1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
|
import sys
import pytest
import tempfile
import numpy as np
import os
from astropy import constants, units as u
from astropy import convolution
from astropy.wcs import WCS
from astropy import wcs
from astropy.io import fits
try:
import tracemalloc
tracemallocOK = True
except ImportError:
tracemallocOK = False
# The comparison of Quantities in test_memory_usage
# fail with older versions of numpy
from packaging.version import Version, parse
NPY_VERSION_CHECK = parse(np.version.version) >= Version("1.13")
from radio_beam import beam, Beam
from .. import SpectralCube
from ..masks import BooleanArrayMask
from ..utils import WCSCelestialError
from ..cube_utils import mosaic_cubes, combine_headers
from .test_spectral_cube import cube_and_raw
from .test_projection import load_projection
from . import path, utilities
WINDOWS = sys.platform == "win32"
@pytest.mark.parametrize('allow_huge_operations', (True, False))
def test_convolution(data_255_delta, allow_huge_operations, use_dask):
cube, data = cube_and_raw(data_255_delta, use_dask=use_dask)
cube.allow_huge_operations = allow_huge_operations
# 1" convolved with 1.5" -> 1.8027....
target_beam = Beam(1.802775637731995*u.arcsec, 1.802775637731995*u.arcsec,
0*u.deg)
conv_cube = cube.convolve_to(target_beam)
expected = convolution.Gaussian2DKernel((1.5*u.arcsec /
beam.SIGMA_TO_FWHM /
(5.555555555555e-4*u.deg)).decompose().value,
x_size=5, y_size=5,
)
expected.normalize()
np.testing.assert_almost_equal(expected.array,
conv_cube.filled_data[0,:,:].value)
# 2nd layer is all zeros
assert np.all(conv_cube.filled_data[1,:,:] == 0.0)
@pytest.mark.parametrize('allow_huge_operations', (True, False))
def test_beams_convolution(data_455_delta_beams, allow_huge_operations, use_dask):
cube, data = cube_and_raw(data_455_delta_beams, use_dask=use_dask)
cube.allow_huge_operations = allow_huge_operations
# 1" convolved with 1.5" -> 1.8027....
target_beam = Beam(1.802775637731995*u.arcsec, 1.802775637731995*u.arcsec,
0*u.deg)
conv_cube = cube.convolve_to(target_beam)
pixscale = wcs.utils.proj_plane_pixel_area(cube.wcs.celestial)**0.5*u.deg
for ii, bm in enumerate(cube.beams):
expected = target_beam.deconvolve(bm).as_kernel(pixscale, x_size=5,
y_size=5)
expected.normalize()
np.testing.assert_almost_equal(expected.array,
conv_cube.filled_data[ii,:,:].value)
def test_beams_convolution_equal(data_522_delta_beams, use_dask):
cube, data = cube_and_raw(data_522_delta_beams, use_dask=use_dask)
# Only checking that the equal beam case is handled correctly.
# Fake the beam in the first channel. Then ensure that the first channel
# has NOT been convolved.
target_beam = Beam(1.0 * u.arcsec, 1.0 * u.arcsec, 0.0 * u.deg)
cube.beams.major[0] = target_beam.major
cube.beams.minor[0] = target_beam.minor
cube.beams.pa[0] = target_beam.pa
conv_cube = cube.convolve_to(target_beam)
np.testing.assert_almost_equal(cube.filled_data[0].value,
conv_cube.filled_data[0].value)
@pytest.mark.parametrize('use_memmap', (True, False))
def test_reproject(use_memmap, data_adv, use_dask):
pytest.importorskip('reproject')
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
wcs_in = WCS(cube.header)
wcs_out = wcs_in.deepcopy()
wcs_out.wcs.ctype = ['GLON-SIN', 'GLAT-SIN', wcs_in.wcs.ctype[2]]
wcs_out.wcs.crval = [134.37608, -31.939241, wcs_in.wcs.crval[2]]
wcs_out.wcs.crpix = [2., 2., wcs_in.wcs.crpix[2]]
# cube is doppler-optical by default, which uses the rest wavelength,
# which isn't auto-computed, resulting in nan pixels in the WCS transform
wcs_out.wcs.restwav = 0.21106114549833
cube._wcs.wcs.restwav = 0.21106114549833
header_out = cube.header
header_out['NAXIS1'] = 4
header_out['NAXIS2'] = 5
header_out['NAXIS3'] = cube.shape[0]
header_out.update(wcs_out.to_header())
result = cube.reproject(header_out, use_memmap=use_memmap)
assert result.shape == (cube.shape[0], 5, 4)
# empirically, this is how close we can get after https://github.com/astropy/astropy/pull/14508
tolerance = 1e-12
assert wcs_out.wcs.compare(WCS(header_out).wcs, tolerance=tolerance)
# Check WCS in reprojected matches wcs_out
assert wcs_out.wcs.compare(result.wcs.wcs, tolerance=tolerance)
# And that the headers have equivalent WCS info.
result_wcs_from_header = WCS(result.header)
assert result_wcs_from_header.wcs.compare(wcs_out.wcs, tolerance=tolerance)
def test_spectral_smooth(data_522_delta, use_dask):
cube, data = cube_and_raw(data_522_delta, use_dask=use_dask)
kernel = convolution.Gaussian1DKernel(1.0)
result = cube.spectral_smooth(kernel=kernel, use_memmap=False)
# check that all values come out right from the cube creation
np.testing.assert_almost_equal(cube[2,:,:].value, 1.0)
np.testing.assert_almost_equal(cube.unitless_filled_data[:2,:,:], 0.0)
np.testing.assert_almost_equal(cube.unitless_filled_data[3:,:,:], 0.0)
# make sure the kernel comes out right; the convolution test will fail if this is wrong
assert kernel.array.size == 9
# this was the old astropy normalization
# We don't actually need the kernel to match these values, but I'm leaving this here
# as a note for future us:
# https://github.com/astropy/astropy/pull/13299
# the error came about because we were using two different kernel sizes, which resulted in
# two different normalizations after the correction in 13299
# Before 13299, normalization was not guaranteed.
#np.testing.assert_almost_equal(kernel.array[2:-2],
# np.array([0.05399097, 0.24197072, 0.39894228, 0.24197072, 0.05399097]))
np.testing.assert_almost_equal(result[:,0,0].value,
kernel.array[2:-2],
4)
# second test with memmap=True
result = cube.spectral_smooth(kernel=kernel, use_memmap=True)
np.testing.assert_almost_equal(result[:,0,0].value,
kernel.array[2:-2],
4)
def test_catch_kernel_with_units(data_522_delta, use_dask):
# Passing a kernel with a unit should raise a u.UnitsError
cube, data = cube_and_raw(data_522_delta, use_dask=use_dask)
with pytest.raises(u.UnitsError,
match="The convolution kernel should be defined without a unit."):
cube.spectral_smooth(kernel=convolution.Gaussian1DKernel(1.0 * u.one),
use_memmap=False)
@pytest.mark.skipif('WINDOWS')
def test_spectral_smooth_4cores(data_522_delta):
pytest.importorskip('joblib')
cube, data = cube_and_raw(data_522_delta, use_dask=False)
kernel = convolution.Gaussian1DKernel(1.0)
result = cube.spectral_smooth(kernel=kernel, num_cores=4, use_memmap=True)
assert kernel.array.size == 9
np.testing.assert_almost_equal(result[:,0,0].value,
kernel.array[2:-2],
4)
# this is one way to test non-parallel mode
result = cube.spectral_smooth(kernel=kernel, num_cores=4, use_memmap=False)
np.testing.assert_almost_equal(result[:,0,0].value,
kernel.array[2:-2],
4)
# num_cores = 4 is a contradiction with parallel=False, so we want to make
# sure it fails
with pytest.raises(ValueError,
match=("parallel execution was not requested, but "
"multiple cores were: these are incompatible "
"options. Either specify num_cores=1 or "
"parallel=True")):
result = cube.spectral_smooth(kernel=kernel,
num_cores=4, parallel=False)
np.testing.assert_almost_equal(result[:,0,0].value,
kernel.array[2:-2],
4)
def test_spectral_smooth_fail(data_522_delta_beams, use_dask):
cube, data = cube_and_raw(data_522_delta_beams, use_dask=use_dask)
with pytest.raises(AttributeError,
match=("VaryingResolutionSpectralCubes can't be "
"spectrally smoothed. Convolve to a "
"common resolution with `convolve_to` before "
"attempting spectral smoothed.")):
cube.spectral_smooth(kernel=convolution.Gaussian1DKernel(1.0))
def test_spectral_interpolate(data_522_delta, use_dask):
cube, data = cube_and_raw(data_522_delta, use_dask=use_dask)
orig_wcs = cube.wcs.deepcopy()
# midpoint between each position
sg = (cube.spectral_axis[1:] + cube.spectral_axis[:-1])/2.
result = cube.spectral_interpolate(spectral_grid=sg)
np.testing.assert_almost_equal(result[:,0,0].value,
[0.0, 0.5, 0.5, 0.0])
assert cube.wcs.wcs.compare(orig_wcs.wcs)
def test_spectral_interpolate_varying_chunksize(data_255_delta):
cube, data = cube_and_raw(data_255_delta, use_dask=True)
orig_wcs = cube.wcs.deepcopy()
# midpoint between each position
sg = (cube.spectral_axis[1:] + cube.spectral_axis[:-1])/2.
# Force unequal chunks
cube = cube.rechunk((-1, 2, 2))
result = cube.spectral_interpolate(spectral_grid=sg, force_rechunk=False)
np.testing.assert_almost_equal(result[:,2,2].value,
[0.5])
assert cube.wcs.wcs.compare(orig_wcs.wcs)
# Ensure the spatial chunk sizes vary
assert cube._data.chunks[1] == (2, 2, 1)
assert result._data.chunks[1] == (2, 2, 1)
def test_spectral_interpolate_rechunk_fail(data_255_delta):
cube, data = cube_and_raw(data_255_delta, use_dask=True)
orig_wcs = cube.wcs.deepcopy()
# midpoint between each position
sg = (cube.spectral_axis[1:] + cube.spectral_axis[:-1])/2.
# Force >1 chunk in spectral dimension
cube = cube.rechunk((1, -1, -1))
with pytest.raises(ValueError,
match=("The cube currently has 2 chunks along")):
cube.spectral_interpolate(spectral_grid=sg, force_rechunk=False)
def test_spectral_interpolate_with_fillvalue(data_522_delta, use_dask):
cube, data = cube_and_raw(data_522_delta, use_dask=use_dask)
# Step one channel out of bounds.
sg = ((cube.spectral_axis[0]) -
(cube.spectral_axis[1] - cube.spectral_axis[0]) *
np.linspace(1,4,4))
result = cube.spectral_interpolate(spectral_grid=sg,
fill_value=42)
np.testing.assert_almost_equal(result[:,0,0].value,
np.ones(4)*42)
def test_spectral_interpolate_fail(data_522_delta_beams, use_dask):
cube, data = cube_and_raw(data_522_delta_beams, use_dask=use_dask)
with pytest.raises(AttributeError,
match=("VaryingResolutionSpectralCubes can't be "
"spectrally interpolated. Convolve to a "
"common resolution with `convolve_to` before "
"attempting spectral interpolation.")):
cube.spectral_interpolate(5)
def test_spectral_interpolate_with_mask(data_522_delta, use_dask):
hdul = fits.open(data_522_delta)
hdu = hdul[0]
# Swap the velocity axis so indiff < 0 in spectral_interpolate
hdu.header["CDELT3"] = - hdu.header["CDELT3"]
cube = SpectralCube.read(hdu, use_dask=use_dask)
mask = np.ones(cube.shape, dtype=bool)
mask[:2] = False
masked_cube = cube.with_mask(mask)
orig_wcs = cube.wcs.deepcopy()
# midpoint between each position
sg = (cube.spectral_axis[1:] + cube.spectral_axis[:-1])/2.
result = masked_cube.spectral_interpolate(spectral_grid=sg[::-1])
# The output makes CDELT3 > 0 (reversed spectral axis) so the masked
# portion are the final 2 channels.
np.testing.assert_almost_equal(result[:, 0, 0].value,
[0.0, 0.5, np.nan, np.nan])
assert cube.wcs.wcs.compare(orig_wcs.wcs)
hdul.close()
def test_spectral_interpolate_reversed(data_522_delta, use_dask):
cube, data = cube_and_raw(data_522_delta, use_dask=use_dask)
orig_wcs = cube.wcs.deepcopy()
# Reverse spectral axis
sg = cube.spectral_axis[::-1]
result = cube.spectral_interpolate(spectral_grid=sg)
np.testing.assert_almost_equal(sg.value, result.spectral_axis.value)
def test_convolution_2D(data_55_delta):
proj, hdu = load_projection(data_55_delta)
# 1" convolved with 1.5" -> 1.8027....
target_beam = Beam(1.802775637731995*u.arcsec, 1.802775637731995*u.arcsec,
0*u.deg)
conv_proj = proj.convolve_to(target_beam)
expected = convolution.Gaussian2DKernel((1.5*u.arcsec /
beam.SIGMA_TO_FWHM /
(5.555555555555e-4*u.deg)).decompose().value,
x_size=5, y_size=5,
)
expected.normalize()
np.testing.assert_almost_equal(expected.array,
conv_proj.value)
assert conv_proj.beam == target_beam
# Pass a kwarg to the convolution function
conv_proj = proj.convolve_to(target_beam, nan_treatment='fill')
def test_nocelestial_convolution_2D_fail(data_255_delta, use_dask):
cube, data = cube_and_raw(data_255_delta, use_dask=use_dask)
proj = cube.moment0(axis=1)
test_beam = Beam(1.0 * u.arcsec)
with pytest.raises(WCSCelestialError,
match="WCS does not contain two spatial axes."):
proj.convolve_to(test_beam)
def test_reproject_2D(data_55):
pytest.importorskip('reproject')
proj, hdu = load_projection(data_55)
wcs_in = WCS(proj.header)
wcs_out = wcs_in.deepcopy()
wcs_out.wcs.ctype = ['GLON-SIN', 'GLAT-SIN']
wcs_out.wcs.crval = [134.37608, -31.939241]
wcs_out.wcs.crpix = [2., 2.]
header_out = proj.header
header_out['NAXIS1'] = 4
header_out['NAXIS2'] = 5
header_out.update(wcs_out.to_header())
result = proj.reproject(header_out)
assert result.shape == (5, 4)
assert result.beam == proj.beam
# Check WCS in reprojected matches wcs_out
assert wcs_out.wcs.compare(result.wcs.wcs)
# And that the headers have equivalent WCS info.
result_wcs_from_header = WCS(result.header)
assert result_wcs_from_header.wcs.compare(wcs_out.wcs)
def test_nocelestial_reproject_2D_fail(data_255_delta, use_dask):
pytest.importorskip('reproject')
cube, data = cube_and_raw(data_255_delta, use_dask=use_dask)
proj = cube.moment0(axis=1)
with pytest.raises(WCSCelestialError,
match="WCS does not contain two spatial axes."):
proj.reproject(cube.header)
@pytest.mark.parametrize('use_memmap', (True,False))
def test_downsample(use_memmap, data_255):
# FIXME: this test should be updated to use the use_dask fixture once
# DaskSpectralCube.downsample_axis is fixed.
cube, data = cube_and_raw(data_255, use_dask=False)
dscube = cube.downsample_axis(factor=2, axis=0, use_memmap=use_memmap)
expected = data.mean(axis=0)
np.testing.assert_almost_equal(expected[None,:,:],
dscube.filled_data[:].value)
dscube = cube.downsample_axis(factor=2, axis=1, use_memmap=use_memmap)
expected = np.array([data[:,:2,:].mean(axis=1),
data[:,2:4,:].mean(axis=1),
data[:,4:,:].mean(axis=1), # just data[:,4,:]
]).swapaxes(0,1)
assert expected.shape == (2,3,5)
assert dscube.shape == (2,3,5)
np.testing.assert_almost_equal(expected,
dscube.filled_data[:].value)
dscube = cube.downsample_axis(factor=2, axis=1, truncate=True,
use_memmap=use_memmap)
expected = np.array([data[:,:2,:].mean(axis=1),
data[:,2:4,:].mean(axis=1),
]).swapaxes(0,1)
np.testing.assert_almost_equal(expected,
dscube.filled_data[:].value)
@pytest.mark.parametrize('use_memmap', (True,False))
def test_downsample_wcs(use_memmap, data_255):
# FIXME: this test should be updated to use the use_dask fixture once
# DaskSpectralCube.downsample_axis is fixed.
cube, data = cube_and_raw(data_255, use_dask=False)
dscube = (cube
.downsample_axis(factor=2, axis=1, use_memmap=use_memmap)
.downsample_axis(factor=2, axis=2, use_memmap=use_memmap))
# pixel [0,0] in the new cube should have coordinate [1,1] in the old cube
lonnew, latnew = dscube.wcs.celestial.wcs_pix2world(0, 0, 0)
xpixold_ypixold = np.array(cube.wcs.celestial.wcs_world2pix(lonnew, latnew, 0))
np.testing.assert_almost_equal(xpixold_ypixold, (0.5, 0.5))
# the center of the bottom-left pixel, in FITS coordinates, in the
# original frame will now be at -0.25, -0.25 in the new frame
lonold, latold = cube.wcs.celestial.wcs_pix2world(1, 1, 1)
xpixnew_ypixnew = np.array(dscube.wcs.celestial.wcs_world2pix(lonold, latold, 1))
np.testing.assert_almost_equal(xpixnew_ypixnew, (0.75, 0.75))
@pytest.mark.skipif('not tracemallocOK or (sys.version_info.major==3 and sys.version_info.minor<6) or not NPY_VERSION_CHECK')
def test_reproject_3D_memory():
pytest.importorskip('reproject')
tracemalloc.start()
snap1 = tracemalloc.take_snapshot()
# create a 64 MB cube
cube,_ = utilities.generate_gaussian_cube(shape=[200,200,200])
sz = _.dtype.itemsize
# check that cube is loaded into memory
snap2 = tracemalloc.take_snapshot()
diff = snap2.compare_to(snap1, 'lineno')
diffvals = np.array([dd.size_diff for dd in diff])
# at this point, the generated cube should still exist in memory
assert diffvals.max()*u.B >= 200**3*sz*u.B
wcs_in = cube.wcs
wcs_out = wcs_in.deepcopy()
wcs_out.wcs.ctype = ['GLON-SIN', 'GLAT-SIN', cube.wcs.wcs.ctype[2]]
wcs_out.wcs.crval = [0.001, 0.001, cube.wcs.wcs.crval[2]]
wcs_out.wcs.crpix = [2., 2., cube.wcs.wcs.crpix[2]]
header_out = (wcs_out.to_header())
header_out['NAXIS'] = 3
header_out['NAXIS1'] = int(cube.shape[2]/2)
header_out['NAXIS2'] = int(cube.shape[1]/2)
header_out['NAXIS3'] = cube.shape[0]
# First the unfilled reprojection test: new memory is allocated for
# `result`, but nowhere else
result = cube.reproject(header_out, filled=False)
snap3 = tracemalloc.take_snapshot()
diff = snap3.compare_to(snap2, 'lineno')
diffvals = np.array([dd.size_diff for dd in diff])
# result should have the same size as the input data, except smaller in two dims
# make sure that's all that's allocated
assert diffvals.max()*u.B >= 200*100**2*sz*u.B
assert diffvals.max()*u.B < 200*110**2*sz*u.B
# without masking the cube, nothing should change
result = cube.reproject(header_out, filled=True)
snap4 = tracemalloc.take_snapshot()
diff = snap4.compare_to(snap3, 'lineno')
diffvals = np.array([dd.size_diff for dd in diff])
assert diffvals.max()*u.B <= 1*u.MB
assert result.wcs.wcs.crval[0] == 0.001
assert result.wcs.wcs.crpix[0] == 2.
# masking the cube will force the fill to create a new in-memory copy
mcube = cube.with_mask(cube > 0.1*cube.unit)
# `_is_huge` would trigger a use_memmap
assert not mcube._is_huge
assert mcube.mask.any()
# take a new snapshot because we're not testing the mask creation
snap5 = tracemalloc.take_snapshot()
tracemalloc.stop()
tracemalloc.start() # stop/start so we can check peak mem use from here
current_b4, peak_b4 = tracemalloc.get_traced_memory()
result = mcube.reproject(header_out, filled=True)
current_aftr, peak_aftr = tracemalloc.get_traced_memory()
snap6 = tracemalloc.take_snapshot()
diff = snap6.compare_to(snap5, 'lineno')
diffvals = np.array([dd.size_diff for dd in diff])
# a duplicate of the cube should have been created by filling masked vals
# (this should be near-exact since 'result' should occupy exactly the
# same amount of memory)
assert diffvals.max()*u.B <= 1*u.MB #>= 200**3*sz*u.B
# the peak memory usage *during* reprojection will have that duplicate,
# but the memory gets cleaned up afterward
assert (peak_aftr-peak_b4)*u.B >= (200**3*sz*u.B + 200*100**2*sz*u.B)
assert result.wcs.wcs.crval[0] == 0.001
assert result.wcs.wcs.crpix[0] == 2.
@pytest.mark.parametrize('spectral_block_size,use_memmap', ((None, False),
(100, False),
(None, True),
(100, False),
(1, True),
(1, False),
))
def test_mosaic_cubes(use_memmap, data_adv, use_dask, spectral_block_size):
pytest.importorskip('reproject')
# Read in data to use
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
# cube is doppler-optical by default, which uses the rest wavelength,
# which isn't auto-computed, resulting in nan pixels in the WCS transform
cube._wcs.wcs.restwav = constants.c.to(u.m/u.s).value / cube.wcs.wcs.restfrq
expected_wcs = WCS(combine_headers(cube.header, cube.header)).celestial
# Make two overlapping cubes of the data
part1 = cube[:, :round(cube.shape[1]*2./3.), :]
part2 = cube[:, round(cube.shape[1]/3.):, :]
assert part1.wcs.wcs.restwav != 0
assert part2.wcs.wcs.restwav != 0
result = mosaic_cubes([part1, part2], order='nearest-neighbor',
roundtrip_coords=False,
spectral_block_size=spectral_block_size)
# Check that the shapes are the same
assert result.shape == cube.shape
# Check WCS in reprojected matches wcs_out
# (comparing WCS failed for no reason we could discern)
assert repr(expected_wcs) == repr(result.wcs.celestial)
# Check that values of original and result are comparable
np.testing.assert_almost_equal(result.filled_data[:].value, cube.filled_data[:].value, decimal=3)
# only good to 3 decimal places is not amazing...
|