1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
|
import pytest
import itertools
import operator
import numpy as np
from numpy.testing import assert_allclose
from numpy.lib.stride_tricks import as_strided
from astropy.wcs import WCS
from astropy import units as u
from .test_spectral_cube import cube_and_raw
from .. import (BooleanArrayMask, LazyMask, LazyComparisonMask,
FunctionMask, CompositeMask)
from ..masks import is_broadcastable_and_smaller, dims_to_skip, view_of_subset
from packaging.version import Version, parse
def test_spectral_cube_mask():
mask = np.array([[[False, True, True, False, True]]])
mask_wcs = WCS()
m = BooleanArrayMask(mask, mask_wcs)
data = np.arange(5).reshape((1, 1, 5))
wcs = WCS()
assert_allclose(m.include(data, wcs), [[[0, 1, 1, 0, 1]]])
assert_allclose(m.exclude(data, wcs), [[[1, 0, 0, 1, 0]]])
assert_allclose(m._filled(data, wcs), [[[np.nan, 1, 2, np.nan, 4]]])
assert_allclose(m._flattened(data, wcs), [1, 2, 4])
assert_allclose(m.include(data, wcs, view=(0, 0, slice(1, 4))), [1, 1, 0])
assert_allclose(m.exclude(data, wcs, view=(0, 0, slice(1, 4))), [0, 0, 1])
assert_allclose(m._filled(data, wcs, view=(0, 0, slice(1, 4))), [1, 2, np.nan])
assert_allclose(m._flattened(data, wcs, view=(0, 0, slice(1, 4))), [1, 2])
def test_lazy_mask():
data = np.arange(5).reshape((1, 1, 5))
wcs = WCS()
m = LazyMask(lambda x: x > 2, data=data, wcs=wcs)
assert_allclose(m.include(data, wcs), [[[0, 0, 0, 1, 1]]])
assert_allclose(m.exclude(data, wcs), [[[1, 1, 1, 0, 0]]])
assert_allclose(m._filled(data, wcs), [[[np.nan, np.nan, np.nan, 3, 4]]])
assert_allclose(m._flattened(data, wcs), [3, 4])
assert_allclose(m.include(data, wcs, view=(0, 0, slice(1, 4))), [0, 0, 1])
assert_allclose(m.exclude(data, wcs, view=(0, 0, slice(1, 4))), [1, 1, 0])
assert_allclose(m._filled(data, wcs, view=(0, 0, slice(1, 4))), [np.nan, np.nan, 3])
assert_allclose(m._flattened(data, wcs, view=(0, 0, slice(1, 4))), [3])
# Now if we call with different data, the results for include and exclude
# should *not* change.
data = (3 - np.arange(5)).reshape((1, 1, 5))
assert_allclose(m.include(data, wcs), [[[0, 0, 0, 1, 1]]])
assert_allclose(m.exclude(data, wcs), [[[1, 1, 1, 0, 0]]])
assert_allclose(m._filled(data, wcs), [[[np.nan, np.nan, np.nan, 0, -1]]])
assert_allclose(m._flattened(data, wcs), [0, -1])
assert_allclose(m.include(data, wcs, view=(0, 0, slice(1, 4))), [0, 0, 1])
assert_allclose(m.exclude(data, wcs, view=(0, 0, slice(1, 4))), [1, 1, 0])
assert_allclose(m._filled(data, wcs, view=(0, 0, slice(1, 4))), [np.nan, np.nan, 0])
assert_allclose(m._flattened(data, wcs, view=(0, 0, slice(1, 4))), [0])
def test_lazy_comparison_mask():
data = np.arange(5).reshape((1, 1, 5))
wcs = WCS()
m = LazyComparisonMask(operator.gt, 2, data=data, wcs=wcs)
assert_allclose(m.include(data, wcs), [[[0, 0, 0, 1, 1]]])
assert_allclose(m.exclude(data, wcs), [[[1, 1, 1, 0, 0]]])
assert_allclose(m._filled(data, wcs), [[[np.nan, np.nan, np.nan, 3, 4]]])
assert_allclose(m._flattened(data, wcs), [3, 4])
assert_allclose(m.include(data, wcs, view=(0, 0, slice(1, 4))), [0, 0, 1])
assert_allclose(m.exclude(data, wcs, view=(0, 0, slice(1, 4))), [1, 1, 0])
assert_allclose(m._filled(data, wcs, view=(0, 0, slice(1, 4))), [np.nan, np.nan, 3])
assert_allclose(m._flattened(data, wcs, view=(0, 0, slice(1, 4))), [3])
# Now if we call with different data, the results for include and exclude
# should *not* change.
data = (3 - np.arange(5)).reshape((1, 1, 5))
assert_allclose(m.include(data, wcs), [[[0, 0, 0, 1, 1]]])
assert_allclose(m.exclude(data, wcs), [[[1, 1, 1, 0, 0]]])
assert_allclose(m._filled(data, wcs), [[[np.nan, np.nan, np.nan, 0, -1]]])
assert_allclose(m._flattened(data, wcs), [0, -1])
assert_allclose(m.include(data, wcs, view=(0, 0, slice(1, 4))), [0, 0, 1])
assert_allclose(m.exclude(data, wcs, view=(0, 0, slice(1, 4))), [1, 1, 0])
assert_allclose(m._filled(data, wcs, view=(0, 0, slice(1, 4))), [np.nan, np.nan, 0])
assert_allclose(m._flattened(data, wcs, view=(0, 0, slice(1, 4))), [0])
def test_function_mask_incorrect_shape():
# The following function will return the incorrect shape because it does
# not apply the view
def threshold(data, wcs, view=()):
return data > 2
m = FunctionMask(threshold)
data = np.arange(5).reshape((1, 1, 5))
wcs = WCS()
with pytest.raises(ValueError) as exc:
m.include(data, wcs, view=(0, 0, slice(1, 4)))
assert exc.value.args[0] == "Function did not return mask with correct shape - expected (3,), got (1, 1, 5)"
def test_function_mask():
def threshold(data, wcs, view=()):
return data[view] > 2
m = FunctionMask(threshold)
data = np.arange(5).reshape((1, 1, 5))
wcs = WCS()
assert_allclose(m.include(data, wcs), [[[0, 0, 0, 1, 1]]])
assert_allclose(m.exclude(data, wcs), [[[1, 1, 1, 0, 0]]])
assert_allclose(m._filled(data, wcs), [[[np.nan, np.nan, np.nan, 3, 4]]])
assert_allclose(m._flattened(data, wcs), [3, 4])
assert_allclose(m.include(data, wcs, view=(0, 0, slice(1, 4))), [0, 0, 1])
assert_allclose(m.exclude(data, wcs, view=(0, 0, slice(1, 4))), [1, 1, 0])
assert_allclose(m._filled(data, wcs, view=(0, 0, slice(1, 4))), [np.nan, np.nan, 3])
assert_allclose(m._flattened(data, wcs, view=(0, 0, slice(1, 4))), [3])
# Now if we call with different data, the results for include and exclude
# *should* change.
data = (3 - np.arange(5)).reshape((1, 1, 5))
assert_allclose(m.include(data, wcs), [[[1, 0, 0, 0, 0]]])
assert_allclose(m.exclude(data, wcs), [[[0, 1, 1, 1, 1]]])
assert_allclose(m._filled(data, wcs), [[[3, np.nan, np.nan, np.nan, np.nan]]])
assert_allclose(m._flattened(data, wcs), [3])
assert_allclose(m.include(data, wcs, view=(0, 0, slice(0, 3))), [1, 0, 0])
assert_allclose(m.exclude(data, wcs, view=(0, 0, slice(0, 3))), [0, 1, 1])
assert_allclose(m._filled(data, wcs, view=(0, 0, slice(0, 3))), [3, np.nan, np.nan])
assert_allclose(m._flattened(data, wcs, view=(0, 0, slice(0, 3))), [3])
def test_composite_mask():
def lower_threshold(data, wcs, view=()):
return data[view] > 0
def upper_threshold(data, wcs, view=()):
return data[view] < 3
m1 = FunctionMask(lower_threshold)
m2 = FunctionMask(upper_threshold)
m = m1 & m2
data = np.arange(5).reshape((1, 1, 5))
wcs = WCS()
assert_allclose(m.include(data, wcs), [[[0, 1, 1, 0, 0]]])
assert_allclose(m.exclude(data, wcs), [[[1, 0, 0, 1, 1]]])
assert_allclose(m._filled(data, wcs), [[[np.nan, 1, 2, np.nan, np.nan]]])
assert_allclose(m._flattened(data, wcs), [1, 2])
assert_allclose(m.include(data, wcs, view=(0, 0, slice(1, 4))), [1, 1, 0])
assert_allclose(m.exclude(data, wcs, view=(0, 0, slice(1, 4))), [0, 0, 1])
assert_allclose(m._filled(data, wcs, view=(0, 0, slice(1, 4))), [1, 2, np.nan])
assert_allclose(m._flattened(data, wcs, view=(0, 0, slice(1, 4))), [1, 2])
def test_mask_logic():
data = np.arange(5).reshape((1, 1, 5))
wcs = WCS()
def threshold_1(data, wcs, view=()):
return data[view] > 0
def threshold_2(data, wcs, view=()):
return data[view] < 4
def threshold_3(data, wcs, view=()):
return data[view] != 2
m1 = FunctionMask(threshold_1)
m2 = FunctionMask(threshold_2)
m3 = FunctionMask(threshold_3)
m = m1 & m2
assert_allclose(m.include(data, wcs), [[[0, 1, 1, 1, 0]]])
m = m1 | m2
assert_allclose(m.include(data, wcs), [[[1, 1, 1, 1, 1]]])
m = m1 | ~m2
assert_allclose(m.include(data, wcs), [[[0, 1, 1, 1, 1]]])
m = m1 & m2 & m3
assert_allclose(m.include(data, wcs), [[[0, 1, 0, 1, 0]]])
m = (m1 | m3) & m2
assert_allclose(m.include(data, wcs), [[[1, 1, 1, 1, 0]]])
m = m1 ^ m2
assert_allclose(m.include(data, wcs), [[[1, 0, 0, 0, 1]]])
m = m1 ^ m3
assert_allclose(m.include(data, wcs), [[[1, 0, 1, 0, 0]]])
@pytest.fixture
def filename(request):
return request.getfixturevalue(request.param)
@pytest.mark.parametrize(('filename'),
(('data_advs'),
('data_dvsa'),
('data_sdav'),
('data_sadv'),
('data_vsad'),
('data_vad'),
('data_adv'),
), indirect=['filename'])
def test_mask_spectral_unit(filename, use_dask):
cube, data = cube_and_raw(filename, use_dask=use_dask)
mask = BooleanArrayMask(data, cube._wcs)
mask_freq = mask.with_spectral_unit(u.Hz)
assert mask_freq._wcs.wcs.ctype[mask_freq._wcs.wcs.spec] == 'FREQ-W2F'
# values taken from header
rest = 1.42040571841E+09*u.Hz
crval = -3.21214698632E+05*u.m/u.s
outcv = crval.to(u.m, u.doppler_optical(rest)).to(u.Hz, u.spectral())
assert_allclose(mask_freq._wcs.wcs.crval[mask_freq._wcs.wcs.spec],
outcv.to(u.Hz).value)
def test_wcs_validity_check(data_adv, use_dask):
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
mask = BooleanArrayMask(data > 0, cube._wcs)
cube = cube.with_mask(mask)
s2 = cube.spectral_slab(-2 * u.km / u.s, 2 * u.km / u.s)
s3 = s2.with_spectral_unit(u.km / u.s, velocity_convention=u.doppler_radio)
# just checking that this works, not that it does anything in particular
moment_map = s3.moment(order=1)
def test_wcs_validity_check_failure(data_adv, use_dask):
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
assert cube.wcs.wcs.crval[2] == -3.21214698632E+05
wcs2 = cube.wcs.deepcopy()
# add some difference in the 5th decimal place
wcs2.wcs.crval[2] += 0.00001
assert wcs2.wcs.crval[2] == -3.21214698622E+05
assert cube.wcs.wcs.crval[2] == -3.21214698632E+05
# can make a mask
mask = BooleanArrayMask(data>0, wcs2)
assert cube.wcs.wcs.crval[2] != wcs2.wcs.crval[2]
assert cube._wcs.wcs.crval[2] != wcs2.wcs.crval[2]
# but if it's not exactly equal, an error should be raised at this step
with pytest.raises(ValueError, match="WCS does not match mask WCS"):
cube.with_mask(mask)
# this one should work though
cube = cube.with_mask(mask, wcs_tolerance=1e-4)
assert cube._wcs_tolerance == 1e-4
# then the rest of this should be OK
s2 = cube.spectral_slab(-2 * u.km / u.s, 2 * u.km / u.s)
s3 = s2.with_spectral_unit(u.km / u.s, velocity_convention=u.doppler_radio)
# just checking that this works, not that it does anything in particular
moment_map = s3.moment(order=1)
def test_mask_spectral_unit_functions(data_adv, use_dask):
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
# function mask should do nothing
mask1 = FunctionMask(lambda x: x>0)
mask_freq1 = mask1.with_spectral_unit(u.Hz)
# lazy mask behaves like booleanarraymask
mask2 = LazyMask(lambda x: x>0, cube=cube)
mask_freq2 = mask2.with_spectral_unit(u.Hz)
assert mask_freq2._wcs.wcs.ctype[mask_freq2._wcs.wcs.spec] == 'FREQ-W2F'
# values taken from header
rest = 1.42040571841E+09*u.Hz
crval = -3.21214698632E+05*u.m/u.s
outcv = crval.to(u.m, u.doppler_optical(rest)).to(u.Hz, u.spectral())
assert_allclose(mask_freq2._wcs.wcs.crval[mask_freq2._wcs.wcs.spec],
outcv.to(u.Hz).value)
# again, test that it works
mask3 = CompositeMask(mask1,mask2)
mask_freq3 = mask3.with_spectral_unit(u.Hz)
mask_freq3 = CompositeMask(mask_freq1,mask_freq2)
mask_freq_freq3 = mask_freq3.with_spectral_unit(u.Hz)
# this one should fail
#failedmask = CompositeMask(mask_freq1,mask2)
def is_broadcastable_try(shp1, shp2):
"""
Test whether an array shape can be broadcast to another
(this is the try/fail approach, which is guaranteed right.... right?)
http://stackoverflow.com/questions/24743753/test-if-an-array-is-broadcastable-to-a-shape/24745359#24745359
"""
#This variant does not work as of np 1.10: the strided arrays aren't
#writable and therefore apparently cannot be broadcast
# x = np.array([1])
# a = as_strided(x, shape=shp1, strides=[0] * len(shp1))
# b = as_strided(x, shape=shp2, strides=[0] * len(shp2))
a = np.ones(shp1)
b = np.ones(shp2)
try:
c = np.broadcast_arrays(a, b)
# reverse order: compare last dim first (as broadcasting does)
if any(bi<ai for ai,bi in zip(shp1,shp2)):
# don't allow "b" to be smaller than "a"
return False
return True
except ValueError:
return False
shapes = ([1,5,5], [1,5,1], [5,5,1], [5,5], [5,5,2],
[2,3,4], [4,3,2], [4,2,3], [2,4,3])
shape_combos = list(itertools.combinations(shapes,2))
@pytest.mark.parametrize(('shp1','shp2'),shape_combos)
def test_is_broadcastable(shp1, shp2):
assert is_broadcastable_and_smaller(shp1,shp2) == is_broadcastable_try(shp1,shp2)
@pytest.mark.parametrize(('shp1','shp2','dim'),
(([5,5],[2,5,5],[0]),
#([5,5],[5,5,2],[2]),
([2,5,5],[2,5,5],[])))
def test_dims_to_skip(shp1, shp2, dim):
assert dims_to_skip(shp1, shp2) == dim
@pytest.mark.parametrize(('shp1','shp2', 'inview', 'outview'),
(([5,5],[2,5,5], (slice(0,1), slice(1,3), slice(2,4),), (slice(1,3), slice(2,4))),
# not a valid broadcast ([5,5],[5,5,2], [slice(1,3), slice(2,4), slice(0,1),], [slice(1,3), slice(2,4)]),
([2,5,5],[2,5,5],(slice(0,1), slice(1,3), slice(2,4),), (slice(0,1), slice(1,3), slice(2,4),))))
def test_view_of_subset(shp1, shp2, inview, outview):
assert view_of_subset(shp1,shp2,inview) == outview
def test_flat_mask(data_adv, use_dask):
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
mask_array = np.array([[True,False],[False,False],[True,True]])
bool_mask_array = BooleanArrayMask(mask=mask_array, wcs=cube._wcs,
shape=cube.shape)
mcube = cube.with_mask(bool_mask_array)
# I think we can use == instead of 'almost equal' here because the
# underlying data should be identical (the same in memory)
assert np.all(cube.sum(axis=0)[mask_array] == mcube.sum(axis=0)[mask_array])
assert np.all(np.isnan(mcube.sum(axis=0)[~mask_array]))
@pytest.mark.skipif(parse(np.__version__) < Version('1.7'),
reason='Numpy <1.7 does not support multi-slice indexing.')
def test_flat_mask_spectral(data_adv, use_dask):
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
mask_array = np.array([[True,False],[False,False],[True,True]])
bool_mask_array = BooleanArrayMask(mask=mask_array, wcs=cube._wcs,
shape=cube.shape)
mcube = cube.with_mask(bool_mask_array)
# Broadcast the 2D mask to 3D
cubemask = (np.ones(4,dtype='bool')[:,None,None] & mask_array[None,:,:])
# Check that spectral masking works too
assert np.all((data*cubemask).sum(axis=(1,2)) ==
mcube.sum(axis=(1,2)).value)
def test_include(data_adv, use_dask):
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
mask_array = np.array([[True,False],[False,False],[True,True]])
bool_mask_array = BooleanArrayMask(mask=mask_array, wcs=cube._wcs,
shape=cube.shape)
assert np.all(bool_mask_array.include() == mask_array)
def test_1d_mask(data_adv, use_dask):
# regression test for issue revealed in #183
# In principle, this is also a regression test for #298, except this always
# passed where #298 failed, which I don't understand.
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
mask = np.array([True, False, True, False])
sum0 = cube.with_mask(mask[:,None,None]).sum(axis=0)
sum0d = data[mask, :,:].sum(axis=0)
np.testing.assert_almost_equal(sum0.value, sum0d)
def test_1d_mask_amp(data_adv, use_dask):
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
mask = np.array([True, False, True, False])
Mask = BooleanArrayMask(mask[:,None,None],
wcs=cube._wcs,
shape=cube.shape,
)
ampd = cube.mask & Mask
ampd.include()
def test_2dcomparison_mask_1d_index(data_adv, use_dask):
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
med = cube.median(axis=0)
mask = cube > med
mcube = cube.with_mask(mask)
assert all(mask[:,1,1].include() ==
mask.include()[:,1,1])
spec = mcube[:,1,1]
assert spec.ndim == 1
assert all(spec.mask.include() == mask.include()[:,1,1])
assert spec[:-1].mask.include().shape == (3,)
assert all(spec[:-1].mask.include() == mask.include()[:-1,1,1])
assert isinstance(spec[0], u.Quantity)
spec = mcube[:-1,1,1]
assert spec.ndim == 1
assert hasattr(spec, '_fill_value')
assert all(spec.mask.include() == mask.include()[:-1,1,1])
assert spec[:-1].mask.include().shape == (2,)
assert all(spec[:-1].mask.include() == mask.include()[:-2,1,1])
assert isinstance(spec[0], u.Quantity)
def test_1dcomparison_mask_1d_index(data_adv, use_dask):
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
med = cube.median()
mask = cube > med
mcube = cube.with_mask(mask)
assert all(mask[:,1,1].include() ==
mask.include()[:,1,1])
spec = mcube[:,1,1]
assert spec.ndim == 1
assert all(spec.mask.include() == [True,False,False,True])
assert spec[:-1].mask.include().shape == (3,)
assert all(spec[:-1].mask.include() == [True,False,False])
assert isinstance(spec[0], u.Quantity)
def test_1dmask_indexing(data_adv, use_dask):
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
med = cube.median()
mask = cube > med
mcube = cube.with_mask(mask)
assert all(mask[:,1,1].include() ==
mask.include()[:,1,1])
spec = mcube[:,1,1]
badvals = np.array([False,True,True,False], dtype='bool')
assert np.all(np.isnan(spec[badvals]))
assert not np.any(np.isnan(spec[~badvals]))
def test_numpy_ma_tools(data_adv, use_dask):
"""
check that np.ma.core.is_masked works
"""
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
med = cube.median()
mask = cube > med
mcube = cube.with_mask(mask)
assert np.ma.core.is_masked(mcube)
assert np.ma.core.getmask(mcube) is not None
assert np.ma.core.is_masked(mcube[:,0,0])
assert np.ma.core.getmask(mcube[:,0,0]) is not None
@pytest.mark.xfail
def test_numpy_ma_tools_2d(data_adv, use_dask):
""" This depends on 2D objects keeping masks, which depends on #395.
so, TODO: un-xfail this """
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
med = cube.median()
mask = cube > med
mcube = cube.with_mask(mask)
assert np.ma.core.is_masked(mcube[0,:,:])
assert np.ma.core.getmask(mcube[0,:,:]) is not None
def test_filled(data_adv, use_dask):
""" test that 'filled' works """
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
med = cube.median()
mask = cube > med
mcube = cube.with_mask(mask)
assert np.isnan(mcube._fill_value)
filled = mcube.filled(np.nan)
filled_ = mcube.filled()
assert_allclose(filled, filled_)
assert (np.isnan(filled) == mcube.mask.exclude()).all()
def test_boolean_array_composite_mask(data_adv, use_dask):
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
med = cube.median()
mask = cube > med
arrmask = cube.max(axis=0) > med
# we're just testing that this doesn't fail
combined_mask = mask & arrmask
mcube = cube.with_mask(combined_mask)
# not doing assert_almost_equal because I don't want to worry about precision
assert (mcube.sum() > 9.0 * u.K) & (mcube.sum() < 9.1*u.K)
|