample_axis(self, factor, axis, estimator=np.nanmean,
                        truncate=False):
        """
        Downsample the cube by averaging over *factor* pixels along an axis.
        Crops right side if the shape is not a multiple of factor.

        The WCS will be 'downsampled' by the specified factor as well.
        If the downsample factor is odd, there will be an offset in the WCS.

        There is both an in-memory and a memory-mapped implementation; the
        default is to use the memory-mapped version.  Technically, the 'large
        data' warning doesn't apply when using the memory-mapped version, but
        the warning is still there anyway.

        Parameters
        ----------
        myarr : `~numpy.ndarray`
            The array to downsample
        factor : int
            The factor to downsample by
        axis : int
            The axis to downsample along
        estimator : function
            defaults to mean.  You can downsample by summing or
            something else if you want a different estimator
            (e.g., downsampling error: you want to sum & divide by sqrt(n))
        truncate : bool
            Whether to truncate the last chunk or average over a smaller number.
            e.g., if you downsample [1,2,3,4] by a factor of 3, you could get either
            [2] or [2,4] if truncate is True or False, respectively.
        save_to_tmp_dir : bool
            If `True`, the computation will be carried out straight away and
            saved to a temporary directory. This can improve performance,
            especially if carrying out several operations sequentially. If
            `False`, the computation is only carried out when accessing
            specific parts of the data or writing to disk.
        """

        # FIXME: this does not work correctly currently due to
        # https://github.com/dask/dask/issues/6102

        warnings.warn('In some cases, the final shape of the output from downsample_axis '
                      'is incorrect, so use the result with caution', UserWarning)

        data = self._get_filled_data(fill=self._fill_value)
        mask = da.asarray(self.mask.include(), name=str(uuid.uuid4()))

        if not truncate and data.shape[axis] % factor != 0:
            padding_shape = list(data.shape)
            padding_shape[axis] = factor - data.shape[axis] % factor
            data_padding = da.ones(padding_shape) * np.nan
            mask_padding = da.zeros(padding_shape, dtype=bool)
            data = da.concatenate([data, data_padding], axis=axis)
            mask = da.concatenate([mask, mask_padding], axis=axis).rechunk()

        data = da.coarsen(estimator, data, {axis: factor}, trim_excess=True)
        mask = da.coarsen(estimator, mask, {axis: factor}, trim_excess=True)

        view = [slice(None, None, factor) if ii == axis else slice(None) for ii in range(self.ndim)]
        newwcs = wcs_utils.slice_wcs(self.wcs, view, shape=self.shape)
        newwcs._naxis = list(self.shape)

        # this is an assertion to ensure that the WCS produced is valid
        # (this is basically a regression test for #442)
        assert newwcs[:, slice(None), slice(None)]
        assert len(newwcs._naxis) == 3

        return self._new_cube_with(data=data, wcs=newwcs,
                                   mask=BooleanArrayMask(mask, wcs=newwcs))

    @add_save_to_tmp_dir_option
    def spectral_interpolate(self, spectral_grid,
                             suppress_smooth_warning=False,
                             fill_value=None,
                             force_rechunk=True):
        """Resample the cube spectrally onto a specific grid

        Parameters
        ----------
        spectral_grid : array
            An array of the spectral positions to regrid onto
        suppress_smooth_warning : bool
            If disabled, a warning will be raised when interpolating onto a
            grid that does not nyquist sample the existing grid.  Disable this
            if you have already appropriately smoothed the data.
        fill_value : float
            Value for extrapolated spectral values that lie outside of
            the spectral range defined in the original data.  The
            default is to use the nearest spectral channel in the
            cube.
        save_to_tmp_dir : bool
            If `True`, the computation will be carried out straight away and
            saved to a temporary directory. This can improve performance,
            especially if carrying out several operations sequentially. If
            `False`, the computation is only carried out when accessing
            specific parts of the data or writing to disk.
        force_rechunk : bool
            If `True`, forces rechunking of the dask array to have a single chunk
            along the spectral axis. If `False`, the data will not be rechunked, but
            a ValueError is raised if rechunking is required to have a single chunk
            along the spectral axis.

        Returns
        -------
        cube : SpectralCube

        """

        # TODO: this duplicates SpectralCube.spectral_interpolate, so we should
        # find a way to avoid that duplication.

        inaxis = self.spectral_axis.to(spectral_grid.unit)

        indiff = np.mean(np.diff(inaxis))
        outdiff = np.mean(np.diff(spectral_grid))

        reverse_in = indiff < 0
        reverse_out = outdiff < 0

        # account for reversed axes

        if reverse_in:
            inaxis = inaxis[::-1]
            indiff = np.mean(np.diff(inaxis))

        if reverse_out:
            spectral_grid = spectral_grid[::-1]
            outdiff = np.mean(np.diff(spectral_grid))

        cubedata = self._get_filled_data(fill=np.nan)

        # insanity checks
        if indiff < 0 or outdiff < 0:
            raise ValueError("impossible.")

        assert np.all(np.diff(spectral_grid) > 0)
        assert np.all(np.diff(inaxis) > 0)

        np.testing.assert_allclose(np.diff(spectral_grid), outdiff,
                                   err_msg="Output grid must be linear")

        if outdiff > 2 * indiff and not suppress_smooth_warning:
            warnings.warn("Input grid has too small a spacing. The data should "
                          "be smoothed prior to resampling.", SmoothingWarning)

        if reverse_in:
            cubedata = cubedata[::-1, :, :]

        if force_rechunk:
            cubedata = cubedata.rechunk((-1, 'auto', 'auto'))
        else:
            # There should be one chunk size along the spectral
            # axis if there is only 1 chunk already defined.
            # Otherwise, the data needs to be rechunked.
            if len(cubedata.chunks[0]) > 1:
                raise ValueError(f"The cube currently has {len(cubedata.chunks[0])} chunks along"
                                 " the spectral axis but DaskSpectralCube.spectral_interpolate"
                                 " requires one. Rechunk the data first or enable"
                                 " `force_rechunk=True`.")

        chunkshape = (len(spectral_grid),) + cubedata.chunks[1:]

        def interp_wrapper(y, args):
            if y.size == 1:
                return y
            else:
                interp = scipy.interpolate.interp1d(args[1], y.T,
                                                    fill_value=fill_value,
                                                    bounds_error=False)
                return interp(args[0]).T

        newcube = cubedata.map_blocks(interp_wrapper,
                                      args=(spectral_grid.value, inaxis.value),
                                      chunks=chunkshape)

        newwcs = self.wcs.deepcopy()
        newwcs.wcs.crpix[2] = 1
        newwcs.wcs.crval[2] = spectral_grid[0].value if not reverse_out \
            else spectral_grid[-1].value
        newwcs.wcs.cunit[2] = spectral_grid.unit.to_string('FITS')
        newwcs.wcs.cdelt[2] = outdiff.value if not reverse_out \
            else -outdiff.value
        newwcs.wcs.set()

        newbmask = BooleanArrayMask(~np.isnan(newcube), wcs=newwcs)

        if reverse_out:
            newcube = newcube[::-1, :, :]

        newcube = self._new_cube_with(data=newcube, wcs=newwcs, mask=newbmask,
                                      meta=self.meta,
                                      fill_value=self.fill_value)

        return newcube


class DaskSpectralCube(DaskSpectralCubeMixin, SpectralCube):

    def __init__(self, data, *args, **kwargs):
        unit = None
        if not isinstance(data, da.Array):
            if isinstance(data, u.Quantity):
                data, unit = data.value, data.unit
            # NOTE: don't be tempted to chunk this image-wise (following the
            # data storage) because spectral operations will take forever.
            data = da.asarray(data, name=str(uuid.uuid4()))
        super().__init__(data, *args, **kwargs)
        if self._unit is None and unit is not None:
            self._unit = unit

    @classmethod
    def read(cls, *args, **kwargs):
        if kwargs.get('use_dask') is None:
            kwargs['use_dask'] = True
        return super().read(*args, **kwargs)

    def write(self, *args, **kwargs):
        with dask.config.set(**self._scheduler_kwargs):
            super().write(*args, **kwargs)

    @property
    def hdu(self):
        """
        HDU version of self
        """
        return PrimaryHDU(self._get_filled_data(fill=self._fill_value), header=self.header)

    @property
    def hdulist(self):
        return HDUList(self.hdu)

    @add_save_to_tmp_dir_option
    def convolve_to(self, beam, convolve=convolution.convolve, **kwargs):
        """
        Convolve each channel in the cube to a specified beam

        Parameters
        ----------
        beam : `radio_beam.Beam`
            The beam to convolve to
        convolve : function
            The astropy convolution function to use, either
            `astropy.convolution.convolve` or
            `astropy.convolution.convolve_fft`
        save_to_tmp_dir : bool
            If `True`, the computation will be carried out straight away and
            saved to a temporary directory. This can improve performance,
            especially if carrying out several operations sequentially. If
            `False`, the computation is only carried out when accessing
            specific parts of the data or writing to disk.
        kwargs : dict
            Keyword arguments to pass to the convolution function

        Returns
        -------
        cube : `SpectralCube`
            A SpectralCube with a single ``beam``
        """

        # Check if the beams are the same.
        if beam == self.beam:
            warnings.warn("The given beam is identical to the current beam. "
                          "Skipping convolution.")
            return self

        pixscale = proj_plane_pixel_area(self.wcs.celestial)**0.5 * u.deg

        convolution_kernel = beam.deconvolve(self.beam).as_kernel(pixscale)
        kernel = convolution_kernel.array.reshape((1,) + convolution_kernel.array.shape)

        if self.unit.is_equivalent(u.Jy / u.beam):
            beam_ratio_factor = (beam.sr / self.beam.sr).value
        else:
            beam_ratio_factor = 1.

        # See #631: kwargs get passed within self.apply_function_parallel_spatial
        def convfunc(img, **kwargs):
            return convolve(img, kernel, normalize_kernel=True, **kwargs).reshape(img.shape) * beam_ratio_factor

        if convolve is convolution.convolve_fft and 'allow_huge' not in kwargs:
            kwargs['allow_huge'] = self.allow_huge_operations

        return self.apply_function_parallel_spatial(convfunc,
                                                    accepts_chunks=True,
                                                    **kwargs).with_beam(beam, raise_error_jybm=False)


class DaskVaryingResolutionSpectralCube(DaskSpectralCubeMixin, VaryingResolutionSpectralCube):

    def __init__(self, data, *args, **kwargs):
        unit = None
        if not isinstance(data, da.Array):
            if isinstance(data, u.Quantity):
                data, unit = data.value, data.unit
            # NOTE: don't be tempted to chunk this image-wise (following the
            # data storage) because spectral operations will take forever.
            data = da.asarray(data, name=str(uuid.uuid4()))
        super().__init__(data, *args, **kwargs)
        if self._unit is None and unit is not None:
            self._unit = unit

    @classmethod
    def read(cls, *args, **kwargs):
        if kwargs.get('use_dask') is None:
            kwargs['use_dask'] = True
        return super().read(*args, **kwargs)

    def write(self, *args, **kwargs):
        with dask.config.set(**self._scheduler_kwargs):
            super().write(*args, **kwargs)

    @property
    def hdu(self):
        raise ValueError("For DaskVaryingResolutionSpectralCube's, use hdulist "
                         "instead of hdu.")

    @property
    def hdulist(self):
        """
        HDUList version of self
        """

        hdu = PrimaryHDU(self._get_filled_data(fill=self._fill_value), header=self.header)

        from .cube_utils import beams_to_bintable
        # use unmasked beams because, even if the beam is masked out, we should
        # write it
        bmhdu = beams_to_bintable(self.unmasked_beams)

        return HDUList([hdu, bmhdu])

    @add_save_to_tmp_dir_option
    def convolve_to(self, beam, allow_smaller=False,
                    convolve=convolution.convolve_fft,
                    **kwargs):
        """
        Convolve each channel in the cube to a specified beam

        .. warning::
            The current implementation of ``convolve_to`` creates an in-memory
            copy of the whole cube to store the convolved data.  Issue #506
            notes that this is a problem, and it is on our to-do list to fix.

        .. warning::
            Note that if there is any misaligment between the cube's spatial
            pixel axes and the WCS's spatial axes *and* the beams are not
            round, the convolution kernels used here may be incorrect.  Be wary
            in such cases!

        Parameters
        ----------
        beam : `radio_beam.Beam`
            The beam to convolve to
        allow_smaller : bool
            If the specified target beam is smaller than the beam in a channel
            in any dimension and this is ``False``, it will raise an exception.
        convolve : function
            The astropy convolution function to use, either
            `astropy.convolution.convolve` or
            `astropy.convolution.convolve_fft`
        save_to_tmp_dir : bool
            If `True`, the computation will be carried out straight away and
            saved to a temporary directory. This can improve performance,
            especially if carrying out several operations sequentially. If
            `False`, the computation is only carried out when accessing
            specific parts of the data or writing to disk.

        Returns
        -------
        cube : `SpectralCube`
            A SpectralCube with a single ``beam``
        """

        if ((self.wcs.celestial.wcs.get_pc()[0,1] != 0 or
             self.wcs.celestial.wcs.get_pc()[1,0] != 0)):
            warnings.warn("The beams will produce convolution kernels "
                          "that are not aware of any misaligment "
                          "between pixel and world coordinates, "
                          "and there are off-diagonal elements of the "
                          "WCS spatial transformation matrix.  "
                          "Unexpected results are likely.",
                          BeamWarning
                         )

        pixscale = wcs.utils.proj_plane_pixel_area(self.wcs.celestial)**0.5*u.deg

        beams = []
        beam_ratio_factors = []
        for bm, valid in zip(self.unmasked_beams, self.goodbeams_mask):
            if not valid:
                # just skip masked-out beams
                beams.append(None)
                beam_ratio_factors.append(None)
                continue
            elif beam == bm:
                # Point response when beams are equal, don't convolve.
                beams.append(None)
                beam_ratio_factors.append(None)
                continue
            try:
                beams.append(beam.deconvolve(bm))
                beam_ratio_factors.append((beam.sr / bm.sr).value)
            except ValueError:
                if allow_smaller:
                    beams.append(None)
                    beam_ratio_factors.append(None)
                else:
                    raise

        # We need to pass in the beams to dask, so we hide them inside an object array
        # that can then be chunked like the data.
        beams = da.from_array(np.array(beams, dtype=object)
                              .reshape((len(beams), 1, 1)), chunks=(-1, -1, -1))

        needs_beam_ratio = self.unit.is_equivalent(u.Jy / u.beam)

        # See #631: kwargs get passed within self.apply_function_parallel_spatial
        def convfunc(img, beam, **kwargs):
            if img.size > 0:
                out = np.zeros(img.shape, dtype=img.dtype)
                for index in range(img.shape[0]):
                    if beam[index, 0, 0] is None:
                        out[index] = img[index]
                    else:
                        kernel = beam[index, 0, 0].as_kernel(pixscale)
                        out[index] = convolve(img[index], kernel, normalize_kernel=True, **kwargs)

                        if needs_beam_ratio and beam_ratio_factors[index] is not None:
                            out[index] *= beam_ratio_factors[index]

                return out
            else:
                return img

        # Rechunk so that there is only one chunk in the image plane
        cube = self._map_blocks_to_cube(convfunc,
                                        additional_arrays=(beams,),
                                        rechunk=('auto', -1, -1),
                                        **kwargs)

        # Result above is a DaskVaryingResolutionSpectralCube, convert to DaskSpectralCube
        newcube = DaskSpectralCube(data=cube._data,
                                   beam=beam,
                                   wcs=cube.wcs,
                                   mask=cube.mask,
                                   meta=cube.meta,
                                   fill_value=cube.fill_value)

        newcube._scheduler_kwargs = self._scheduler_kwargs

        return newcube

    def spectral_interpolate(self, *args, **kwargs):
        raise AttributeError("VaryingResolutionSpectralCubes can't be "
                             "spectrally interpolated.  Convolve to a "
                             "common resolution with `convolve_to` before "
                             "attempting spectral interpolation.")

    def spectral_smooth(self, *args, **kwargs):
        raise AttributeError("VaryingResolutionSpectralCubes can't be "
                             "spectrally smoothed.  Convolve to a "
                             "common resolution with `convolve_to` before "
                             "attempting spectral smoothed.")

    @property
    def _mask_include(self):
        return BooleanArrayMask(da.from_array(MaskHandler(self),
                                              name='MaskHandler ' + str(uuid.uuid4()),
                                              chunks=self._data.chunksize),
                                wcs=self.wcs,
                                shape=self.shape)