1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
|
"""
A class to represent a 3-d position-position-velocity spectral cube.
"""
import warnings
from functools import wraps
import operator
import re
import itertools
import copy
import tempfile
import textwrap
from pathlib import PosixPath
import dask.array as da
import astropy.wcs
from astropy import units as u
from astropy.io.fits import PrimaryHDU, BinTableHDU, Header, Card, HDUList
from astropy import log
from astropy import wcs
from astropy import convolution
from astropy import stats
from astropy.constants import si
from astropy.io.registry import UnifiedReadWriteMethod
import numpy as np
from radio_beam import Beam, Beams
from . import cube_utils
from . import wcs_utils
from . import spectral_axis
from .utils import ProgressBar
from .masks import (LazyMask, LazyComparisonMask, BooleanArrayMask, MaskBase,
is_broadcastable_and_smaller)
from .ytcube import ytCube
from .lower_dimensional_structures import (Projection, Slice, OneDSpectrum,
LowerDimensionalObject,
VaryingResolutionOneDSpectrum
)
from .base_class import (BaseNDClass, SpectralAxisMixinClass,
DOPPLER_CONVENTIONS, SpatialCoordMixinClass,
MaskableArrayMixinClass, MultiBeamMixinClass,
HeaderMixinClass, BeamMixinClass,
)
from .utils import (cached, warn_slow, VarianceWarning, BeamWarning,
UnsupportedIterationStrategyWarning, WCSMismatchWarning,
NotImplementedWarning, SliceWarning, SmoothingWarning,
StokesWarning, ExperimentalImplementationWarning,
BeamAverageWarning, NonFiniteBeamsWarning, BeamWarning,
WCSCelestialError, BeamUnitsError)
from .spectral_axis import (determine_vconv_from_ctype, get_rest_value_from_wcs,
doppler_beta, doppler_gamma, doppler_z)
from .io.core import SpectralCubeRead, SpectralCubeWrite
from packaging.version import Version, parse
__all__ = ['BaseSpectralCube', 'SpectralCube', 'VaryingResolutionSpectralCube']
# apply_everywhere, world: do not have a valid cube to test on
__doctest_skip__ = ['BaseSpectralCube._apply_everywhere']
try:
from scipy import ndimage
scipyOK = True
except ImportError:
scipyOK = False
warnings.filterwarnings('ignore', category=wcs.FITSFixedWarning, append=True)
SIGMA2FWHM = 2. * np.sqrt(2. * np.log(2.))
# convenience structures to keep track of the reversed index
# conventions between WCS and numpy
np2wcs = {2: 0, 1: 1, 0: 2}
_NP_DOC = """
Ignores excluded mask elements.
Parameters
----------
axis : int (optional)
The axis to collapse, or None to perform a global aggregation
how : cube | slice | ray | auto
How to compute the aggregation. All strategies give the same
result, but certain strategies are more efficient depending
on data size and layout. Cube/slice/ray iterate over
decreasing subsets of the data, to conserve memory.
Default='auto'
""".replace('\n', '\n ')
def aggregation_docstring(func):
@wraps(func)
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
wrapper.__doc__ += _NP_DOC
return wrapper
_PARALLEL_DOC = """
Other Parameters
----------------
parallel : bool
Use joblib to parallelize the operation.
If set to ``False``, will force the use of a single core without
using ``joblib``.
num_cores : int or None
The number of cores to use when applying this function in parallel
across the cube.
use_memmap : bool
If specified, a memory mapped temporary file on disk will be
written to rather than storing the intermediate spectra in memory.
"""
def parallel_docstring(func):
@wraps(func)
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
line1 = wrapper.__doc__.split("\n")[1]
indentation = " "*(len(line1) - len(line1.lstrip()))
try:
wrapper.__doc__ += textwrap.indent(_PARALLEL_DOC, indentation)
except AttributeError:
# python2.7
wrapper.__doc__ = textwrap.dedent(wrapper.__doc__) + _PARALLEL_DOC
return wrapper
def _apply_spectral_function(arguments, outcube, function, **kwargs):
"""
Helper function to apply a function to a spectrum.
Needs to be declared toward the top of the code to allow pickling by
joblib.
"""
(spec, includemask, ii, jj) = arguments
if np.any(includemask):
outcube[:,jj,ii] = function(spec, **kwargs)
else:
outcube[:,jj,ii] = spec
def _apply_spatial_function(arguments, outcube, function, **kwargs):
"""
Helper function to apply a function to an image.
Needs to be declared toward the top of the code to allow pickling by
joblib.
"""
(img, includemask, ii) = arguments
if np.any(includemask):
outcube[ii, :, :] = function(img, **kwargs)
else:
outcube[ii, :, :] = img
class BaseSpectralCube(BaseNDClass, MaskableArrayMixinClass,
SpectralAxisMixinClass, SpatialCoordMixinClass,
HeaderMixinClass):
def __init__(self, data, wcs, mask=None, meta=None, fill_value=np.nan,
header=None, allow_huge_operations=False, wcs_tolerance=0.0):
# Deal with metadata first because it can affect data reading
self._meta = meta or {}
# must extract unit from data before stripping it
if 'BUNIT' in self._meta:
self._unit = cube_utils.convert_bunit(self._meta["BUNIT"])
elif hasattr(data, 'unit'):
self._unit = data.unit
else:
self._unit = None
# data must not be a quantity when stored in self._data
if hasattr(data, 'unit'):
# strip the unit so that it can be treated as cube metadata
data = data.value
# TODO: mask should be oriented? Or should we assume correctly oriented here?
self._data, self._wcs = cube_utils._orient(data, wcs)
self._wcs_tolerance = wcs_tolerance
self._spectral_axis = None
self._mask = mask # specifies which elements to Nan/blank/ignore
# object or array-like object, given that WCS needs
# to be consistent with data?
#assert mask._wcs == self._wcs
self._fill_value = fill_value
self._header = Header() if header is None else header
if not isinstance(self._header, Header):
raise TypeError("If a header is given, it must be a fits.Header")
# We don't pass the spectral unit via the initializer since the user
# should be using ``with_spectral_unit`` if they want to set it.
# However, we do want to keep track of what units the spectral axis
# should be returned in, otherwise astropy's WCS can change the units,
# e.g. km/s -> m/s.
# This can be overridden with Header below
self._spectral_unit = u.Unit(self._wcs.wcs.cunit[2])
# This operation is kind of expensive?
header_specaxnum = astropy.wcs.WCS(header).wcs.spec
header_specaxunit = spectral_axis.unit_from_header(self._header,
spectral_axis_number=header_specaxnum+1)
# Allow the original header spectral axis unit to override the default
# unit
if header_specaxunit is not None:
self._spectral_unit = header_specaxunit
self._spectral_scale = spectral_axis.wcs_unit_scale(self._spectral_unit)
self.allow_huge_operations = allow_huge_operations
self._cache = {}
@property
def _is_huge(self):
return cube_utils.is_huge(self)
@property
def _new_thing_with(self):
return self._new_cube_with
def _new_cube_with(self, data=None, wcs=None, mask=None, meta=None,
fill_value=None, spectral_unit=None, unit=None,
wcs_tolerance=None, **kwargs):
data = self._data if data is None else data
if unit is None and hasattr(data, 'unit'):
if data.unit != self.unit:
raise u.UnitsError("New data unit '{0}' does not"
" match cube unit '{1}'. You can"
" override this by specifying the"
" `unit` keyword."
.format(data.unit, self.unit))
unit = data.unit
elif unit is not None:
# convert string units to Units
if not isinstance(unit, u.Unit):
unit = u.Unit(unit)
if hasattr(data, 'unit'):
if u.Unit(unit) != data.unit:
raise u.UnitsError("The specified new cube unit '{0}' "
"does not match the input unit '{1}'."
.format(unit, data.unit))
elif self._unit is not None:
unit = self.unit
wcs = self._wcs if wcs is None else wcs
mask = self._mask if mask is None else mask
if meta is None:
meta = {}
meta.update(self._meta)
if unit is not None:
meta['BUNIT'] = unit.to_string(format='FITS')
fill_value = self._fill_value if fill_value is None else fill_value
spectral_unit = self._spectral_unit if spectral_unit is None else u.Unit(spectral_unit)
cube = self.__class__(data=data, wcs=wcs, mask=mask, meta=meta,
fill_value=fill_value, header=self._header,
allow_huge_operations=self.allow_huge_operations,
wcs_tolerance=wcs_tolerance or self._wcs_tolerance,
**kwargs)
cube._spectral_unit = spectral_unit
cube._spectral_scale = spectral_axis.wcs_unit_scale(spectral_unit)
return cube
read = UnifiedReadWriteMethod(SpectralCubeRead)
write = UnifiedReadWriteMethod(SpectralCubeWrite)
@property
def unit(self):
""" The flux unit """
if self._unit:
return self._unit
else:
return u.one
@property
def shape(self):
""" Length of cube along each axis """
return self._data.shape
@property
def size(self):
""" Number of elements in the cube """
return self._data.size
@property
def base(self):
""" The data type 'base' of the cube - useful for, e.g., joblib """
return self._data.base
def __len__(self):
return self.shape[0]
@property
def ndim(self):
""" Dimensionality of the data """
return self._data.ndim
def __repr__(self):
s = "{1} with shape={0}".format(self.shape, self.__class__.__name__)
if self.unit is u.one:
s += ":\n"
else:
s += " and unit={0}:\n".format(self.unit)
s += (" n_x: {0:6d} type_x: {1:8s} unit_x: {2:5s}"
" range: {3:12.6f}:{4:12.6f}\n".format(self.shape[2],
self.wcs.wcs.ctype[0],
self.wcs.wcs.cunit[0],
self.longitude_extrema[0],
self.longitude_extrema[1],))
s += (" n_y: {0:6d} type_y: {1:8s} unit_y: {2:5s}"
" range: {3:12.6f}:{4:12.6f}\n".format(self.shape[1],
self.wcs.wcs.ctype[1],
self.wcs.wcs.cunit[1],
self.latitude_extrema[0],
self.latitude_extrema[1],
))
s += (" n_s: {0:6d} type_s: {1:8s} unit_s: {2:5s}"
" range: {3:12.3f}:{4:12.3f}".format(self.shape[0],
self.wcs.wcs.ctype[2],
self._spectral_unit,
self.spectral_extrema[0],
self.spectral_extrema[1],
))
return s
@property
@cached
def spectral_extrema(self):
_spectral_min = self.spectral_axis.min()
_spectral_max = self.spectral_axis.max()
return u.Quantity((_spectral_min, _spectral_max))
def apply_numpy_function(self, function, fill=np.nan,
reduce=True, how='auto',
projection=False,
unit=None,
check_endian=False,
progressbar=False,
includemask=False,
**kwargs):
"""
Apply a numpy function to the cube
Parameters
----------
function : Numpy ufunc
A numpy ufunc to apply to the cube
fill : float
The fill value to use on the data
reduce : bool
reduce indicates whether this is a reduce-like operation,
that can be accumulated one slice at a time.
sum/max/min are like this. argmax/argmin/stddev are not
how : cube | slice | ray | auto
How to compute the moment. All strategies give the same
result, but certain strategies are more efficient depending
on data size and layout. Cube/slice/ray iterate over
decreasing subsets of the data, to conserve memory.
Default='auto'
projection : bool
Return a :class:`~spectral_cube.lower_dimensional_structures.Projection` if the resulting array is 2D or a
OneDProjection if the resulting array is 1D and the sum is over both
spatial axes?
unit : None or `astropy.units.Unit`
The unit to include for the output array. For example,
`SpectralCube.max` calls
``SpectralCube.apply_numpy_function(np.max, unit=self.unit)``,
inheriting the unit from the original cube.
However, for other numpy functions, e.g. `numpy.argmax`, the return
is an index and therefore unitless.
check_endian : bool
A flag to check the endianness of the data before applying the
function. This is only needed for optimized functions, e.g. those
in the `bottleneck <https://pypi.python.org/pypi/Bottleneck>`_ package.
progressbar : bool
Show a progressbar while iterating over the slices through the
cube?
kwargs : dict
Passed to the numpy function.
Returns
-------
result : :class:`~spectral_cube.lower_dimensional_structures.Projection` or `~astropy.units.Quantity` or float
The result depends on the value of ``axis``, ``projection``, and
``unit``. If ``axis`` is None, the return will be a scalar with or
without units. If axis is an integer, the return will be a
:class:`~spectral_cube.lower_dimensional_structures.Projection` if ``projection`` is set
"""
# leave axis in kwargs to avoid overriding numpy defaults, e.g. if the
# default is axis=-1, we don't want to force it to be axis=None by
# specifying that in the function definition
axis = kwargs.get('axis', None)
if how == 'auto':
strategy = cube_utils.iterator_strategy(self, axis)
else:
strategy = how
out = None
log.debug("applying numpy function {0} with strategy {1}"
.format(function, strategy))
if strategy == 'slice' and reduce:
out = self._reduce_slicewise(function, fill, check_endian,
includemask=includemask,
progressbar=progressbar, **kwargs)
elif how == 'ray':
out = self.apply_function(function, progressbar=progressbar,
**kwargs)
elif how not in ['auto', 'cube']:
warnings.warn("Cannot use how=%s. Using how=cube" % how,
UnsupportedIterationStrategyWarning)
if out is None:
out = function(self._get_filled_data(fill=fill,
check_endian=check_endian),
**kwargs)
if axis is None:
# return is scalar
if unit is not None:
return u.Quantity(out, unit=unit)
else:
return out
elif projection and reduce:
meta = {'collapse_axis': axis}
meta.update(self._meta)
if hasattr(axis, '__len__') and len(axis) == 2:
# if operation is over two spatial dims
if set(axis) == set((1,2)):
new_wcs = self._wcs.sub([wcs.WCSSUB_SPECTRAL])
header = self._nowcs_header
if cube_utils._has_beam(self):
bmarg = {'beam': self.beam}
elif cube_utils._has_beams(self):
bmarg = {'beams': self.unmasked_beams}
else:
bmarg = {}
return self._oned_spectrum(value=out,
wcs=new_wcs,
copy=False,
unit=unit,
header=header,
meta=meta,
spectral_unit=self._spectral_unit,
**bmarg
)
else:
warnings.warn("Averaging over a spatial and a spectral "
"dimension cannot produce a Projection "
"quantity (no units or WCS are preserved).",
SliceWarning
)
return out
else:
new_wcs = wcs_utils.drop_axis(self._wcs, np2wcs[axis])
header = self._nowcs_header
return Projection(out, copy=False, wcs=new_wcs, meta=meta,
unit=unit, header=header)
else:
return out
def _reduce_slicewise(self, function, fill, check_endian,
includemask=False, progressbar=False, **kwargs):
"""
Compute a numpy aggregation by grabbing one slice at a time
"""
ax = kwargs.pop('axis', None)
full_reduce = ax is None
ax = ax or 0
if isinstance(ax, tuple):
assert len(ax) == 2 # we only work with cubes...
iterax = [x for x in range(3) if x not in ax][0]
else:
iterax = ax
log.debug("reducing slicewise with axis = {0}".format(ax))
if includemask:
planes = self._iter_mask_slices(iterax)
else:
planes = self._iter_slices(iterax, fill=fill, check_endian=check_endian)
result = next(planes)
if progressbar:
progressbar = ProgressBar(self.shape[iterax], desc='Slicewise: ')
pbu = progressbar.update
else:
pbu = lambda: True
if isinstance(ax, tuple):
# have to make a result a list of itself, since we already "got"
# the first plane above
result = [function(result, axis=(0,1), **kwargs)]
for plane in planes:
# apply to axes 0 and 1, because we're fully reducing the plane
# to a number if we're applying over two axes
result.append(function(plane, axis=(0,1), **kwargs))
pbu()
result = np.array(result)
else:
for plane in planes:
# axis = 2 means we're stacking two planes, the previously
# computed one and the current one
result = function(np.dstack((result, plane)), axis=2, **kwargs)
pbu()
if full_reduce:
result = function(result)
return result
def get_mask_array(self):
"""
Convert the mask to a boolean numpy array
"""
return self._mask.include(data=self._data, wcs=self._wcs,
wcs_tolerance=self._wcs_tolerance)
def _naxes_dropped(self, view):
"""
Determine how many axes are being selected given a view.
(1,2) -> 2
None -> 3
1 -> 1
2 -> 1
"""
if hasattr(view,'__len__'):
return len(view)
elif view is None:
return 3
else:
return 1
@aggregation_docstring
@warn_slow
def sum(self, axis=None, how='auto', **kwargs):
"""
Return the sum of the cube, optionally over an axis.
"""
from .np_compat import allbadtonan
projection = self._naxes_dropped(axis) in (1,2)
return self.apply_numpy_function(allbadtonan(np.nansum), fill=np.nan,
how=how, axis=axis, unit=self.unit,
projection=projection, **kwargs)
@aggregation_docstring
@warn_slow
def mean(self, axis=None, how='cube', **kwargs):
"""
Return the mean of the cube, optionally over an axis.
"""
projection = self._naxes_dropped(axis) in (1,2)
if how == 'slice':
# two-pass approach: first total the # of points,
# then total the value of the points, then divide
# (a one-pass approach is possible but requires
# more sophisticated bookkeeping)
counts = self._count_nonzero_slicewise(axis=axis,
progressbar=kwargs.get('progressbar'))
ttl = self.apply_numpy_function(np.nansum, fill=np.nan, how=how,
axis=axis, unit=None,
projection=False, **kwargs)
out = ttl / counts
if projection:
if self._naxes_dropped(axis) == 1:
new_wcs = wcs_utils.drop_axis(self._wcs, np2wcs[axis])
meta = {'collapse_axis': axis}
meta.update(self._meta)
return Projection(out, copy=False, wcs=new_wcs,
meta=meta,
unit=self.unit, header=self._nowcs_header)
elif axis == (1,2):
newwcs = self._wcs.sub([wcs.WCSSUB_SPECTRAL])
if cube_utils._has_beam(self):
bmarg = {'beam': self.beam}
elif cube_utils._has_beams(self):
bmarg = {'beams': self.unmasked_beams}
else:
bmarg = {}
return self._oned_spectrum(value=out,
wcs=newwcs,
copy=False,
unit=self.unit,
spectral_unit=self._spectral_unit,
meta=self.meta,
**bmarg
)
else:
# this is a weird case, but even if projection is
# specified, we can't return a Quantity here because of WCS
# issues. `apply_numpy_function` already does this
# silently, which is unfortunate.
warnings.warn("Averaging over a spatial and a spectral "
"dimension cannot produce a Projection "
"quantity (no units or WCS are preserved).",
SliceWarning
)
return out
else:
return out
return self.apply_numpy_function(np.nanmean, fill=np.nan, how=how,
axis=axis, unit=self.unit,
projection=projection, **kwargs)
def _count_nonzero_slicewise(self, axis=None, progressbar=False):
"""
Count the number of finite pixels along an axis slicewise. This is a
helper function for the mean and std deviation slicewise iterators.
"""
counts = self.apply_numpy_function(np.sum, fill=np.nan,
how='slice', axis=axis,
unit=None,
projection=False,
progressbar=progressbar,
includemask=True)
return counts
@aggregation_docstring
@warn_slow
def std(self, axis=None, how='cube', ddof=0, **kwargs):
"""
Return the standard deviation of the cube, optionally over an axis.
Other Parameters
----------------
ddof : int
Means Delta Degrees of Freedom. The divisor used in calculations
is ``N - ddof``, where ``N`` represents the number of elements. By
default ``ddof`` is zero.
"""
projection = self._naxes_dropped(axis) in (1,2)
if how == 'slice':
if axis is None:
raise NotImplementedError("The overall standard deviation "
"cannot be computed in a slicewise "
"manner. Please use a "
"different strategy.")
if hasattr(axis, '__len__') and len(axis) == 2:
return self.apply_numpy_function(np.nanstd,
axis=axis,
how='slice',
projection=projection,
unit=self.unit,
**kwargs)
else:
counts = self._count_nonzero_slicewise(axis=axis)
ttl = self.apply_numpy_function(np.nansum, fill=np.nan, how='slice',
axis=axis, unit=None,
projection=False, **kwargs)
# Equivalent, but with more overhead:
# ttl = self.sum(axis=axis, how='slice').value
mean = ttl/counts
planes = self._iter_slices(axis, fill=np.nan, check_endian=False)
result = (next(planes)-mean)**2
for plane in planes:
result = np.nansum(np.dstack((result, (plane-mean)**2)), axis=2)
out = (result/(counts-ddof))**0.5
if projection:
new_wcs = wcs_utils.drop_axis(self._wcs, np2wcs[axis])
meta = {'collapse_axis': axis}
meta.update(self._meta)
return Projection(out, copy=False, wcs=new_wcs,
meta=meta,
unit=self.unit, header=self._nowcs_header)
else:
return out
# standard deviation cannot be computed as a trivial step-by-step
# process. There IS a one-pass algorithm for std dev, but it is not
# implemented, so we must force cube here. We could and should also
# implement raywise reduction
return self.apply_numpy_function(np.nanstd, fill=np.nan, how=how,
axis=axis, unit=self.unit,
projection=projection, **kwargs)
@aggregation_docstring
@warn_slow
def mad_std(self, axis=None, how='cube', **kwargs):
"""
Use astropy's mad_std to computer the standard deviation
"""
if int(astropy.__version__[0]) < 2:
raise NotImplementedError("mad_std requires astropy >= 2")
projection = self._naxes_dropped(axis) in (1,2)
if how == 'ray' and not hasattr(axis, '__len__'):
# no need for fill here; masked-out data are simply not included
return self.apply_numpy_function(stats.mad_std,
axis=axis,
how='ray',
unit=self.unit,
projection=projection,
ignore_nan=True,
**kwargs
)
elif how == 'slice' and hasattr(axis, '__len__') and len(axis) == 2:
return self.apply_numpy_function(stats.mad_std,
axis=axis,
how='slice',
projection=projection,
unit=self.unit,
fill=np.nan,
ignore_nan=True,
**kwargs)
elif how in ('ray', 'slice'):
raise NotImplementedError('Cannot run mad_std slicewise or raywise '
'unless the dimensionality is also reduced in the same direction.')
else:
return self.apply_numpy_function(stats.mad_std,
fill=np.nan,
axis=axis,
unit=self.unit,
ignore_nan=True,
how=how,
projection=projection, **kwargs)
@aggregation_docstring
@warn_slow
def max(self, axis=None, how='auto', **kwargs):
"""
Return the maximum data value of the cube, optionally over an axis.
"""
projection = self._naxes_dropped(axis) in (1,2)
return self.apply_numpy_function(np.nanmax, fill=np.nan, how=how,
axis=axis, unit=self.unit,
projection=projection, **kwargs)
@aggregation_docstring
@warn_slow
def min(self, axis=None, how='auto', **kwargs):
"""
Return the minimum data value of the cube, optionally over an axis.
"""
projection = self._naxes_dropped(axis) in (1,2)
return self.apply_numpy_function(np.nanmin, fill=np.nan, how=how,
axis=axis, unit=self.unit,
projection=projection, **kwargs)
@aggregation_docstring
@warn_slow
def argmax(self, axis=None, how='auto', **kwargs):
"""
Return the index of the maximum data value.
The return value is arbitrary if all pixels along ``axis`` are
excluded from the mask.
"""
return self.apply_numpy_function(np.nanargmax, fill=-np.inf,
reduce=False, projection=False,
how=how, axis=axis,
**kwargs)
@aggregation_docstring
@warn_slow
def argmin(self, axis=None, how='auto', **kwargs):
"""
Return the index of the minimum data value.
The return value is arbitrary if all pixels along ``axis`` are
excluded from the mask
"""
return self.apply_numpy_function(np.nanargmin, fill=np.inf,
reduce=False, projection=False,
how=how, axis=axis,
**kwargs)
def _argmaxmin_world(self, axis, method, **kwargs):
'''
Return the spatial or spectral index of the maximum or minimum value.
Use `argmax_world` and `argmin_world` directly.
'''
operation_name = '{}_world'.format(method)
if wcs_utils.is_pixel_axis_to_wcs_correlated(self.wcs, axis):
raise WCSCelestialError("{} requires the celestial axes"
" to be aligned along image axes."
.format(operation_name))
if method == 'argmin':
arg_pixel_plane = self.argmin(axis=axis, **kwargs)
elif method == 'argmax':
arg_pixel_plane = self.argmax(axis=axis, **kwargs)
else:
raise ValueError("`method` must be 'argmin' or 'argmax'")
# Convert to WCS coordinates.
out = cube_utils.world_take_along_axis(self, arg_pixel_plane, axis)
# Compute whether the mask has any valid data along `axis`
collapsed_mask = self.mask.include().any(axis=axis)
out[~collapsed_mask] = np.nan
# Return a Projection.
new_wcs = wcs_utils.drop_axis(self._wcs, np2wcs[axis])
meta = {'collapse_axis': axis}
meta.update(self._meta)
return Projection(out, copy=False, wcs=new_wcs, meta=meta,
unit=out.unit, header=self._nowcs_header)
@warn_slow
def argmax_world(self, axis, **kwargs):
'''
Return the spatial or spectral index of the maximum value
along a line of sight.
Parameters
----------
axis : int
The axis to return the peak location along. e.g., `axis=0`
will return the value of the spectral axis at the peak value.
kwargs : dict
Passed to `~SpectralCube.argmax`.
'''
return self._argmaxmin_world(axis, 'argmax', **kwargs)
@warn_slow
def argmin_world(self, axis, **kwargs):
'''
Return the spatial or spectral index of the minimum value
along a line of sight.
Parameters
----------
axis : int
The axis to return the peak location along. e.g., `axis=0`
will return the value of the spectral axis at the peak value.
kwargs : dict
Passed to `~SpectralCube.argmin`.
'''
return self._argmaxmin_world(axis, 'argmin', **kwargs)
def chunked(self, chunksize=1000):
"""
Not Implemented.
Iterate over chunks of valid data
"""
raise NotImplementedError()
def _get_flat_shape(self, axis):
"""
Get the shape of the array after flattening along an axis
"""
iteraxes = [0, 1, 2]
iteraxes.remove(axis)
# x,y are defined as first,second dim to iterate over
# (not x,y in pixel space...)
nx = self.shape[iteraxes[0]]
ny = self.shape[iteraxes[1]]
return nx, ny
@warn_slow
def _apply_everywhere(self, function, *args, check_units=True):
"""
Return a new cube with ``function`` applied to all pixels
Private because this doesn't have an obvious and easy-to-use API
Parameters
----------
function : function
An operator that takes the data (self) and any number of additional
arguments
check_units : bool
When doing the initial test before running the full operation,
should units be included on the 'fake' test quantity? This is
specifically added as an option to enable using the subtraction and
addition operators without checking unit compatibility here because
they _already_ enforce unit compatibility.
Examples
--------
>>> newcube = cube.apply_everywhere(np.add, 0.5*u.Jy)
"""
try:
if check_units:
test_result = function(np.ones([1,1,1])*self.unit, *args)
new_unit = test_result.unit
else:
test_result = function(np.ones([1,1,1]), *args)
new_unit = self.unit
# First, check that function returns same # of dims?
assert test_result.ndim == 3,"Output is not 3-dimensional"
except Exception as ex:
raise AssertionError("Function could not be applied to a simple "
"cube. The error was: {0}".format(ex))
# We don't need to convert to a quantity here because the shape check
data_in = self._get_filled_data(fill=self._fill_value)
data = function(data_in, *args)
# strip the unit because data_in does not have a unit
# (we calculate the appropriate unit above and pass it on below)
if hasattr(data, 'unit'):
data = data.value
return self._new_cube_with(data=data, unit=new_unit)
def _cube_on_cube_operation(self, function, cube, equivalencies=[], **kwargs):
"""
Apply an operation between two cubes. Inherits the metadata of the
left cube.
Parameters
----------
function : function
A function to apply to the cubes
cube : SpectralCube
Another cube to put into the function
equivalencies : list
A list of astropy equivalencies
kwargs : dict
Passed to np.testing.assert_almost_equal
"""
assert cube.shape == self.shape
if not self.unit.is_equivalent(cube.unit, equivalencies=equivalencies):
raise u.UnitsError("{0} is not equivalent to {1}"
.format(self.unit, cube.unit))
if not wcs_utils.check_equality(self.wcs, cube.wcs, warn_missing=True,
**kwargs):
warnings.warn("Cube WCSs do not match, but their shapes do",
WCSMismatchWarning)
try:
test_result = function(np.ones([1,1,1])*self.unit,
np.ones([1,1,1])*self.unit)
# First, check that function returns same # of dims?
assert test_result.shape == (1,1,1)
except Exception as ex:
raise AssertionError("Function {1} could not be applied to a "
"pair of simple "
"cube. The error was: {0}".format(ex,
function))
cube = cube.to(self.unit)
data = function(self._data, cube._data)
try:
# multiplication, division, etc. are valid inter-unit operations
unit = function(self.unit, cube.unit)
except TypeError:
# addition, subtraction are not
unit = self.unit
return self._new_cube_with(data=data, unit=unit)
def apply_function(self, function, axis=None, weights=None, unit=None,
projection=False, progressbar=False,
update_function=None, keep_shape=False,
**kwargs):
"""
Apply a function to valid data along the specified axis or to the whole
cube, optionally using a weight array that is the same shape (or at
least can be sliced in the same way)
Parameters
----------
function : function
A function that can be applied to a numpy array. Does not need to
be nan-aware
axis : 1, 2, 3, or None
The axis to operate along. If None, the return is scalar.
weights : (optional) np.ndarray
An array with the same shape (or slicing abilities/results) as the
data cube
unit : (optional) `~astropy.units.Unit`
The unit of the output projection or value. Not all functions
should return quantities with units.
projection : bool
Return a projection if the resulting array is 2D?
progressbar : bool
Show a progressbar while iterating over the slices/rays through the
cube?
keep_shape : bool
If `True`, the returned object will be the same dimensionality as
the cube.
update_function : function
An alternative tracker for the progress of applying the function
to the cube data. If ``progressbar`` is ``True``, this argument is
ignored.
Returns
-------
result : :class:`~spectral_cube.lower_dimensional_structures.Projection` or `~astropy.units.Quantity` or float
The result depends on the value of ``axis``, ``projection``, and
``unit``. If ``axis`` is None, the return will be a scalar with or
without units. If axis is an integer, the return will be a
:class:`~spectral_cube.lower_dimensional_structures.Projection` if ``projection`` is set
"""
if axis is None:
out = function(self.flattened(), **kwargs)
if unit is not None:
# return is scalar
return u.Quantity(out, unit=unit)
else:
return out
if hasattr(axis, '__len__'):
raise NotImplementedError("`apply_function` does not support "
"function application across multiple "
"axes. Try `apply_numpy_function`.")
# determine the output array shape
nx, ny = self._get_flat_shape(axis)
nz = self.shape[axis] if keep_shape else 1
# allocate memory for output array
# check dtype first (for argmax/argmin)
result = function(np.arange(3, dtype=self._data.dtype), **kwargs)
if 'int' in str(result.dtype):
out = np.zeros([nz, nx, ny], dtype=result.dtype)
else:
out = np.empty([nz, nx, ny]) * np.nan
if progressbar:
progressbar = ProgressBar(nx*ny, desc='Apply: ')
pbu = progressbar.update
elif update_function is not None:
pbu = update_function
else:
pbu = lambda: True
# iterate over "lines of sight" through the cube
for y, x, slc in self._iter_rays(axis):
# acquire the flattened, valid data for the slice
data = self.flattened(slc, weights=weights)
if len(data) != 0:
result = function(data, **kwargs)
if hasattr(result, 'value'):
# store result in array
out[:, y, x] = result.value
else:
out[:, y, x] = result
pbu()
if not keep_shape:
out = out[0, :, :]
if projection and axis in (0, 1, 2):
new_wcs = wcs_utils.drop_axis(self._wcs, np2wcs[axis])
meta = {'collapse_axis': axis}
meta.update(self._meta)
return Projection(out, copy=False, wcs=new_wcs, meta=meta,
unit=unit, header=self._nowcs_header)
else:
return out
def _iter_rays(self, axis=None):
"""
Iterate over view corresponding to lines-of-sight through a cube
along the specified axis
"""
ny, nx = self._get_flat_shape(axis)
for y in range(ny):
for x in range(nx):
# create length-1 view for each position
slc = [slice(y, y + 1), slice(x, x + 1), ]
# create a length-N slice (all-inclusive) along the selected axis
slc.insert(axis, slice(None))
yield y, x, tuple(slc)
def _iter_slices(self, axis, fill=np.nan, check_endian=False):
"""
Iterate over the cube one slice at a time,
replacing masked elements with fill
"""
view = [slice(None)] * 3
for x in range(self.shape[axis]):
view[axis] = x
yield self._get_filled_data(view=tuple(view), fill=fill,
check_endian=check_endian)
def _iter_mask_slices(self, axis):
"""
Iterate over the cube one slice at a time,
replacing masked elements with fill
"""
view = [slice(None)] * 3
for x in range(self.shape[axis]):
view[axis] = x
yield self._mask.include(data=self._data,
view=tuple(view),
wcs=self._wcs,
wcs_tolerance=self._wcs_tolerance,
)
def flattened(self, slice=(), weights=None):
"""
Return a slice of the cube giving only the valid data (i.e., removing
bad values)
Parameters
----------
slice: 3-tuple
A length-3 tuple of view (or any equivalent valid slice of a
cube)
weights: (optional) np.ndarray
An array with the same shape (or slicing abilities/results) as the
data cube
"""
data = self._mask._flattened(data=self._data, wcs=self._wcs, view=slice)
if isinstance(data, da.Array):
# Quantity does not work well with lazily evaluated data with an
# unkonwn shape (which is the case when doing boolean indexing of arrays)
data = self._compute(data)
if weights is not None:
weights = self._mask._flattened(data=weights, wcs=self._wcs, view=slice)
return u.Quantity(data * weights, self.unit, copy=False)
else:
return u.Quantity(data, self.unit, copy=False)
def median(self, axis=None, iterate_rays=False, **kwargs):
"""
Compute the median of an array, optionally along an axis.
Ignores excluded mask elements.
Parameters
----------
axis : int (optional)
The axis to collapse
iterate_rays : bool
Iterate over individual rays? This mode is slower but can save RAM
costs, which may be extreme for large cubes
Returns
-------
med : ndarray
The median
"""
try:
from bottleneck import nanmedian
bnok = True
except ImportError:
bnok = False
how = kwargs.pop('how', None)
if how == 'slice' and (not isinstance(axis, (list, tuple)) or len(axis) != 2):
raise ValueError("Cannot compute median slicewise unless you're compressing over two axes.")
elif how == 'ray':
if axis not in (0, 1, 2):
raise ValueError("Cannot compute median raywise unless you're compressing over one axis.")
else:
if not iterate_rays:
iterate_rays = True
warnings.warn("how='ray' was specified in call to median; this is setting iterate_rays=True")
# slicewise median is nonsense, must force how = 'cube'
# bottleneck.nanmedian does not allow axis to be a list or tuple
if bnok and not iterate_rays and not isinstance(axis, (list, tuple)):
log.debug("Using bottleneck nanmedian")
result = self.apply_numpy_function(nanmedian, axis=axis,
projection=True, unit=self.unit,
how='cube', check_endian=True,
**kwargs)
elif hasattr(np, 'nanmedian') and not iterate_rays:
log.debug("Using numpy nanmedian")
result = self.apply_numpy_function(np.nanmedian, axis=axis,
projection=True, unit=self.unit,
how='cube', **kwargs)
elif iterate_rays:
result = self.apply_numpy_function(
nanmedian if bnok else np.nanmedian if hasattr(np, 'nanmedian') else np.median,
axis=axis, projection=True, unit=self.unit, how='ray',
check_endian=True, **kwargs)
else:
log.debug("Using numpy median iterating over rays")
result = self.apply_function(np.median, projection=True, axis=axis,
unit=self.unit, **kwargs)
return result
def percentile(self, q, axis=None, iterate_rays=False, **kwargs):
"""
Return percentiles of the data.
Parameters
----------
q : float
The percentile to compute
axis : int, or None
Which axis to compute percentiles over
iterate_rays : bool
Iterate over individual rays? This mode is slower but can save RAM
costs, which may be extreme for large cubes
"""
if hasattr(np, 'nanpercentile') and not iterate_rays:
result = self.apply_numpy_function(np.nanpercentile, q=q,
axis=axis, projection=True,
unit=self.unit, how='cube',
**kwargs)
else:
result = self.apply_function(np.percentile, q=q, axis=axis,
projection=True, unit=self.unit,
**kwargs)
return result
def with_mask(self, mask, inherit_mask=True, wcs_tolerance=None):
"""
Return a new SpectralCube instance that contains a composite mask of
the current SpectralCube and the new ``mask``. Values of the mask that
are ``True`` will be *included* (masks are analogous to numpy boolean
index arrays, they are the inverse of the ``.mask`` attribute of a numpy
masked array).
Parameters
----------
mask : :class:`~spectral_cube.masks.MaskBase` instance, or boolean numpy array
The mask to apply. If a boolean array is supplied,
it will be converted into a mask, assuming that
`True` values indicate included elements.
inherit_mask : bool (optional, default=True)
If True, combines the provided mask with the
mask currently attached to the cube
wcs_tolerance : None or float
The tolerance of difference in WCS parameters between the cube and
the mask. Defaults to `self._wcs_tolerance` (which itself defaults
to 0.0) if unspecified
Returns
-------
new_cube : :class:`SpectralCube`
A cube with the new mask applied.
Notes
-----
This operation returns a view into the data, and not a copy.
"""
if isinstance(mask, np.ndarray):
if not is_broadcastable_and_smaller(mask.shape, self._data.shape):
raise ValueError("Mask shape is not broadcastable to data shape: "
"%s vs %s" % (mask.shape, self._data.shape))
mask = BooleanArrayMask(mask, self._wcs, shape=self._data.shape)
if self._mask is not None and inherit_mask:
new_mask = np.bitwise_and(self._mask, mask)
else:
new_mask = mask
new_mask._validate_wcs(new_data=self._data, new_wcs=self._wcs,
wcs_tolerance=wcs_tolerance or self._wcs_tolerance)
return self._new_cube_with(mask=new_mask, wcs_tolerance=wcs_tolerance)
def __getitem__(self, view):
# Need to allow self[:], self[:,:]
if isinstance(view, (slice,int,np.int64)):
view = (view, slice(None), slice(None))
elif len(view) == 2:
view = view + (slice(None),)
elif len(view) > 3:
raise IndexError("Too many indices")
meta = {}
meta.update(self._meta)
slice_data = [(s.start, s.stop, s.step)
if hasattr(s,'start') else s
for s in view]
if 'slice' in meta:
meta['slice'].append(slice_data)
else:
meta['slice'] = [slice_data]
intslices = [2-ii for ii,s in enumerate(view) if not hasattr(s,'start')]
if intslices:
if len(intslices) > 1:
if 2 in intslices:
raise NotImplementedError("1D slices along non-spectral "
"axes are not yet implemented.")
newwcs = self._wcs.sub([a
for a in (1,2,3)
if a not in [x+1 for x in intslices]])
if cube_utils._has_beam(self):
bmarg = {'beam': self.beam}
elif cube_utils._has_beams(self):
bmarg = {'beams': self.beams}
else:
bmarg = {}
return self._oned_spectrum(value=self._data[view],
wcs=newwcs,
copy=False,
unit=self.unit,
spectral_unit=self._spectral_unit,
mask=self.mask[view] if self.mask is not None else None,
meta=meta,
**bmarg
)
# only one element, so drop an axis
newwcs = wcs_utils.drop_axis(self._wcs, intslices[0])
header = self._nowcs_header
if intslices[0] == 0:
# celestial: can report the wavelength/frequency of the axis
header['CRVAL3'] = self.spectral_axis[intslices[0]].value
header['CDELT3'] = self.wcs.sub([wcs.WCSSUB_SPECTRAL]).wcs.cdelt[0]
header['CUNIT3'] = self._spectral_unit.to_string(format='FITS')
return Slice(value=self.filled_data[view],
mask=self.mask[view] if self.mask is not None else None,
wcs=newwcs,
copy=False,
unit=self.unit,
header=header,
meta=meta)
newmask = self._mask[view] if self._mask is not None else None
newwcs = wcs_utils.slice_wcs(self._wcs, view, shape=self.shape)
return self._new_cube_with(data=self._data[view],
wcs=newwcs,
mask=newmask,
meta=meta)
@property
def unitless(self):
"""Return a copy of self with unit set to None"""
newcube = self._new_cube_with()
newcube._unit = None
return newcube
def with_spectral_unit(self, unit, velocity_convention=None,
rest_value=None):
"""
Returns a new Cube with a different Spectral Axis unit
Parameters
----------
unit : :class:`~astropy.units.Unit`
Any valid spectral unit: velocity, (wave)length, or frequency.
Only vacuum units are supported.
velocity_convention : 'relativistic', 'radio', or 'optical'
The velocity convention to use for the output velocity axis.
Required if the output type is velocity. This can be either one
of the above strings, or an `astropy.units` equivalency.
rest_value : :class:`~astropy.units.Quantity`
A rest wavelength or frequency with appropriate units. Required if
output type is velocity. The cube's WCS should include this
already if the *input* type is velocity, but the WCS's rest
wavelength/frequency can be overridden with this parameter.
.. note: This must be the rest frequency/wavelength *in vacuum*,
even if your cube has air wavelength units
"""
newwcs,newmeta = self._new_spectral_wcs(unit=unit,
velocity_convention=velocity_convention,
rest_value=rest_value)
if self._mask is not None:
newmask = self._mask.with_spectral_unit(unit,
velocity_convention=velocity_convention,
rest_value=rest_value)
newmask._wcs = newwcs
else:
newmask = None
cube = self._new_cube_with(wcs=newwcs, mask=newmask, meta=newmeta,
spectral_unit=unit)
return cube
@cube_utils.slice_syntax
def unmasked_data(self, view):
"""
Return a view of the subset of the underlying data,
ignoring the mask.
Returns
-------
data : Quantity instance
The unmasked data
"""
values = self._data[view]
# Astropy Quantities don't play well with dask arrays with shape ()
if isinstance(values, da.Array) and values.shape == ():
values = values.compute()
try:
return u.Quantity(values, self.unit, copy=False)
except ValueError:
warnings.warn("The data were copied; it was not possible to create a view on the data")
return u.Quantity(values, self.unit)
def unmasked_copy(self):
"""
Return a copy of the cube with no mask (i.e., all data included)
"""
newcube = self._new_cube_with()
newcube._mask = None
return newcube
@cached
def _pix_cen(self):
"""
Offset of every pixel from the origin, along each direction
Returns
-------
tuple of spectral_offset, y_offset, x_offset, each 3D arrays
describing the distance from the origin
Notes
-----
These arrays are broadcast, and are not memory intensive
Each array is in the units of the corresponding wcs.cunit, but
this is implicit (e.g., they are not astropy Quantity arrays)
"""
# Start off by extracting the world coordinates of the pixels
_, lat, lon = self.world[0, :, :]
spectral, _, _ = self.world[:, 0, 0]
spectral -= spectral[0] # offset from first pixel
# Convert to radians
lon = np.radians(lon)
lat = np.radians(lat)
# Find the dx and dy arrays
from astropy.coordinates import angular_separation
dx = angular_separation(lon[:, :-1], lat[:, :-1],
lon[:, 1:], lat[:, :-1])
dy = angular_separation(lon[:-1, :], lat[:-1, :],
lon[1:, :], lat[1:, :])
# Find the cumulative offset - need to add a zero at the start
x = np.zeros(self._data.shape[1:])
y = np.zeros(self._data.shape[1:])
x[:, 1:] = np.cumsum(np.degrees(dx), axis=1)
y[1:, :] = np.cumsum(np.degrees(dy), axis=0)
if isinstance(self._data, da.Array):
x, y, spectral = da.broadcast_arrays(x[None,:,:], y[None,:,:], spectral[:,None,None])
# NOTE: we need to rechunk these to the actual data size, otherwise
# the resulting arrays have a single chunk which can cause issues with
# da.store (which writes data out in chunks)
return (spectral.rechunk(self._data.chunksize),
y.rechunk(self._data.chunksize),
x.rechunk(self._data.chunksize))
else:
x, y, spectral = np.broadcast_arrays(x[None,:,:], y[None,:,:], spectral[:,None,None])
return spectral, y, x
@cached
def _pix_size_slice(self, axis):
"""
Return the size of each pixel along any given direction. Assumes
pixels have equal size. Also assumes that the spectral and spatial
directions are separable, which is enforced throughout this code.
Parameters
----------
axis : 0, 1, or 2
The axis along which to compute the pixel size
Returns
-------
Pixel size in units of either degrees or the appropriate spectral unit
"""
if axis == 0:
# note that self._spectral_scale is required here because wcs
# forces into units of m, m/s, or Hz
return np.abs(self.wcs.pixel_scale_matrix[2,2]) * self._spectral_scale
elif axis in (1,2):
# the pixel size is a projection. I think the pixel_scale_matrix
# must be symmetric, such that psm[axis,:]**2 == psm[:,axis]**2
return np.sum(self.wcs.pixel_scale_matrix[2-axis,:]**2)**0.5
else:
raise ValueError("Cubes have 3 axes.")
@cached
def _pix_size(self):
"""
Return the size of each pixel along each direction, in world units
Returns
-------
dv, dy, dx : tuple of 3D arrays
The extent of each pixel along each direction
Notes
-----
These arrays are broadcast, and are not memory intensive
Each array is in the units of the corresponding wcs.cunit, but
this is implicit (e.g., they are not astropy Quantity arrays)
"""
# First, scale along x direction
xpix = np.linspace(-0.5, self._data.shape[2] - 0.5, self._data.shape[2] + 1)
ypix = np.linspace(0., self._data.shape[1] - 1, self._data.shape[1])
xpix, ypix = np.meshgrid(xpix, ypix)
zpix = np.zeros(xpix.shape)
lon, lat, _ = self._wcs.all_pix2world(xpix, ypix, zpix, 0)
# Convert to radians
lon = np.radians(lon)
lat = np.radians(lat)
# Find the dx and dy arrays
from astropy.coordinates import angular_separation
dx = angular_separation(lon[:, :-1], lat[:, :-1],
lon[:, 1:], lat[:, :-1])
# Next, scale along y direction
xpix = np.linspace(0., self._data.shape[2] - 1, self._data.shape[2])
ypix = np.linspace(-0.5,
self._data.shape[1] - 0.5,
self._data.shape[1] + 1)
xpix, ypix = np.meshgrid(xpix, ypix)
zpix = np.zeros(xpix.shape)
lon, lat, _ = self._wcs.all_pix2world(xpix, ypix, zpix, 0)
# Convert to radians
lon = np.radians(lon)
lat = np.radians(lat)
# Find the dx and dy arrays
from astropy.coordinates import angular_separation
dy = angular_separation(lon[:-1, :], lat[:-1, :],
lon[1:, :], lat[1:, :])
# Next, spectral coordinates
zpix = np.linspace(-0.5, self._data.shape[0] - 0.5,
self._data.shape[0] + 1)
xpix = np.zeros(zpix.shape)
ypix = np.zeros(zpix.shape)
_, _, spectral = self._wcs.all_pix2world(xpix, ypix, zpix, 0)
# Take spectral units into account
# order of operations here is crucial! If this is done after
# broadcasting, the full array size is allocated, which is bad!
dspectral = np.diff(spectral) * self._spectral_scale
dx = np.abs(np.degrees(dx.reshape(1, dx.shape[0], dx.shape[1])))
dy = np.abs(np.degrees(dy.reshape(1, dy.shape[0], dy.shape[1])))
dspectral = np.abs(dspectral.reshape(-1, 1, 1))
dx, dy, dspectral = np.broadcast_arrays(dx, dy, dspectral)
return dspectral, dy, dx
def moment(self, order=0, axis=0, how='auto', **kwargs):
"""
Compute moments along the spectral axis.
Moments are defined as follows, where :math:`I` is the intensity in a
channel and :math:`x` is the spectral coordinate:
Moment 0:
.. math:: M_0 \\int I dx
Moment 1:
.. math:: M_1 = \\frac{\\int I x dx}{M_0}
Moment N:
.. math:: M_N = \\frac{\\int I (x - M_1)^N dx}{M_0}
.. warning:: Note that these follow the mathematical definitions of
moments, and therefore the second moment will return a
variance map. To get linewidth maps, you can instead use
the :meth:`~SpectralCube.linewidth_fwhm` or
:meth:`~SpectralCube.linewidth_sigma` methods.
Parameters
----------
order : int
The order of the moment to take. Default=0
axis : int
The axis along which to compute the moment. Default=0
how : cube | slice | ray | auto
How to compute the moment. All strategies give the same
result, but certain strategies are more efficient depending
on data size and layout. Cube/slice/ray iterate over
decreasing subsets of the data, to conserve memory.
Default='auto'
Returns
-------
map [, wcs]
The moment map (numpy array) and, if wcs=True, the WCS object
describing the map
Notes
-----
Generally, how='cube' is fastest for small cubes that easily
fit into memory. how='slice' is best for most larger datasets.
how='ray' is probably only a good idea for very large cubes
whose data are contiguous over the axis of the moment map.
For the first moment, the result for axis=1, 2 is the angular
offset *relative to the cube face*. For axis=0, it is the
*absolute* velocity/frequency of the first moment.
"""
if axis == 0 and order == 2:
warnings.warn("Note that the second moment returned will be a "
"variance map. To get a linewidth map, use the "
"SpectralCube.linewidth_fwhm() or "
"SpectralCube.linewidth_sigma() methods instead.",
VarianceWarning)
from ._moments import (moment_slicewise, moment_cubewise,
moment_raywise, moment_auto)
dispatch = dict(slice=moment_slicewise,
cube=moment_cubewise,
ray=moment_raywise,
auto=moment_auto)
if how not in dispatch:
return ValueError("Invalid how. Must be in %s" %
sorted(list(dispatch.keys())))
out = dispatch[how](self, order, axis, **kwargs)
# apply units
if order == 0:
if axis == 0 and self._spectral_unit is not None:
axunit = unit = self._spectral_unit
else:
axunit = unit = u.Unit(self._wcs.wcs.cunit[np2wcs[axis]])
out = u.Quantity(out, self.unit * axunit, copy=False)
else:
if axis == 0 and self._spectral_unit is not None:
unit = self._spectral_unit ** max(order, 1)
else:
unit = u.Unit(self._wcs.wcs.cunit[np2wcs[axis]]) ** max(order, 1)
out = u.Quantity(out, unit, copy=False)
# special case: for order=1, axis=0, you usually want
# the absolute velocity and not the offset
if order == 1 and axis == 0:
out += self.world[0, :, :][0]
new_wcs = wcs_utils.drop_axis(self._wcs, np2wcs[axis])
meta = {'moment_order': order,
'moment_axis': axis,
'moment_method': how}
meta.update(self._meta)
return Projection(out, copy=False, wcs=new_wcs, meta=meta,
header=self._nowcs_header)
def moment0(self, axis=0, how='auto', **kwargs):
"""
Compute the zeroth moment along an axis.
See :meth:`moment`.
"""
return self.moment(axis=axis, order=0, how=how, **kwargs)
def moment1(self, axis=0, how='auto', **kwargs):
"""
Compute the 1st moment along an axis.
For an explanation of the ``axis`` and ``how`` parameters, see :meth:`moment`.
"""
return self.moment(axis=axis, order=1, how=how, **kwargs)
def moment2(self, axis=0, how='auto', **kwargs):
"""
Compute the 2nd moment along an axis.
For an explanation of the ``axis`` and ``how`` parameters, see :meth:`moment`.
"""
return self.moment(axis=axis, order=2, how=how, **kwargs)
def linewidth_sigma(self, how='auto', **kwargs):
"""
Compute a (sigma) linewidth map along the spectral axis.
For an explanation of the ``how`` parameter, see :meth:`moment`.
"""
with np.errstate(invalid='ignore'):
with warnings.catch_warnings():
warnings.simplefilter("ignore", VarianceWarning)
return np.sqrt(self.moment2(how=how, **kwargs))
def linewidth_fwhm(self, how='auto', **kwargs):
"""
Compute a (FWHM) linewidth map along the spectral axis.
For an explanation of the ``how`` parameter, see :meth:`moment`.
"""
return self.linewidth_sigma(**kwargs) * SIGMA2FWHM
@property
def spectral_axis(self):
"""
A `~astropy.units.Quantity` array containing the central values of
each channel along the spectral axis.
"""
return self.world[:, 0, 0][0].ravel()
@property
def velocity_convention(self):
"""
The `~astropy.units.equivalencies` that describes the spectral axis
"""
return spectral_axis.determine_vconv_from_ctype(self.wcs.wcs.ctype[self.wcs.wcs.spec])
def closest_spectral_channel(self, value):
"""
Find the index of the closest spectral channel to the specified
spectral coordinate.
Parameters
----------
value : :class:`~astropy.units.Quantity`
The value of the spectral coordinate to search for.
"""
# TODO: we have to not compute this every time
spectral_axis = self.spectral_axis
try:
value = value.to(spectral_axis.unit, equivalencies=u.spectral())
except u.UnitsError:
if value.unit.is_equivalent(u.Hz, equivalencies=u.spectral()):
if spectral_axis.unit.is_equivalent(u.m / u.s):
raise u.UnitsError("Spectral axis is in velocity units and "
"'value' is in frequency-equivalent units "
"- use SpectralCube.with_spectral_unit "
"first to convert the cube to frequency-"
"equivalent units, or search for a "
"velocity instead")
else:
raise u.UnitsError("Unexpected spectral axis units: {0}".format(spectral_axis.unit))
elif value.unit.is_equivalent(u.m / u.s):
if spectral_axis.unit.is_equivalent(u.Hz, equivalencies=u.spectral()):
raise u.UnitsError("Spectral axis is in frequency-equivalent "
"units and 'value' is in velocity units "
"- use SpectralCube.with_spectral_unit "
"first to convert the cube to frequency-"
"equivalent units, or search for a "
"velocity instead")
else:
raise u.UnitsError("Unexpected spectral axis units: {0}".format(spectral_axis.unit))
else:
raise u.UnitsError("'value' should be in frequency equivalent or velocity units (got {0})".format(value.unit))
# TODO: optimize the next line - just brute force for now
return np.argmin(np.abs(spectral_axis - value))
def spectral_slab(self, lo, hi):
"""
Extract a new cube between two spectral coordinates
Parameters
----------
lo, hi : :class:`~astropy.units.Quantity`
The lower and upper spectral coordinate for the slab range. The
units should be compatible with the units of the spectral axis.
If the spectral axis is in frequency-equivalent units and you
want to select a range in velocity, or vice-versa, you should
first use :meth:`~spectral_cube.SpectralCube.with_spectral_unit`
to convert the units of the spectral axis.
"""
# Find range of values for spectral axis
ilo = self.closest_spectral_channel(lo)
ihi = self.closest_spectral_channel(hi)
if ilo == ihi:
warnings.warn("The maxmimum and minimum spectral channel in the spectral"
"slab are identical; this indicates that one or both are "
"likely incorrect and/or out of range.",
SliceWarning)
if ilo > ihi:
ilo, ihi = ihi, ilo
ihi += 1
# Create WCS slab
wcs_slab = self._wcs.deepcopy()
wcs_slab.wcs.crpix[2] -= ilo
# Create mask slab
if self._mask is None:
mask_slab = None
else:
try:
mask_slab = self._mask[ilo:ihi, :, :]
except NotImplementedError:
warnings.warn("Mask slicing not implemented for "
"{0} - dropping mask".
format(self._mask.__class__.__name__),
NotImplementedWarning
)
mask_slab = None
# Create new spectral cube
slab = self._new_cube_with(data=self._data[ilo:ihi], wcs=wcs_slab,
mask=mask_slab)
# TODO: we could change the WCS to give a spectral axis in the
# correct units as requested - so if the initial cube is in Hz and we
# request a range in km/s, we could adjust the WCS to be in km/s
# instead
return slab
def minimal_subcube(self, spatial_only=False):
"""
Return the minimum enclosing subcube where the mask is valid
Parameters
----------
spatial_only: bool
Only compute the minimal subcube in the spatial dimensions
"""
if self._mask is not None:
return self[self.subcube_slices_from_mask(self._mask,
spatial_only=spatial_only)]
else:
return self[:]
def subcube_from_mask(self, region_mask):
"""
Given a mask, return the minimal subcube that encloses the mask
Parameters
----------
region_mask: `~spectral_cube.masks.MaskBase` or boolean `numpy.ndarray`
The mask with appropraite WCS or an ndarray with matched
coordinates
"""
return self[self.subcube_slices_from_mask(region_mask)]
def subcube_slices_from_mask(self, region_mask, spatial_only=False):
"""
Given a mask, return the slices corresponding to the minimum subcube
that encloses the mask
Parameters
----------
region_mask: `~spectral_cube.masks.MaskBase` or boolean `numpy.ndarray`
The mask with appropriate WCS or an ndarray with matched
coordinates
spatial_only: bool
Return only slices that affect the spatial dimensions; the spectral
dimension will be left unchanged
"""
if not scipyOK:
raise ImportError("Scipy could not be imported: this function won't work.")
if isinstance(region_mask, np.ndarray):
if is_broadcastable_and_smaller(region_mask.shape, self.shape):
region_mask = BooleanArrayMask(region_mask, self._wcs)
else:
raise ValueError("Mask shape does not match cube shape.")
include = region_mask.include(self._data, self._wcs,
wcs_tolerance=self._wcs_tolerance)
if not include.any():
return (slice(0),)*3
slices = ndimage.find_objects(np.broadcast_arrays(include,
self._data)[0])[0]
if spatial_only:
slices = (slice(None), slices[1], slices[2])
return tuple(slices)
def subcube(self, xlo='min', xhi='max', ylo='min', yhi='max', zlo='min',
zhi='max', rest_value=None):
"""
Extract a sub-cube spatially and spectrally.
When spatial WCS dimensions are given as an `~astropy.units.Quantity`,
the spatial coordinates of the 'lo' and 'hi' corners are solved together.
This minimizes WCS variations due to the sky curvature when slicing from
a large (>1 deg) image.
Parameters
----------
[xyz]lo/[xyz]hi : int or :class:`~astropy.units.Quantity` or ``min``/``max``
The endpoints to extract. If given as a quantity, will be
interpreted as World coordinates. If given as a string or
int, will be interpreted as pixel coordinates.
"""
dims = {'x': 2,
'y': 1,
'z': 0}
limit_dict = {}
limit_dict['zlo'] = 0 if zlo == 'min' else zlo
limit_dict['zhi'] = self.shape[0] if zhi == 'max' else zhi
# Specific warning for slicing a frequency axis with a velocity or
# vice/versa
if ((hasattr(zlo, 'unit') and not
zlo.unit.is_equivalent(self.spectral_axis.unit)) or
(hasattr(zhi, 'unit') and not
zhi.unit.is_equivalent(self.spectral_axis.unit))):
raise u.UnitsError("Spectral units are not equivalent to the "
"spectral slice. Use `.with_spectral_unit` "
"to convert to equivalent units first")
# Solve for the spatial pixel indices together
limit_dict_spat = wcs_utils.find_spatial_pixel_index(self, xlo, xhi, ylo, yhi)
limit_dict.update(limit_dict_spat)
# Handle the z (spectral) axis. This shouldn't change
# much spacially, so solve one at a time
# Track if the z axis values had units. Will need to make a +1 correction below
united = []
for lim in limit_dict:
if 'z' not in lim:
continue
limval = limit_dict[lim]
if hasattr(limval, 'unit'):
united.append(lim)
dim = dims[lim[0]]
sl = [slice(0,1)]*2
sl.insert(dim, slice(None))
sl = tuple(sl)
spine = self.world[sl][dim]
val = np.argmin(np.abs(limval-spine))
if limval > spine.max() or limval < spine.min():
log.warning("The limit {0} is out of bounds."
" Using min/max instead.".format(lim))
limit_dict[lim] = val
# Check spectral axis ordering.
hi,lo = limit_dict['zhi'], limit_dict['zlo']
if hi < lo:
# must have high > low
limit_dict['zhi'], limit_dict['zlo'] = lo, hi
if 'zhi' in united:
# End-inclusive indexing: need to add one for the high slice
# Only do this for converted values, not for pixel values
# (i.e., if the xlo/ylo/zlo value had units)
limit_dict['zhi'] += 1
for xx in 'zyx':
if limit_dict[xx+'hi'] == limit_dict[xx+'lo']:
# I think this should be unreachable now
raise ValueError("The slice in the {0} direction will remove "
"all elements. If you want a single-channel "
"slice, you need a different approach."
.format(xx))
slices = [slice(limit_dict[xx+'lo'], limit_dict[xx+'hi'])
for xx in 'zyx']
slices = tuple(slices)
log.debug('slices: {0}'.format(slices))
return self[slices]
def subcube_from_ds9region(self, ds9_region, allow_empty=False):
"""
Extract a masked subcube from a ds9 region
(only functions on celestial dimensions)
Parameters
----------
ds9_region: str
The DS9 region(s) to extract
allow_empty: bool
If this is False, an exception will be raised if the region
contains no overlap with the cube
"""
import regions
if isinstance(ds9_region, str):
if hasattr(regions, 'DS9Parser'):
region_list = regions.DS9Parser(ds9_region).shapes.to_regions()
else:
region_list = regions.Regions.parse(ds9_region, format="ds9")
else:
raise TypeError("{0} should be a DS9 string".format(ds9_region))
return self.subcube_from_regions(region_list, allow_empty)
def subcube_from_crtfregion(self, crtf_region, allow_empty=False):
"""
Extract a masked subcube from a CRTF region.
Parameters
----------
crtf_region: str
The CRTF region(s) string to extract
allow_empty: bool
If this is False, an exception will be raised if the region
contains no overlap with the cube
"""
import regions
if isinstance(crtf_region, str):
region_list = regions.CRTFParser(crtf_region).shapes.to_regions()
else:
raise TypeError("{0} should be a CRTF string".format(crtf_region))
return self.subcube_from_regions(region_list, allow_empty)
def subcube_from_regions(self, region_list, allow_empty=False,
minimize=True):
"""
Extract a masked subcube from a list of ``regions.Region`` object
(only functions on celestial dimensions)
Parameters
----------
region_list: ``regions.Region`` list
The region(s) to extract
allow_empty: bool, optional
If this is False, an exception will be raised if the region
contains no overlap with the cube. Default is False.
minimize : bool
Run :meth:`~SpectralCube.minimal_subcube`. This is mostly redundant, since the
bounding box of the region is already used, but it will sometimes
slice off a one-pixel rind depending on the details of the region
shape. If minimize is disabled, there will potentially be a ring
of NaN values around the outside.
"""
import regions
# Convert every region to a `regions.PixelRegion` object.
regs = []
for x in region_list:
if isinstance(x, regions.SkyRegion):
regs.append(x.to_pixel(self.wcs.celestial))
elif isinstance(x, regions.PixelRegion):
regs.append(x)
else:
raise TypeError("'{}' should be `regions.Region` object".format(x))
# List of regions are converted to a `regions.CompoundPixelRegion` object.
compound_region = _regionlist_to_single_region(regs)
# Compound mask of all the regions.
mask = compound_region.to_mask()
# Collecting frequency/velocity range, velocity type and rest frequency
# of each region.
ranges = [x.meta.get('range', None) for x in regs]
veltypes = [x.meta.get('veltype', None) for x in regs]
restfreqs = [x.meta.get('restfreq', None) for x in regs]
xlo, xhi, ylo, yhi = mask.bbox.ixmin, mask.bbox.ixmax, mask.bbox.iymin, mask.bbox.iymax
# Negative indices will do bad things, like wrap around the cube
# If xhi/yhi are negative, there is not overlap
if (xhi < 0) or (yhi < 0):
raise ValueError("Region is outside of cube.")
if xlo < 0:
xlo = 0
if ylo < 0:
ylo = 0
# If None, then the whole spectral range of the cube is selected.
if None in ranges:
subcube = self.subcube(xlo=xlo, ylo=ylo, xhi=xhi, yhi=yhi)
else:
ranges = self._velocity_freq_conversion_regions(ranges, veltypes, restfreqs)
zlo = min([x[0] for x in ranges])
zhi = max([x[1] for x in ranges])
slab = self.spectral_slab(zlo, zhi)
subcube = slab.subcube(xlo=xlo, ylo=ylo, xhi=xhi, yhi=yhi)
if any(dim == 0 for dim in subcube.shape):
if allow_empty:
warnings.warn("The derived subset is empty: the region does not"
" overlap with the cube (but allow_empty=True).")
else:
raise ValueError("The derived subset is empty: the region does not"
" overlap with the cube.")
shp = self.shape[1:]
_, slices_small = mask.get_overlap_slices(shp)
maskarray = np.zeros(subcube.shape[1:], dtype='bool')
maskarray[:] = mask.data[slices_small]
BAM = BooleanArrayMask(maskarray, subcube.wcs, shape=subcube.shape)
masked_subcube = subcube.with_mask(BAM)
# by using ceil / floor above, we potentially introduced a NaN buffer
# that we can now crop out
if minimize:
return masked_subcube.minimal_subcube(spatial_only=True)
else:
return masked_subcube
def _velocity_freq_conversion_regions(self, ranges, veltypes, restfreqs):
"""
Makes the spectral range of the regions compatible with the spectral
convention of the cube.
ranges: `~astropy.units.Quantity` object
List of range(a list of max and min limits on the spectral axis) of
each ``regions.Region`` object.
veltypes: List of `str`
It contains list of velocity convention that each region is following.
The string should be a combination of the following elements:
{'RADIO' | 'OPTICAL' | 'Z' | 'BETA' | 'GAMMA' | 'RELATIVISTIC' | None}
An element can be `None` if veltype of the region is unknown and is
assumed to take that of the cube.
restfreqs: List of `~astropy.units.Quantity`
It contains the rest frequency of each region.
"""
header = self.wcs.to_header()
# Obtaining rest frequency of the cube in GHz.
restfreq_cube = get_rest_value_from_wcs(self.wcs).to("GHz",
equivalencies=u.spectral())
CTYPE3 = header['CTYPE3']
veltype_cube = determine_vconv_from_ctype(CTYPE3)
veltype_equivalencies = dict(RADIO=u.doppler_radio,
OPTICAL=u.doppler_optical,
Z=doppler_z,
BETA=doppler_beta,
GAMMA=doppler_gamma,
RELATIVISTIC=u.doppler_relativistic
)
final_ranges = []
for range, veltype, restfreq in zip(ranges, veltypes, restfreqs):
if restfreq is None:
restfreq = restfreq_cube
restfreq = restfreq.to("GHz", equivalencies=u.spectral())
if veltype not in veltype_equivalencies and veltype is not None:
raise ValueError("Spectral Cube doesn't support {} this type of"
"velocity".format(veltype))
veltype = veltype_equivalencies.get(veltype, veltype_cube)
# Because there is chance that the veltype and rest frequency
# of the region may not be the same as that of cube, we convert it
# to frequency and then convert to the spectral unit of the cube.
freq_range = (u.Quantity(range).to("GHz",
equivalencies=veltype(restfreq)))
final_ranges.append(freq_range.to(header['CUNIT3'],
equivalencies=veltype_cube(restfreq_cube)))
return final_ranges
def _val_to_own_unit(self, value, operation='compare', tofrom='to',
keepunit=False):
"""
Given a value, check if it has a unit. If it does, convert to the
cube's unit. If it doesn't, raise an exception.
"""
if isinstance(value, BaseSpectralCube):
if self.unit.is_equivalent(value.unit):
return value
else:
return value.to(self.unit)
elif hasattr(value, 'unit'):
if keepunit:
return value.to(self.unit)
else:
return value.to(self.unit).value
elif self.unit.is_equivalent(u.dimensionless_unscaled):
# if the value is a numpy array or scalar, and the cube has no
# unit, no additional conversion is needed
return value
else:
raise ValueError("Can only {operation} cube objects {tofrom}"
" SpectralCubes or Quantities with "
"a unit attribute."
.format(operation=operation, tofrom=tofrom))
def __gt__(self, value):
"""
Return a LazyMask representing the inequality
Parameters
----------
value : number
The threshold
"""
value = self._val_to_own_unit(value)
return LazyComparisonMask(operator.gt, value, data=self._data, wcs=self._wcs)
def __ge__(self, value):
value = self._val_to_own_unit(value)
return LazyComparisonMask(operator.ge, value, data=self._data, wcs=self._wcs)
def __le__(self, value):
value = self._val_to_own_unit(value)
return LazyComparisonMask(operator.le, value, data=self._data, wcs=self._wcs)
def __lt__(self, value):
value = self._val_to_own_unit(value)
return LazyComparisonMask(operator.lt, value, data=self._data, wcs=self._wcs)
def __eq__(self, value):
value = self._val_to_own_unit(value)
return LazyComparisonMask(operator.eq, value, data=self._data, wcs=self._wcs)
def __hash__(self):
return id(self)
def __ne__(self, value):
value = self._val_to_own_unit(value)
return LazyComparisonMask(operator.ne, value, data=self._data, wcs=self._wcs)
@warn_slow
def __add__(self, value):
if isinstance(value, BaseSpectralCube):
return self._cube_on_cube_operation(operator.add, value)
else:
value = self._val_to_own_unit(value, operation='add', tofrom='from',
keepunit=False)
return self._apply_everywhere(operator.add, value, check_units=False)
@warn_slow
def __sub__(self, value):
if isinstance(value, BaseSpectralCube):
return self._cube_on_cube_operation(operator.sub, value)
else:
value = self._val_to_own_unit(value, operation='subtract',
tofrom='from', keepunit=False)
return self._apply_everywhere(operator.sub, value, check_units=False)
@warn_slow
def __mul__(self, value):
if isinstance(value, BaseSpectralCube):
return self._cube_on_cube_operation(operator.mul, value)
else:
return self._apply_everywhere(operator.mul, value)
@warn_slow
def __truediv__(self, value):
return self.__div__(value)
@warn_slow
def __div__(self, value):
if isinstance(value, BaseSpectralCube):
return self._cube_on_cube_operation(operator.truediv, value)
else:
return self._apply_everywhere(operator.truediv, value)
@warn_slow
def __floordiv__(self, value):
raise NotImplementedError("Floor-division (division with truncation) "
"is not supported.")
#if isinstance(value, BaseSpectralCube):
# # (Pdb) operator.floordiv(u.K, u.K)
# # *** TypeError: unsupported operand type(s) for //: 'IrreducibleUnit' and 'IrreducibleUnit'
# return self._cube_on_cube_operation(operator.floordiv, value)
#else:
# # only cube-on-cube division allowed
# #
# # we don't support this:
# # (Pdb) np.array([5,5,5])*u.K // (2*u.K)
# # <Quantity [2., 2., 2.]>
# # astropy doesn't support this:
# # >>> np.array([5,5,5])*u.K // (2*u.Jy)
# # astropy.units.core.UnitConversionError: Can only apply 'floor_divide' function to quantities with compatible dimensions
# # >>> np.array([5,5,5])*u.K // (np.array([2])*u.Jy)
# # astropy.units.core.UnitConversionError: Can only apply 'floor_divide' function to quantities with compatible dimensions
# raise NotImplementedError("Floor-division (division with truncation) "
# "is not supported.")
@warn_slow
def __pow__(self, value):
if isinstance(value, BaseSpectralCube):
return self._cube_on_cube_operation(operator.pow, value)
else:
return self._apply_everywhere(operator.pow, value)
def to_yt(self, spectral_factor=1.0, nprocs=None, **kwargs):
"""
Convert a spectral cube to a yt object that can be further analyzed in
yt.
Parameters
----------
spectral_factor : float, optional
Factor by which to stretch the spectral axis. If set to 1, one pixel
in spectral coordinates is equivalent to one pixel in spatial
coordinates.
If using yt 3.0 or later, additional keyword arguments will be passed
onto yt's ``FITSDataset`` constructor. See the yt documentation
(http://yt-project.org/doc/examining/loading_data.html?#fits-data)
for details on options for reading FITS data.
"""
import yt
if (('dev' in yt.__version__) or
(parse(yt.__version__) >= Version('3.0'))):
# yt has updated their FITS data set so that only the SpectralCube
# variant takes spectral_factor
try:
from yt.frontends.fits.api import SpectralCubeFITSDataset as FITSDataset
except ImportError:
from yt.frontends.fits.api import FITSDataset
from yt.units.unit_object import UnitParseError
data = self._get_filled_data(fill=0.)
if isinstance(data, da.Array):
# Note that >f8 can cause issues with yt, and for visualization
# we don't really need the full 64-bit of floating point
# precision, so we cast to float32.
data = data.astype(np.float32).compute()
hdu = PrimaryHDU(data, header=self.wcs.to_header())
units = str(self.unit.to_string())
hdu.header["BUNIT"] = units
hdu.header["BTYPE"] = "flux"
ds = FITSDataset(hdu, nprocs=nprocs,
spectral_factor=spectral_factor, **kwargs)
# Check to make sure the units are legit
try:
ds.quan(1.0,units)
except UnitParseError:
raise RuntimeError("The unit %s was not parsed by yt. " % units+
"Check to make sure it is correct.")
else:
from yt import load_uniform_grid
data = {'flux': self._get_filled_data(fill=0.).transpose()}
nz, ny, nx = self.shape
if nprocs is None:
nprocs = 1
bbox = np.array([[0.5,float(nx)+0.5],
[0.5,float(ny)+0.5],
[0.5,spectral_factor*float(nz)+0.5]])
ds = load_uniform_grid(data, [nx,ny,nz], 1., bbox=bbox,
nprocs=nprocs, periodicity=(False, False,
False))
return ytCube(self, ds, spectral_factor=spectral_factor)
def to_glue(self, name=None, glue_app=None, dataset=None, start_gui=True):
"""
Send data to a new or existing Glue application
Parameters
----------
name : str or None
The name of the dataset within Glue. If None, defaults to
'SpectralCube'. If a dataset with the given name already exists,
a new dataset with "_" appended will be added instead.
glue_app : GlueApplication or None
A glue application to send the data to. If this is not specified,
a new glue application will be started if one does not already
exist for this cube. Otherwise, the data will be sent to the
existing glue application, `self._glue_app`.
dataset : glue.core.Data or None
An existing Data object to add the cube to. This is a good way
to compare cubes with the same dimensions. Supercedes ``glue_app``
start_gui : bool
Start the GUI when this is run. Set to `False` for testing.
"""
if name is None:
name = 'SpectralCube'
from glue.app.qt import GlueApplication
from glue.core import DataCollection, Data
from glue.core.coordinates import coordinates_from_header
try:
from glue.viewers.image.qt.data_viewer import ImageViewer
except ImportError:
from glue.viewers.image.qt.viewer_widget import ImageWidget as ImageViewer
if dataset is not None:
if name in [d.label for d in dataset.components]:
name = name+"_"
dataset[name] = self
else:
result = Data(label=name)
result.coords = coordinates_from_header(self.header)
result.add_component(self, name)
if glue_app is None:
if hasattr(self,'_glue_app'):
glue_app = self._glue_app
else:
# Start a new glue session. This will quit when done.
# I don't think the return statement is ever reached, based on
# past attempts [@ChrisBeaumont - chime in here if you'd like]
dc = DataCollection([result])
#start Glue
ga = self._glue_app = GlueApplication(dc)
self._glue_viewer = ga.new_data_viewer(ImageViewer,
data=result)
if start_gui:
self._glue_app.start()
return self._glue_app
glue_app.add_datasets(self._glue_app.data_collection, result)
def to_pvextractor(self):
"""
Open the cube in a quick viewer written in matplotlib that allows you
to create PV extractions within the GUI
"""
from pvextractor.gui import PVSlicer
return PVSlicer(self)
def to_ds9(self, ds9id=None, newframe=False):
"""
Send the data to ds9 (this will create a copy in memory)
Parameters
----------
ds9id: None or string
The DS9 session ID. If 'None', a new one will be created.
To find your ds9 session ID, open the ds9 menu option
File:XPA:Information and look for the XPA_METHOD string, e.g.
``XPA_METHOD: 86ab2314:60063``. You would then calll this
function as ``cube.to_ds9('86ab2314:60063')``
newframe: bool
Send the cube to a new frame or to the current frame?
"""
try:
import ds9
except ImportError:
import pyds9 as ds9
if ds9id is None:
dd = ds9.DS9(start=True)
else:
dd = ds9.DS9(target=ds9id, start=False)
if newframe:
dd.set('frame new')
dd.set_pyfits(self.hdulist)
return dd
@property
def header(self):
log.debug("Creating header")
header = super(BaseSpectralCube, self).header
# Preserve the cube's spectral units
# (if CUNIT3 is not in the header, it is whatever that type's default unit is)
if 'CUNIT3' in header and self._spectral_unit != u.Unit(header['CUNIT3']):
header['CDELT3'] *= self._spectral_scale
header['CRVAL3'] *= self._spectral_scale
header['CUNIT3'] = self._spectral_unit.to_string(format='FITS')
return header
@property
def hdu(self):
"""
HDU version of self
"""
log.debug("Creating HDU")
hdu = PrimaryHDU(self.unitless_filled_data[:], header=self.header)
return hdu
@property
def hdulist(self):
return HDUList(self.hdu)
@warn_slow
def to(self, unit, equivalencies=()):
"""
Return the cube converted to the given unit (assuming it is equivalent).
If conversion was required, this will be a copy, otherwise it will
"""
if not isinstance(unit, u.Unit):
unit = u.Unit(unit)
if unit == self.unit:
# No copying
return self
# Create the tuple of unit conversions needed.
factor = cube_utils.bunit_converters(self, unit, equivalencies=equivalencies)
# special case: array in equivalencies
# (I don't think this should have to be special cased, but I don't know
# how to manipulate broadcasting rules any other way)
if hasattr(factor, '__len__') and len(factor) == len(self):
return self._new_cube_with(data=self._data*factor[:,None,None],
unit=unit)
else:
return self._new_cube_with(data=self._data*factor,
unit=unit)
def find_lines(self, velocity_offset=None, velocity_convention=None,
rest_value=None, **kwargs):
"""
Using astroquery's splatalogue interface, search for lines within the
spectral band. See `astroquery.splatalogue.Splatalogue` for
information on keyword arguments
Parameters
----------
velocity_offset : u.km/u.s equivalent
An offset by which the spectral axis should be shifted before
searching splatalogue. This value will be *added* to the velocity,
so if you want to redshift a spectrum, make this value positive,
and if you want to un-redshift it, make this value negative.
velocity_convention : 'radio', 'optical', 'relativistic'
The doppler convention to pass to `with_spectral_unit`
rest_value : u.GHz equivalent
The rest frequency (or wavelength or energy) to be passed to
`with_spectral_unit`
"""
warnings.warn("The line-finding routine is experimental. Please "
"report bugs on the Issues page: "
"https://github.com/radio-astro-tools/spectral-cube/issues",
ExperimentalImplementationWarning
)
from astroquery.splatalogue import Splatalogue
if velocity_convention in DOPPLER_CONVENTIONS:
velocity_convention = DOPPLER_CONVENTIONS[velocity_convention]
if velocity_offset is not None:
newspecaxis = self.with_spectral_unit(u.km/u.s,
velocity_convention=velocity_convention,
rest_value=rest_value).spectral_axis
spectral_axis = (newspecaxis + velocity_offset).to(u.GHz,
velocity_convention(rest_value))
else:
spectral_axis = self.spectral_axis.to(u.GHz)
numin,numax = spectral_axis.min(), spectral_axis.max()
log.log(19, "Min/max frequency: {0},{1}".format(numin, numax))
result = Splatalogue.query_lines(numin, numax, **kwargs)
return result
@warn_slow
def reproject(self, header, order='bilinear', use_memmap=False,
filled=True, **kwargs):
"""
Spatially reproject the cube into a new header. Fills the data with
the cube's ``fill_value`` to replace bad values before reprojection.
If you want to reproject a cube both spatially and spectrally, you need
to use `spectral_interpolate` as well.
.. warning::
The current implementation of ``reproject`` requires that the whole
cube be loaded into memory. Issue #506 notes that this is a
problem, and it is on our to-do list to fix.
Parameters
----------
header : `astropy.io.fits.Header`
A header specifying a cube in valid WCS
order : int or str, optional
The order of the interpolation (if ``mode`` is set to
``'interpolation'``). This can be either one of the following
strings:
* 'nearest-neighbor'
* 'bilinear'
* 'biquadratic'
* 'bicubic'
or an integer. A value of ``0`` indicates nearest neighbor
interpolation.
use_memmap : bool
If specified, a memory mapped temporary file on disk will be
written to rather than storing the intermediate spectra in memory.
filled : bool
Fill the masked values with the cube's fill value before
reprojection? Note that setting ``filled=False`` will use the raw
data array, which can be a workaround that prevents loading large
data into memory.
kwargs : dict
Passed to `reproject.reproject_interp`.
"""
try:
from reproject.version import version
except ImportError:
raise ImportError("Requires the reproject package to be"
" installed.")
reproj_kwargs = kwargs
# Need version > 0.2 to work with cubes, >= 0.5 for memmap
if parse(version) < Version("0.5"):
raise Warning("Requires version >=0.5 of reproject. The current "
"version is: {}".format(version))
elif parse(version) >= Version("0.6"):
pass # no additional kwargs, no warning either
else:
reproj_kwargs['independent_celestial_slices'] = True
from reproject import reproject_interp
# TODO: Find the minimal subcube that contains the header and only reproject that
# (see FITS_tools.regrid_cube for a guide on how to do this)
newwcs = wcs.WCS(header)
shape_out = tuple([header['NAXIS{0}'.format(i + 1)] for i in
range(header['NAXIS'])][::-1])
if filled:
data = self.unitless_filled_data[:]
else:
data = self._data
if use_memmap:
if data.dtype.itemsize not in (4,8):
raise ValueError("Data must be float32 or float64 to be "
"reprojected. Other data types need some "
"kind of additional memory handling.")
# note: requires reproject from December 2018 or later
outarray = np.memmap(filename='output.np', mode='w+',
shape=tuple(shape_out),
dtype='float64' if data.dtype.itemsize == 8 else 'float32')
else:
outarray = None
newcube, newcube_valid = reproject_interp((data,
self.header),
newwcs,
output_array=outarray,
shape_out=shape_out,
order=order,
**reproj_kwargs)
if np.all(np.isnan(newcube)):
raise ValueError("All values in reprojected cube are nan. This can be caused"
" by an error in which coordinates do not 'round-trip'. Try "
"setting ``roundtrip_coords=False``. You might also check "
"whether the WCS transformation produces valid pixel->world "
"and world->pixel coordinates in each axis."
)
return self._new_cube_with(data=newcube,
wcs=newwcs,
mask=BooleanArrayMask(newcube_valid.astype('bool'),
newwcs),
meta=self.meta,
)
@parallel_docstring
def spatial_smooth_median(self, ksize, update_function=None, raise_error_jybm=True,
filter=ndimage.median_filter, **kwargs):
"""
Smooth the image in each spatial-spatial plane of the cube using a median filter.
Parameters
----------
ksize : int
Size of the median filter in pixels (scipy.ndimage.median_filter)
filter : function
A filter from scipy.ndimage. The default is the median filter.
update_function : method
Method that is called to update an external progressbar
If provided, it disables the default `astropy.utils.console.ProgressBar`
raise_error_jybm : bool, optional
Raises a `~spectral_cube.utils.BeamUnitsError` when smoothing a cube in Jy/beam units,
since the brightness is dependent on the spatial resolution.
kwargs : dict
Passed to the convolve function
"""
return self.spatial_filter(ksize=ksize, filter=filter,
update_function=update_function,
raise_error_jybm=raise_error_jybm, **kwargs)
@parallel_docstring
def spatial_filter(self, ksize, filter, update_function=None, raise_error_jybm=True, **kwargs):
"""
Smooth the image in each spatial-spatial plane of the cube using a scipy.ndimage filter.
Parameters
----------
ksize : int
Size of the filter in pixels (scipy.ndimage.*_filter).
filter : function
A filter from `scipy.ndimage <https://docs.scipy.org/doc/scipy/reference/ndimage.html#filters>`_.
update_function : method
Method that is called to update an external progressbar
If provided, it disables the default `astropy.utils.console.ProgressBar`
raise_error_jybm : bool, optional
Raises a `~spectral_cube.utils.BeamUnitsError` when smoothing a cube in Jy/beam units,
since the brightness is dependent on the spatial resolution.
kwargs : dict
Passed to the convolve function
"""
if not scipyOK:
raise ImportError("Scipy could not be imported: this function won't work.")
self.check_jybeam_smoothing(raise_error_jybm=raise_error_jybm)
def _msmooth_image(im, **kwargs):
return filter(im, size=ksize, **kwargs)
newcube = self.apply_function_parallel_spatial(_msmooth_image,
**kwargs)
return newcube
@parallel_docstring
def spatial_smooth(self, kernel,
convolve=convolution.convolve,
raise_error_jybm=True,
**kwargs):
"""
Smooth the image in each spatial-spatial plane of the cube.
Parameters
----------
kernel : `~astropy.convolution.Kernel2D`
A 2D kernel from astropy
convolve : function
The astropy convolution function to use, either
`astropy.convolution.convolve` or
`astropy.convolution.convolve_fft`
raise_error_jybm : bool, optional
Raises a `~spectral_cube.utils.BeamUnitsError` when smoothing a cube in Jy/beam units,
since the brightness is dependent on the spatial resolution.
kwargs : dict
Passed to the convolve function
"""
self.check_jybeam_smoothing(raise_error_jybm=raise_error_jybm)
def _gsmooth_image(img, **kwargs):
"""
Helper function to smooth an image
"""
return convolve(img, kernel, normalize_kernel=True, **kwargs)
newcube = self.apply_function_parallel_spatial(_gsmooth_image,
**kwargs)
return newcube
@parallel_docstring
def spectral_filter(self, ksize, filter, use_memmap=True, verbose=0,
num_cores=None, **kwargs):
"""
Smooth the cube along the spectral dimension using a scipy.ndimage filter.
Parameters
----------
ksize : int
Size of the filter in spectral channels.
filter : function
A filter from `scipy.ndimage <https://docs.scipy.org/doc/scipy/reference/ndimage.html#filters>`_.
"""
# note: same body as spectral_smooth_median right now, but `filter`
# is a required kwarg
if not scipyOK:
raise ImportError("Scipy could not be imported: this function won't work.")
return self.apply_function_parallel_spectral(function=filter,
size=ksize,
verbose=verbose,
num_cores=num_cores,
use_memmap=use_memmap,
**kwargs)
@parallel_docstring
def spectral_smooth_median(self, ksize,
use_memmap=True,
verbose=0,
num_cores=None,
filter=ndimage.median_filter,
**kwargs):
"""
Smooth the cube along the spectral dimension
Parameters
----------
ksize : int
Size of the median filter (scipy.ndimage.median_filter)
verbose : int
Verbosity level to pass to joblib
kwargs : dict
Not used at the moment.
"""
if not scipyOK:
raise ImportError("Scipy could not be imported: this function won't work.")
return self.apply_function_parallel_spectral(function=filter,
size=ksize,
verbose=verbose,
num_cores=num_cores,
use_memmap=use_memmap,
**kwargs)
def _apply_function_parallel_base(self,
iteration_data,
function,
applicator,
num_cores=None,
verbose=0,
use_memmap=True,
parallel=False,
memmap_dir=None,
update_function=None,
**kwargs
):
"""
Apply a function in parallel using the ``applicator`` function. The
function will be performed on data with masked values replaced with the
cube's fill value.
Parameters
----------
iteration_data : generator
The data to be iterated over in the format expected by ``applicator``
function : function
The function to apply in the spectral dimension. It must take
two arguments: an array representing a spectrum and a boolean array
representing the mask. It may also accept ``**kwargs``. The
function must return an object with the same shape as the input
spectrum.
applicator : function
Either ``_apply_spatial_function`` or ``_apply_spectral_function``,
a tool to handle the iteration data and send it to the ``function``
appropriately.
num_cores : int or None
The number of cores to use if running in parallel. Should be >1 if
``parallel==True`` and cannot be >1 if ``parallel==False``
verbose : int
Verbosity level to pass to joblib
use_memmap : bool
If specified, a memory mapped temporary file on disk will be
written to rather than storing the intermediate spectra in memory.
parallel : bool
If set to ``False``, will force the use of a single thread instead
of using ``joblib``.
update_function : function
A callback function to call on each iteration of the application.
It should not accept any arguments. For example, this can be
``Progressbar.update`` or some function that prints a status
report. The function *must* be picklable if ``parallel==True``.
kwargs : dict
Passed to ``function``
"""
if use_memmap:
ntf = tempfile.NamedTemporaryFile(dir=memmap_dir)
outcube = np.memmap(ntf, mode='w+', shape=self.shape, dtype=float)
else:
if self._is_huge and not self.allow_huge_operations:
raise ValueError("Applying a function without ``use_memmap`` "
"requires loading the whole array into "
"memory *twice*, which can overload the "
"machine's memory for large cubes. Either "
"set ``use_memmap=True`` or set "
"``cube.allow_huge_operations=True`` to "
"override this restriction.")
outcube = np.empty(shape=self.shape, dtype=float)
if num_cores == 1 and parallel:
warnings.warn("parallel=True was specified but num_cores=1. "
"Joblib will be used to run the task with a "
"single thread.")
elif num_cores is not None and num_cores > 1 and not parallel:
raise ValueError("parallel execution was not requested, but "
"multiple cores were: these are incompatible "
"options. Either specify num_cores=1 or "
"parallel=True")
if parallel and use_memmap:
# it is not possible to run joblib parallelization without memmap
try:
import joblib
from joblib._parallel_backends import MultiprocessingBackend
from joblib import register_parallel_backend, parallel_backend
from joblib import Parallel, delayed
if update_function is not None:
# https://stackoverflow.com/questions/38483874/intermediate-results-from-joblib
class MultiCallback:
def __init__(self, *callbacks):
self.callbacks = [cb for cb in callbacks if cb]
def __call__(self, out):
for cb in self.callbacks:
cb(out)
class Callback_Backend(MultiprocessingBackend):
def callback(self, result):
update_function()
# Overload apply_async and set callback=self.callback
def apply_async(self, func, callback=None):
cbs = MultiCallback(callback, self.callback)
return super().apply_async(func, cbs)
joblib.register_parallel_backend('custom',
Callback_Backend,
make_default=True)
Parallel(n_jobs=num_cores,
verbose=verbose,
max_nbytes=None)(delayed(applicator)(arg, outcube,
function,
**kwargs)
for arg in iteration_data)
except ImportError:
if num_cores is not None and num_cores > 1:
warnings.warn("Could not import joblib. Will run in serial.",
warnings.ImportWarning)
parallel = False
# this isn't an else statement because we want to catch the case where
# the above clause fails on ImportError
if not parallel or not use_memmap:
if update_function is not None:
pbu = update_function
elif verbose > 0:
progressbar = ProgressBar(self.shape[1]*self.shape[2], desc='Apply parallel: ')
pbu = progressbar.update
else:
pbu = object
for arg in iteration_data:
applicator(arg, outcube, function, **kwargs)
pbu()
# TODO: do something about the mask?
newcube = self._new_cube_with(data=outcube, wcs=self.wcs,
mask=self.mask, meta=self.meta,
fill_value=self.fill_value)
return newcube
def apply_function_parallel_spatial(self,
function,
num_cores=None,
verbose=0,
use_memmap=True,
parallel=True,
**kwargs
):
"""
Apply a function in parallel along the spatial dimension. The
function will be performed on data with masked values replaced with the
cube's fill value.
Parameters
----------
function : function
The function to apply in the spatial dimension. It must take
two arguments: an array representing an image and a boolean array
representing the mask. It may also accept ``**kwargs``. The
function must return an object with the same shape as the input
spectrum.
num_cores : int or None
The number of cores to use if running in parallel
verbose : int
Verbosity level to pass to joblib
use_memmap : bool
If specified, a memory mapped temporary file on disk will be
written to rather than storing the intermediate spectra in memory.
parallel : bool
If set to ``False``, will force the use of a single core without
using ``joblib``.
kwargs : dict
Passed to ``function``
"""
shape = self.shape
data = self.unitless_filled_data
# 'images' is a generator
# the boolean check will skip the function for bad spectra
images = ((data[ii,:,:],
self.mask.include(view=(ii, slice(None), slice(None))),
ii,
)
for ii in range(shape[0]))
return self._apply_function_parallel_base(images, function,
applicator=_apply_spatial_function,
verbose=verbose,
parallel=parallel,
num_cores=num_cores,
use_memmap=use_memmap,
**kwargs)
def apply_function_parallel_spectral(self,
function,
num_cores=None,
verbose=0,
use_memmap=True,
parallel=True,
**kwargs
):
"""
Apply a function in parallel along the spectral dimension. The
function will be performed on data with masked values replaced with the
cube's fill value.
Parameters
----------
function : function
The function to apply in the spectral dimension. It must take
two arguments: an array representing a spectrum and a boolean array
representing the mask. It may also accept ``**kwargs``. The
function must return an object with the same shape as the input
spectrum.
num_cores : int or None
The number of cores to use if running in parallel
verbose : int
Verbosity level to pass to joblib
use_memmap : bool
If specified, a memory mapped temporary file on disk will be
written to rather than storing the intermediate spectra in memory.
parallel : bool
If set to ``False``, will force the use of a single core without
using ``joblib``.
kwargs : dict
Passed to ``function``
"""
shape = self.shape
data = self.unitless_filled_data
# 'spectra' is a generator
# the boolean check will skip the function for bad spectra
# TODO: should spatial good/bad be cached?
spectra = ((data[:,jj,ii],
self.mask.include(view=(slice(None), jj, ii)),
ii, jj,
)
for jj in range(shape[1])
for ii in range(shape[2]))
return self._apply_function_parallel_base(iteration_data=spectra,
function=function,
applicator=_apply_spectral_function,
use_memmap=use_memmap,
parallel=parallel,
verbose=verbose,
num_cores=num_cores,
**kwargs
)
@parallel_docstring
def sigma_clip_spectrally(self, threshold, verbose=0, use_memmap=True,
num_cores=None, **kwargs):
"""
Run astropy's sigma clipper along the spectral axis, converting all bad
(excluded) values to NaN.
Parameters
----------
threshold : float
The ``sigma`` parameter in `astropy.stats.sigma_clip`, which refers
to the number of sigma above which to cut.
verbose : int
Verbosity level to pass to joblib
"""
return self.apply_function_parallel_spectral(stats.sigma_clip,
sigma=threshold,
axis=0, # changes behavior of sigmaclip
num_cores=num_cores,
use_memmap=use_memmap,
verbose=verbose,
**kwargs)
@parallel_docstring
def spectral_smooth(self, kernel,
convolve=convolution.convolve,
verbose=0,
use_memmap=True,
num_cores=None,
**kwargs):
"""
Smooth the cube along the spectral dimension
Note that the mask is left unchanged in this operation.
Parameters
----------
kernel : `~astropy.convolution.Kernel1D`
A 1D kernel from astropy
convolve : function
The astropy convolution function to use, either
`astropy.convolution.convolve` or
`astropy.convolution.convolve_fft`
verbose : int
Verbosity level to pass to joblib
kwargs : dict
Passed to the convolve function
"""
if isinstance(kernel.array, u.Quantity):
raise u.UnitsError("The convolution kernel should be defined "
"without a unit.")
return self.apply_function_parallel_spectral(convolve,
kernel=kernel,
normalize_kernel=True,
num_cores=num_cores,
use_memmap=use_memmap,
verbose=verbose,
**kwargs)
def spectral_interpolate(self, spectral_grid,
suppress_smooth_warning=False,
fill_value=None,
update_function=None):
"""Resample the cube spectrally onto a specific grid
Parameters
----------
spectral_grid : array
An array of the spectral positions to regrid onto
suppress_smooth_warning : bool
If disabled, a warning will be raised when interpolating onto a
grid that does not nyquist sample the existing grid. Disable this
if you have already appropriately smoothed the data.
fill_value : float
Value for extrapolated spectral values that lie outside of
the spectral range defined in the original data. The
default is to use the nearest spectral channel in the
cube.
update_function : method
Method that is called to update an external progressbar
If provided, it disables the default `astropy.utils.console.ProgressBar`
Returns
-------
cube : SpectralCube
"""
inaxis = self.spectral_axis.to(spectral_grid.unit)
indiff = np.mean(np.diff(inaxis))
outdiff = np.mean(np.diff(spectral_grid))
# account for reversed axes
if outdiff < 0:
spectral_grid = spectral_grid[::-1]
outdiff = np.mean(np.diff(spectral_grid))
outslice = slice(None, None, -1)
else:
outslice = slice(None, None, 1)
cubedata = self.filled_data
specslice = slice(None) if indiff >= 0 else slice(None, None, -1)
inaxis = inaxis[specslice]
indiff = np.mean(np.diff(inaxis))
# insanity checks
if indiff < 0 or outdiff < 0:
raise ValueError("impossible.")
assert np.all(np.diff(spectral_grid) > 0)
assert np.all(np.diff(inaxis) > 0)
np.testing.assert_allclose(np.diff(spectral_grid), outdiff,
err_msg="Output grid must be linear")
if outdiff > 2 * indiff and not suppress_smooth_warning:
warnings.warn("Input grid has too small a spacing. The data should "
"be smoothed prior to resampling.",
SmoothingWarning
)
newcube = np.empty([spectral_grid.size, self.shape[1], self.shape[2]],
dtype=cubedata[:1, 0, 0].dtype)
newmask = np.empty([spectral_grid.size, self.shape[1], self.shape[2]],
dtype='bool')
yy,xx = np.indices(self.shape[1:])
if update_function is None:
pb = ProgressBar(xx.size, desc='Spectral Interpolate: ')
update_function = pb.update
for ix, iy in (zip(xx.flat, yy.flat)):
mask = self.mask.include(view=(specslice, iy, ix))
if any(mask):
newcube[outslice,iy,ix] = \
np.interp(spectral_grid.value, inaxis.value,
cubedata[specslice,iy,ix].value,
left=fill_value, right=fill_value)
if all(mask):
newmask[:,iy,ix] = True
else:
interped = np.interp(spectral_grid.value,
inaxis.value, mask) > 0
newmask[outslice,iy,ix] = interped
else:
newmask[:, iy, ix] = False
newcube[:, iy, ix] = np.nan
update_function()
newwcs = self.wcs.deepcopy()
newwcs.wcs.crpix[2] = 1
newwcs.wcs.crval[2] = spectral_grid[0].value if outslice.step > 0 \
else spectral_grid[-1].value
newwcs.wcs.cunit[2] = spectral_grid.unit.to_string('FITS')
newwcs.wcs.cdelt[2] = outdiff.value if outslice.step > 0 \
else -outdiff.value
newwcs.wcs.set()
newbmask = BooleanArrayMask(newmask, wcs=newwcs)
newcube = self._new_cube_with(data=newcube, wcs=newwcs, mask=newbmask,
meta=self.meta,
fill_value=self.fill_value)
return newcube
@warn_slow
def convolve_to(self, beam, convolve=convolution.convolve_fft, update_function=None, **kwargs):
"""
Convolve each channel in the cube to a specified beam
.. warning::
The current implementation of ``convolve_to`` creates an in-memory
copy of the whole cube to store the convolved data. Issue #506
notes that this is a problem, and it is on our to-do list to fix.
Parameters
----------
beam : `radio_beam.Beam`
The beam to convolve to
convolve : function
The astropy convolution function to use, either
`astropy.convolution.convolve` or
`astropy.convolution.convolve_fft`
update_function : method
Method that is called to update an external progressbar
If provided, it disables the default `astropy.utils.console.ProgressBar`
kwargs : dict
Keyword arguments to pass to the convolution function
Returns
-------
cube : `SpectralCube`
A SpectralCube with a single ``beam``
"""
# Check if the beams are the same.
if beam == self.beam:
warnings.warn("The given beam is identical to the current beam. "
"Skipping convolution.")
return self
pixscale = wcs.utils.proj_plane_pixel_area(self.wcs.celestial)**0.5*u.deg
convolution_kernel = beam.deconvolve(self.beam).as_kernel(pixscale)
# Scale Jy/beam units by the change in beam size
if self.unit.is_equivalent(u.Jy / u.beam):
beam_ratio_factor = (beam.sr / self.beam.sr).value
else:
beam_ratio_factor = 1.
# See #631: kwargs get passed within self.apply_function_parallel_spatial
def convfunc(img, **kwargs):
return convolve(img, convolution_kernel, normalize_kernel=True,
**kwargs) * beam_ratio_factor
if convolve is convolution.convolve_fft and 'allow_huge' not in kwargs:
kwargs['allow_huge'] = self.allow_huge_operations
newcube = self.apply_function_parallel_spatial(convfunc,
**kwargs).with_beam(beam, raise_error_jybm=False)
return newcube
def mask_channels(self, goodchannels):
"""
Helper function to mask out channels. This function is equivalent to
adding a mask with ``cube[view]`` where ``view`` is broadcastable to
the cube shape, but it accepts 1D arrays that are not normally
broadcastable.
Parameters
----------
goodchannels : array
A 1D boolean array declaring which channels should be kept.
Returns
-------
cube : `SpectralCube`
A cube with the specified channels masked
"""
goodchannels = np.asarray(goodchannels, dtype='bool')
if goodchannels.ndim != 1:
raise ValueError("goodchannels mask must be one-dimensional")
if goodchannels.size != self.shape[0]:
raise ValueError("goodchannels must have a length equal to the "
"cube's spectral dimension.")
return self.with_mask(goodchannels[:,None,None])
@warn_slow
def downsample_axis(self, factor, axis, estimator=np.nanmean,
truncate=False, use_memmap=True, progressbar=True):
"""
Downsample the cube by averaging over *factor* pixels along an axis.
Crops right side if the shape is not a multiple of factor.
The WCS will be 'downsampled' by the specified factor as well.
If the downsample factor is odd, there will be an offset in the WCS.
There is both an in-memory and a memory-mapped implementation; the
default is to use the memory-mapped version. Technically, the 'large
data' warning doesn't apply when using the memory-mapped version, but
the warning is still there anyway.
Parameters
----------
myarr : `~numpy.ndarray`
The array to downsample
factor : int
The factor to downsample by
axis : int
The axis to downsample along
estimator : function
defaults to mean. You can downsample by summing or
something else if you want a different estimator
(e.g., downsampling error: you want to sum & divide by sqrt(n))
truncate : bool
Whether to truncate the last chunk or average over a smaller number.
e.g., if you downsample [1,2,3,4] by a factor of 3, you could get either
[2] or [2,4] if truncate is True or False, respectively.
use_memmap : bool
Use a memory map on disk to avoid loading the whole cube into memory
(several times)? If set, the warning about large cubes can be ignored
(though you still have to override the warning)
progressbar : bool
Include a progress bar? Only works with ``use_memmap=True``
"""
def makeslice(startpoint,axis=axis,step=factor):
# make empty slices
view = [slice(None) for ii in range(self.ndim)]
# then fill the appropriate slice
view[axis] = slice(startpoint,None,step)
return tuple(view)
# size of the dimension of interest
xs = self.shape[axis]
if not use_memmap:
if xs % int(factor) != 0:
if truncate:
view = [slice(None) for ii in range(self.ndim)]
view[axis] = slice(None,xs-(xs % int(factor)))
view = tuple(view)
crarr = self.unitless_filled_data[view]
mask = self.mask[view].include()
else:
extension_shape = list(self.shape)
extension_shape[axis] = (factor - xs % int(factor))
extension = np.empty(extension_shape) * np.nan
crarr = np.concatenate((self.unitless_filled_data[:],
extension), axis=axis)
extension[:] = 0
mask = np.concatenate((self.mask.include(), extension), axis=axis)
else:
crarr = self.unitless_filled_data[:]
mask = self.mask.include()
# The extra braces here are crucial: We're adding an extra dimension so we
# can average across it
stacked_array = np.concatenate([[crarr[makeslice(ii)]]
for ii in range(factor)])
dsarr = estimator(stacked_array, axis=0)
if not isinstance(mask, np.ndarray):
raise TypeError("Mask is of wrong data type")
stacked_mask = np.concatenate([[mask[makeslice(ii)]] for ii in
range(factor)])
mask = np.any(stacked_mask, axis=0)
else:
def makeslice_local(startpoint, axis=axis, nsteps=factor):
# make empty slices
view = [slice(None) for ii in range(self.ndim)]
# then fill the appropriate slice
view[axis] = slice(startpoint,startpoint+nsteps,1)
return tuple(view)
newshape = list(self.shape)
newshape[axis] = (newshape[axis]//factor +
((1-int(truncate)) * (xs % int(factor) != 0)))
newshape = tuple(newshape)
if progressbar:
progressbar = ProgressBar(newshape[axis], desc='Downsample: ')
pbu = progressbar.update
else:
pbu = lambda: True
# Create a view that will add a blank newaxis at the right spot
view_newaxis = [slice(None) for ii in range(self.ndim)]
view_newaxis[axis] = None
view_newaxis = tuple(view_newaxis)
ntf = tempfile.NamedTemporaryFile()
dsarr = np.memmap(ntf, mode='w+', shape=newshape, dtype=float)
ntf2 = tempfile.NamedTemporaryFile()
mask = np.memmap(ntf2, mode='w+', shape=newshape, dtype=bool)
for ii in range(newshape[axis]):
view_fulldata = makeslice_local(ii*factor)
view_newdata = makeslice_local(ii, nsteps=1)
to_average = self.unitless_filled_data[view_fulldata]
to_anyfy = self.mask[view_fulldata].include()
dsarr[view_newdata] = estimator(to_average, axis)[view_newaxis]
mask[view_newdata] = np.any(to_anyfy, axis).astype('bool')[view_newaxis]
pbu()
# the slice should just start at zero; we had factor//2 here earlier,
# and that was an error that probably half-compensated for an error in
# wcs_utils
view = makeslice(0)
newwcs = wcs_utils.slice_wcs(self.wcs, view, shape=self.shape)
newwcs._naxis = list(self.shape)
# this is an assertion to ensure that the WCS produced is valid
# (this is basically a regression test for #442)
assert newwcs[:, slice(None), slice(None)]
assert len(newwcs._naxis) == 3
return self._new_cube_with(data=dsarr, wcs=newwcs,
mask=BooleanArrayMask(mask, wcs=newwcs))
def plot_channel_maps(self, nx, ny, channels, contourkwargs={}, output_file=None,
fig=None, fig_smallest_dim_inches=8, decimals=3, zoom=1,
textcolor=None, cmap='gray_r', tighten=False,
textxloc=0.5, textyloc=0.9,
savefig_kwargs={}, **kwargs):
"""
Make channel maps from a spectral cube
Parameters
----------
input_file : str
Name of the input spectral cube
nx, ny : int
Number of sub-plots in the x and y direction
channels : list
List of channels to show
cmap : str
The name of a colormap to use for the ``imshow`` colors
contourkwargs : dict
Keyword arguments passed to ``contour``
textcolor : None or str
Color of the label text to overlay. If ``None``, will be
determined automatically. If ``'notext'``, no text will be added.
textxloc : float
textyloc : float
Text label X,Y-location in axis fraction units
output_file : str
Name of the matplotlib plot
fig : matplotlib figure
The figure object to plot onto. Will be overridden to enforce a
specific aspect ratio.
fig_smallest_dim_inches : float
The size of the smallest dimension (either width or height) of the
figure in inches. The other dimension will be selected based on
the aspect ratio of the data: it cannot be a free parameter.
decimals : int, optional
Number of decimal places to show in spectral value
zoom : int, optional
How much to zoom in. In future versions of this function, the
pointing center will be customizable.
tighten : bool
Call ``plt.tight_layout()`` after plotting?
savefig_kwargs : dict
Keyword arguments to pass to ``savefig`` (e.g.,
``bbox_inches='tight'``)
kwargs : dict
Passed to ``imshow``
"""
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
cmap = getattr(plt.cm, cmap)
if len(channels) != nx * ny:
raise ValueError("Number of channels should be equal to nx * ny")
# Read in spectral cube and get spectral axis
spectral_axis = self.spectral_axis
sizey, sizex = self.shape[1:]
cenx = sizex / 2.
ceny = sizey / 2.
aspect_ratio = self.shape[2]/float(self.shape[1])
gridratio = ny / float(nx) * aspect_ratio
if gridratio > 1:
ysize = fig_smallest_dim_inches*gridratio
xsize = fig_smallest_dim_inches
else:
xsize = fig_smallest_dim_inches*gridratio
ysize = fig_smallest_dim_inches
if fig is None:
fig = plt.figure(figsize=(xsize, ysize))
else:
fig.set_figheight(ysize)
fig.set_figwidth(xsize)
# unclear if needed
#fig.subplots_adjust(margin,margin,1.-margin,1.-margin,0.,0.)
axis_list = []
gs = GridSpec(ny, nx, figure=fig, hspace=0, wspace=0)
for ichannel, channel in enumerate(channels):
slc = self[channel,:,:]
ax = plt.subplot(gs[ichannel], projection=slc.wcs)
im = ax.imshow(slc.value, origin='lower', cmap=cmap, **kwargs)
if contourkwargs:
ax.contour(slc.value, **contourkwargs)
ax.set_xlim(cenx - cenx / zoom, cenx + cenx / zoom)
ax.set_ylim(ceny - ceny / zoom, ceny + ceny / zoom)
if textcolor != 'notext':
if textcolor is None:
# determine average image color and set textcolor to opposite
# (this is a bit hacky and there is _definitely_ a better way
# to do this)
avgcolor = im.cmap(im.norm(im.get_array())).mean(axis=(0,1))
totalcolor = avgcolor[:3].sum()
if totalcolor > 0.5:
textcolor = 'w'
else:
textcolor = 'k'
ax.tick_params(color=textcolor)
ax.set_title(("{0:." + str(decimals) + "f}").format(spectral_axis[channel]),
x=textxloc, y=textyloc, color=textcolor)
# only label bottom-left panel with locations
if (ichannel != nx*(ny-1)):
ax.coords[0].set_ticklabel_position('')
ax.coords[1].set_ticklabel_position('')
ax.tick_params(direction='in')
axis_list.append(ax)
if tighten:
plt.tight_layout()
if output_file is not None:
fig.savefig(output_file, **savefig_kwargs)
return axis_list
class SpectralCube(BaseSpectralCube, BeamMixinClass):
__name__ = "SpectralCube"
_oned_spectrum = OneDSpectrum
def __new__(cls, *args, **kwargs):
if kwargs.pop('use_dask', False):
from .dask_spectral_cube import DaskSpectralCube
return super().__new__(DaskSpectralCube)
else:
return super().__new__(cls)
def __init__(self, data, wcs, mask=None, meta=None, fill_value=np.nan,
header=None, allow_huge_operations=False, beam=None,
wcs_tolerance=0.0, use_dask=False, **kwargs):
super(SpectralCube, self).__init__(data=data, wcs=wcs, mask=mask,
meta=meta, fill_value=fill_value,
header=header,
allow_huge_operations=allow_huge_operations,
wcs_tolerance=wcs_tolerance,
**kwargs)
# Beam loading must happen *after* WCS is read
if beam is None:
beam = cube_utils.try_load_beam(self.header)
else:
if not isinstance(beam, Beam):
raise TypeError("beam must be a radio_beam.Beam object.")
# Allow setting the beam attribute even if there is no beam defined
# Accessing `SpectralCube.beam` without a beam defined raises a
# `NoBeamError` with an informative message.
self.beam = beam
if beam is not None:
self._meta['beam'] = beam
self._header.update(beam.to_header_keywords())
def _new_cube_with(self, **kwargs):
beam = kwargs.pop('beam', None)
if 'beam' in self._meta and beam is None:
beam = self._beam
newcube = super(SpectralCube, self)._new_cube_with(beam=beam, **kwargs)
return newcube
_new_cube_with.__doc__ = BaseSpectralCube._new_cube_with.__doc__
def with_beam(self, beam, raise_error_jybm=True):
'''
Attach a beam object to the `~SpectralCube`.
Parameters
----------
beam : `~radio_beam.Beam`
`Beam` object defining the resolution element of the
`~SpectralCube`.
'''
if not isinstance(beam, Beam):
raise TypeError("beam must be a radio_beam.Beam object.")
self.check_jybeam_smoothing(raise_error_jybm=raise_error_jybm)
meta = self._meta.copy()
meta['beam'] = beam
header = self._header.copy()
header.update(beam.to_header_keywords())
newcube = self._new_cube_with(meta=self.meta, beam=beam)
return newcube
class VaryingResolutionSpectralCube(BaseSpectralCube, MultiBeamMixinClass):
"""
A variant of the SpectralCube class that has PSF (beam) information on a
per-channel basis.
"""
__name__ = "VaryingResolutionSpectralCube"
_oned_spectrum = VaryingResolutionOneDSpectrum
def __new__(cls, *args, **kwargs):
if kwargs.pop('use_dask', False):
from .dask_spectral_cube import DaskVaryingResolutionSpectralCube
return super().__new__(DaskVaryingResolutionSpectralCube)
else:
return super().__new__(cls)
def __init__(self, *args, major_unit=u.arcsec, minor_unit=u.arcsec, **kwargs):
"""
Create a SpectralCube with an associated beam table. The new
VaryingResolutionSpectralCube will have a ``beams`` attribute and a
``beam_threshold`` attribute as described below. It will perform some
additional checks when trying to perform analysis across image frames.
Three new keyword arguments are accepted:
Other Parameters
----------------
beam_table : `numpy.recarray`
A table of beam major and minor axes in arcseconds and position
angles, with labels BMAJ, BMIN, BPA
beams : list
A list of `radio_beam.Beam` objects
beam_threshold : float or dict
The fractional threshold above which beams are considered
different. A dictionary may be used with entries 'area', 'major',
'minor', 'pa' so that you can specify a different fractional
threshold for each of these. For example, if you want to check
only that the areas are the same, and not worry about the shape
(which might be a bad idea...), you could set
``beam_threshold={'area':0.01, 'major':1.5, 'minor':1.5,
'pa':5.0}``
"""
# these types of cube are undefined without the radio_beam package
beam_table = kwargs.pop('beam_table', None)
beams = kwargs.pop('beams', None)
beam_threshold = kwargs.pop('beam_threshold', 0.01)
if (beam_table is None and beams is None):
raise ValueError(
"Must give either a beam table or a list of beams to "
"initialize a VaryingResolutionSpectralCube")
super(VaryingResolutionSpectralCube, self).__init__(*args, **kwargs)
if isinstance(beam_table, BinTableHDU):
beam_data_table = beam_table.data
else:
beam_data_table = beam_table
if beam_table is not None:
# CASA beam tables are in arcsec, and that's what we support
beams = Beams(major=u.Quantity(beam_data_table['BMAJ'], major_unit),
minor=u.Quantity(beam_data_table['BMIN'], minor_unit),
pa=u.Quantity(beam_data_table['BPA'], u.deg),
meta=[{key: row[key] for key in beam_data_table.names
if key not in ('BMAJ','BPA', 'BMIN')}
for row in beam_data_table],
)
goodbeams = beams.isfinite
# track which, if any, beams are masked for later use
self.goodbeams_mask = goodbeams
if not all(goodbeams):
warnings.warn("There were {0} non-finite beams; layers with "
"non-finite beams will be masked out.".format(
np.count_nonzero(np.logical_not(goodbeams))),
NonFiniteBeamsWarning
)
beam_mask = BooleanArrayMask(goodbeams[:,None,None],
wcs=self._wcs,
shape=self.shape,
)
if not is_broadcastable_and_smaller(beam_mask.shape,
self._data.shape):
# this should never be allowed to happen
raise ValueError("Beam mask shape is not broadcastable to data shape: "
"%s vs %s" % (beam_mask.shape, self._data.shape))
assert beam_mask.shape == self.shape
new_mask = np.bitwise_and(self._mask, beam_mask)
new_mask._validate_wcs(new_data=self._data, new_wcs=self._wcs)
self._mask = new_mask
if (len(beams) != self.shape[0]):
raise ValueError("Beam list must have same size as spectral "
"dimension")
self.beams = beams
self.beam_threshold = beam_threshold
def __getitem__(self, view):
# Need to allow self[:], self[:,:]
if isinstance(view, (slice,int,np.int64)):
view = (view, slice(None), slice(None))
elif len(view) == 2:
view = view + (slice(None),)
elif len(view) > 3:
raise IndexError("Too many indices")
meta = {}
meta.update(self._meta)
slice_data = [(s.start, s.stop, s.step)
if hasattr(s,'start') else s
for s in view]
if 'slice' in meta:
meta['slice'].append(slice_data)
else:
meta['slice'] = [slice_data]
# intslices identifies the slices that are given by integers, i.e.
# indices. Other slices are slice objects, e.g. obj[5:10], and have
# 'start' attributes.
intslices = [2-ii for ii,s in enumerate(view) if not hasattr(s,'start')]
# for beams, we care only about the first slice, independent of its
# type
specslice = view[0]
if intslices:
if len(intslices) > 1:
if 2 in intslices:
raise NotImplementedError("1D slices along non-spectral "
"axes are not yet implemented.")
newwcs = self._wcs.sub([a
for a in (1,2,3)
if a not in [x+1 for x in intslices]])
if cube_utils._has_beam(self):
bmarg = {'beam': self.beam}
elif cube_utils._has_beams(self):
bmarg = {'beams': self.unmasked_beams[specslice]}
else:
bmarg = {}
return self._oned_spectrum(value=self._data[view],
wcs=newwcs,
copy=False,
unit=self.unit,
spectral_unit=self._spectral_unit,
mask=self.mask[view],
meta=meta,
goodbeams_mask=self.goodbeams_mask[specslice]
if hasattr(self, '_goodbeams_mask')
else None,
**bmarg
)
# only one element, so drop an axis
newwcs = wcs_utils.drop_axis(self._wcs, intslices[0])
header = self._nowcs_header
# Slice objects know how to parse Beam objects stored in the
# metadata
# A 2D slice with a VRSC should not be allowed along a
# position-spectral axis
if not isinstance(self.unmasked_beams[specslice], Beam):
raise AttributeError("2D slices along a spectral axis are not "
"allowed for "
"VaryingResolutionSpectralCubes. Convolve"
" to a common resolution with "
"`convolve_to` before attempting "
"position-spectral slicing.")
meta['beam'] = self.unmasked_beams[specslice]
return Slice(value=self.filled_data[view],
wcs=newwcs,
copy=False,
unit=self.unit,
header=header,
meta=meta)
newmask = self._mask[view] if self._mask is not None else None
newwcs = wcs_utils.slice_wcs(self._wcs, view, shape=self.shape)
newwcs._naxis = list(self.shape)
# this is an assertion to ensure that the WCS produced is valid
# (this is basically a regression test for #442)
assert newwcs[:, slice(None), slice(None)]
assert len(newwcs._naxis) == 3
return self._new_cube_with(data=self._data[view],
wcs=newwcs,
mask=newmask,
beams=self.unmasked_beams[specslice],
meta=meta)
def spectral_slab(self, lo, hi):
"""
Extract a new cube between two spectral coordinates
Parameters
----------
lo, hi : :class:`~astropy.units.Quantity`
The lower and upper spectral coordinate for the slab range. The
units should be compatible with the units of the spectral axis.
If the spectral axis is in frequency-equivalent units and you
want to select a range in velocity, or vice-versa, you should
first use :meth:`~spectral_cube.SpectralCube.with_spectral_unit`
to convert the units of the spectral axis.
"""
# Find range of values for spectral axis
ilo = self.closest_spectral_channel(lo)
ihi = self.closest_spectral_channel(hi)
if ilo > ihi:
ilo, ihi = ihi, ilo
ihi += 1
# Create WCS slab
wcs_slab = self._wcs.deepcopy()
wcs_slab.wcs.crpix[2] -= ilo
# Create mask slab
if self._mask is None:
mask_slab = None
else:
try:
mask_slab = self._mask[ilo:ihi, :, :]
except NotImplementedError:
warnings.warn("Mask slicing not implemented for "
"{0} - dropping mask".
format(self._mask.__class__.__name__),
NotImplementedWarning
)
mask_slab = None
# Create new spectral cube
slab = self._new_cube_with(data=self._data[ilo:ihi], wcs=wcs_slab,
beams=self.unmasked_beams[ilo:ihi],
mask=mask_slab)
return slab
def _new_cube_with(self, goodbeams_mask=None, **kwargs):
beams = kwargs.pop('beams', self.unmasked_beams)
beam_threshold = kwargs.pop('beam_threshold', self.beam_threshold)
VRSC = VaryingResolutionSpectralCube
newcube = super(VRSC, self)._new_cube_with(beams=beams,
beam_threshold=beam_threshold,
**kwargs)
if goodbeams_mask is not None:
newcube.goodbeams_mask = goodbeams_mask
assert hasattr(newcube, '_goodbeams_mask')
else:
newcube.goodbeams_mask = np.isfinite(newcube.beams)
assert hasattr(newcube, '_goodbeams_mask')
return newcube
_new_cube_with.__doc__ = BaseSpectralCube._new_cube_with.__doc__
def _check_beam_areas(self, threshold, mean_beam, mask=None):
"""
Check that the beam areas are the same to within some threshold
"""
if mask is not None:
assert len(mask) == len(self.unmasked_beams)
mask = np.array(mask, dtype='bool')
else:
mask = np.ones(len(self.unmasked_beams), dtype='bool')
qtys = dict(sr=self.unmasked_beams.sr,
major=self.unmasked_beams.major.to(u.deg),
minor=self.unmasked_beams.minor.to(u.deg),
# position angles are not really comparable
#pa=u.Quantity([bm.pa for bm in self.unmasked_beams], u.deg),
)
errormessage = ""
for (qtyname, qty) in (qtys.items()):
minv = qty[mask].min()
maxv = qty[mask].max()
mn = getattr(mean_beam, qtyname)
maxdiff = (np.max(np.abs(u.Quantity((maxv-mn, minv-mn))))/mn).decompose()
if isinstance(threshold, dict):
th = threshold[qtyname]
else:
th = threshold
if maxdiff > th:
errormessage += ("Beam {2}s differ by up to {0}x, which is greater"
" than the threshold {1}\n".format(maxdiff,
threshold,
qtyname
))
if errormessage != "":
raise ValueError(errormessage)
def __getattribute__(self, attrname):
"""
For any functions that operate over the spectral axis, perform beam
sameness checks before performing the operation to avoid unexpected
results
"""
# short name to avoid long lines below
VRSC = VaryingResolutionSpectralCube
# what about apply_numpy_function, apply_function? since they're
# called by some of these, maybe *only* those should be wrapped to
# avoid redundant calls
if attrname in ('moment', 'apply_numpy_function', 'apply_function',
'apply_function_parallel_spectral'):
origfunc = super(VRSC, self).__getattribute__(attrname)
return self._handle_beam_areas_wrapper(origfunc)
else:
return super(VRSC, self).__getattribute__(attrname)
@property
def header(self):
header = super(VaryingResolutionSpectralCube, self).header
# this indicates to CASA that there is a beam table
header['CASAMBM'] = True
return header
@property
def hdu(self):
raise ValueError("For VaryingResolutionSpectralCube's, use hdulist "
"instead of hdu.")
@property
def hdulist(self):
"""
HDUList version of self
"""
hdu = PrimaryHDU(self.filled_data[:].value, header=self.header)
from .cube_utils import beams_to_bintable
# use unmasked beams because, even if the beam is masked out, we should
# write it
bmhdu = beams_to_bintable(self.unmasked_beams)
return HDUList([hdu, bmhdu])
@warn_slow
def convolve_to(self, beam, allow_smaller=False,
convolve=convolution.convolve_fft,
update_function=None,
**kwargs):
"""
Convolve each channel in the cube to a specified beam
.. warning::
The current implementation of ``convolve_to`` creates an in-memory
copy of the whole cube to store the convolved data. Issue #506
notes that this is a problem, and it is on our to-do list to fix.
.. warning::
Note that if there is any misaligment between the cube's spatial
pixel axes and the WCS's spatial axes *and* the beams are not
round, the convolution kernels used here may be incorrect. Be wary
in such cases!
Parameters
----------
beam : `radio_beam.Beam`
The beam to convolve to
allow_smaller : bool
If the specified target beam is smaller than the beam in a channel
in any dimension and this is ``False``, it will raise an exception.
convolve : function
The astropy convolution function to use, either
`astropy.convolution.convolve` or
`astropy.convolution.convolve_fft`
update_function : method
Method that is called to update an external progressbar
If provided, it disables the default `astropy.utils.console.ProgressBar`
kwargs : dict
Keyword arguments to pass to the convolution function
Returns
-------
cube : `SpectralCube`
A SpectralCube with a single ``beam``
"""
if ((self.wcs.celestial.wcs.get_pc()[0,1] != 0 or
self.wcs.celestial.wcs.get_pc()[1,0] != 0)):
warnings.warn("The beams will produce convolution kernels "
"that are not aware of any misaligment "
"between pixel and world coordinates, "
"and there are off-diagonal elements of the "
"WCS spatial transformation matrix. "
"Unexpected results are likely.",
BeamWarning
)
pixscale = wcs.utils.proj_plane_pixel_area(self.wcs.celestial)**0.5*u.deg
convolution_kernels = []
beam_ratio_factors = []
for bm,valid in zip(self.unmasked_beams, self.goodbeams_mask):
if not valid:
# just skip masked-out beams
convolution_kernels.append(None)
beam_ratio_factors.append(1.)
continue
elif beam == bm:
# Point response when beams are equal, don't convolve.
convolution_kernels.append(None)
beam_ratio_factors.append(1.)
continue
try:
cb = beam.deconvolve(bm)
ck = cb.as_kernel(pixscale)
convolution_kernels.append(ck)
beam_ratio_factors.append((beam.sr / bm.sr))
except ValueError:
if allow_smaller:
convolution_kernels.append(None)
beam_ratio_factors.append(1.)
else:
raise
# Only use the beam ratios when convolving in Jy/beam
if not self.unit.is_equivalent(u.Jy / u.beam):
beam_ratio_factors = [1.] * len(convolution_kernels)
if update_function is None:
pb = ProgressBar(self.shape[0], desc='Convolve: ')
update_function = pb.update
newdata = np.empty(self.shape)
for ii,kernel in enumerate(convolution_kernels):
# load each image from a slice to avoid loading whole cube into
# memory
img = self[ii,:,:].filled_data[:]
# Kernel can only be None when `allow_smaller` is True,
# or if the beams are equal. Only the latter is really valid.
if kernel is None:
newdata[ii, :, :] = img
else:
# See #631: kwargs get passed within self.apply_function_parallel_spatial
newdata[ii, :, :] = convolve(img, kernel,
normalize_kernel=True,
**kwargs) * beam_ratio_factors[ii]
update_function()
newcube = SpectralCube(data=newdata, wcs=self.wcs, mask=self.mask,
meta=self.meta, fill_value=self.fill_value,
header=self.header,
allow_huge_operations=self.allow_huge_operations,
beam=beam,
wcs_tolerance=self._wcs_tolerance)
return newcube
@warn_slow
def to(self, unit, equivalencies=()):
"""
Return the cube converted to the given unit (assuming it is equivalent).
If conversion was required, this will be a copy, otherwise it will
"""
if not isinstance(unit, u.Unit):
unit = u.Unit(unit)
if unit == self.unit:
# No copying
return self
# Create the tuple of unit conversions needed.
factor = cube_utils.bunit_converters(self, unit, equivalencies=equivalencies)
factor = np.array(factor)
# special case: array in equivalencies
# (I don't think this should have to be special cased, but I don't know
# how to manipulate broadcasting rules any other way)
if hasattr(factor, '__len__') and len(factor) == len(self):
return self._new_cube_with(data=self._data*factor[:,None,None],
unit=unit)
else:
return self._new_cube_with(data=self._data*factor,
unit=unit)
def mask_channels(self, goodchannels):
"""
Helper function to mask out channels. This function is equivalent to
adding a mask with ``cube[view]`` where ``view`` is broadcastable to
the cube shape, but it accepts 1D arrays that are not normally
broadcastable. Additionally, for `VaryingResolutionSpectralCube` s,
the beams in the bad channels will not be checked when averaging,
convolving, and doing other operations that are multibeam-aware.
Parameters
----------
goodchannels : array
A 1D boolean array declaring which channels should be kept.
Returns
-------
cube : `SpectralCube`
A cube with the specified channels masked
"""
goodchannels = np.asarray(goodchannels, dtype='bool')
if goodchannels.ndim != 1:
raise ValueError("goodchannels mask must be one-dimensional")
if goodchannels.size != self.shape[0]:
raise ValueError("goodchannels must have a length equal to the "
"cube's spectral dimension.")
cube = self.with_mask(goodchannels[:,None,None])
cube.goodbeams_mask = np.logical_and(goodchannels, self.goodbeams_mask)
return cube
def spectral_interpolate(self, *args, **kwargs):
raise AttributeError("VaryingResolutionSpectralCubes can't be "
"spectrally interpolated. Convolve to a "
"common resolution with `convolve_to` before "
"attempting spectral interpolation.")
def spectral_smooth(self, *args, **kwargs):
raise AttributeError("VaryingResolutionSpectralCubes can't be "
"spectrally smoothed. Convolve to a "
"common resolution with `convolve_to` before "
"attempting spectral smoothed.")
def _regionlist_to_single_region(region_list):
"""
Recursively merge a region list into a single compound region
"""
import regions
if len(region_list) == 1:
return region_list[0]
left = _regionlist_to_single_region(region_list[:len(region_list)//2])
right = _regionlist_to_single_region(region_list[len(region_list)//2:])
return regions.CompoundPixelRegion(left, right, operator.or_)
|