File: test_spectral_axis.py

package info (click to toggle)
spectral-cube 0.6.6-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,136 kB
  • sloc: python: 13,236; makefile: 154
file content (620 lines) | stat: -rw-r--r-- 25,747 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
from astropy import wcs
from astropy.io import fits
from astropy import units as u
from astropy import constants
from astropy.tests.helper import pytest, assert_quantity_allclose
import numpy as np

from .helpers import assert_allclose
from . import path as data_path
from ..spectral_axis import (convert_spectral_axis, determine_ctype_from_vconv,
                             cdelt_derivative, determine_vconv_from_ctype,
                             get_rest_value_from_wcs, air_to_vac,
                             air_to_vac_deriv, vac_to_air, doppler_z,
                             doppler_gamma, doppler_beta)


def test_cube_wcs_freqtovel():
    header = fits.Header.fromtextfile(data_path('cubewcs1.hdr'))
    w1 = wcs.WCS(header)
    # CTYPE3 = 'FREQ'

    newwcs = convert_spectral_axis(w1, 'km/s', 'VRAD',
                                   rest_value=w1.wcs.restfrq*u.Hz)
    assert newwcs.wcs.ctype[2] == 'VRAD'
    np.testing.assert_almost_equal(newwcs.wcs.crval[2], 305.2461585938794)
    assert newwcs.wcs.cunit[2] == u.Unit('km/s')

    newwcs = convert_spectral_axis(w1, 'km/s', 'VRAD')

    assert newwcs.wcs.ctype[2] == 'VRAD'
    np.testing.assert_almost_equal(newwcs.wcs.crval[2], 305.2461585938794)
    assert newwcs.wcs.cunit[2] == u.Unit('km/s')


def test_cube_wcs_freqtovopt():
    header = fits.Header.fromtextfile(data_path('cubewcs1.hdr'))
    w1 = wcs.WCS(header)

    w2 = convert_spectral_axis(w1, 'km/s', 'VOPT')

    # TODO: what should w2's values be?  test them

    # these need to be set to zero to test the failure
    w1.wcs.restfrq = 0.0
    w1.wcs.restwav = 0.0

    with pytest.raises(ValueError) as exc:
        convert_spectral_axis(w1, 'km/s', 'VOPT')

    assert exc.value.args[0] == 'If converting from wavelength/frequency to speed, a reference wavelength/frequency is required.'


@pytest.mark.parametrize('wcstype',('Z','W','R','V'))
def test_greisen2006(wcstype):
    # This is the header extracted from Greisen 2006, including many examples
    # of valid transforms.  It should be the gold standard (in principle)
    hdr = fits.Header.fromtextfile(data_path('greisen2006.hdr'))

    # We have not implemented frame conversions, so we can only convert bary
    # <-> bary in this case
    wcs0 = wcs.WCS(hdr, key='F')
    wcs1 = wcs.WCS(hdr, key=wcstype)

    if wcstype in ('R','V','Z'):
        if wcs1.wcs.restfrq:
            rest = wcs1.wcs.restfrq*u.Hz
        elif wcs1.wcs.restwav:
            rest = wcs1.wcs.restwav*u.m
    else:
        rest = None

    outunit = u.Unit(wcs1.wcs.cunit[wcs1.wcs.spec])
    out_ctype = wcs1.wcs.ctype[wcs1.wcs.spec]

    wcs2 = convert_spectral_axis(wcs0,
                                 outunit,
                                 out_ctype,
                                 rest_value=rest)
    assert_allclose(wcs2.wcs.cdelt[wcs2.wcs.spec],
                                   wcs1.wcs.cdelt[wcs1.wcs.spec],
                                   rtol=1.e-3)
    assert_allclose(wcs2.wcs.crval[wcs2.wcs.spec],
                                   wcs1.wcs.crval[wcs1.wcs.spec],
                                   rtol=1.e-3)
    assert wcs2.wcs.ctype[wcs2.wcs.spec] == wcs1.wcs.ctype[wcs1.wcs.spec]
    assert wcs2.wcs.cunit[wcs2.wcs.spec] == wcs1.wcs.cunit[wcs1.wcs.spec]

    # round trip test:
    inunit = u.Unit(wcs0.wcs.cunit[wcs0.wcs.spec])
    in_ctype = wcs0.wcs.ctype[wcs0.wcs.spec]
    wcs3 = convert_spectral_axis(wcs2,
                                 inunit,
                                 in_ctype,
                                 rest_value=rest)

    assert_allclose(wcs3.wcs.crval[wcs3.wcs.spec],
                                   wcs0.wcs.crval[wcs0.wcs.spec],
                                   rtol=1.e-3)
    assert_allclose(wcs3.wcs.cdelt[wcs3.wcs.spec],
                                   wcs0.wcs.cdelt[wcs0.wcs.spec],
                                   rtol=1.e-3)
    assert wcs3.wcs.ctype[wcs3.wcs.spec] == wcs0.wcs.ctype[wcs0.wcs.spec]
    assert wcs3.wcs.cunit[wcs3.wcs.spec] == wcs0.wcs.cunit[wcs0.wcs.spec]


def test_byhand_f2v():
    # VELO-F2V
    CRVAL3F = 1.37847121643E+09
    CDELT3F = 9.764775E+04
    RESTFRQV= 1.420405752E+09
    CRVAL3V = 8.98134229811E+06
    CDELT3V = -2.1217551E+04
    CUNIT3V = 'm/s'
    CUNIT3F = 'Hz'

    crvalf = CRVAL3F * u.Unit(CUNIT3F)
    crvalv = CRVAL3V * u.Unit(CUNIT3V)
    restfreq = RESTFRQV * u.Unit(CUNIT3F)
    cdeltf = CDELT3F * u.Unit(CUNIT3F)
    cdeltv = CDELT3V * u.Unit(CUNIT3V)

    # (Pdb) crval_in,crval_lin1,crval_lin2,crval_out
    # (<Quantity 1378471216.43 Hz>, <Quantity 1378471216.43 Hz>, <Quantity
    # 8981342.29795544 m / s>, <Quantity 8981342.29795544 m / s>) (Pdb)
    # cdelt_in, cdelt_lin1, cdelt_lin2, cdelt_out
    # (<Quantity 97647.75 Hz>, <Quantity 97647.75 Hz>, <Quantity
    # -21217.552294728768 m / s>, <Quantity -21217.552294728768 m / s>)
    crvalv_computed = crvalf.to(CUNIT3V, u.doppler_relativistic(restfreq))
    cdeltv_computed = -4*constants.c*cdeltf*crvalf*restfreq**2 / (crvalf**2+restfreq**2)**2
    cdeltv_computed_byfunction = cdelt_derivative(crvalf, cdeltf,
                                                  intype='frequency',
                                                  outtype='speed',
                                                  rest=restfreq)
    # this should be EXACT
    assert cdeltv_computed == cdeltv_computed_byfunction

    assert_allclose(crvalv_computed, crvalv, rtol=1.e-3)
    assert_allclose(cdeltv_computed, cdeltv, rtol=1.e-3)

    # round trip
    # (Pdb) crval_in,crval_lin1,crval_lin2,crval_out
    # (<Quantity 8981342.29795544 m / s>, <Quantity 8981342.29795544 m / s>,
    # <Quantity 1377852479.159838 Hz>, <Quantity 1377852479.159838 Hz>)
    # (Pdb) cdelt_in, cdelt_lin1, cdelt_lin2, cdelt_out
    # (<Quantity -21217.552294728768 m / s>, <Quantity -21217.552294728768 m /
    # s>, <Quantity 97647.74999999997 Hz>, <Quantity 97647.74999999997 Hz>)

    crvalf_computed = crvalv_computed.to(CUNIT3F, u.doppler_relativistic(restfreq))
    cdeltf_computed = -(cdeltv_computed * constants.c * restfreq /
                        ((constants.c+crvalv_computed)*(constants.c**2 -
                                               crvalv_computed**2)**0.5))

    assert_allclose(crvalf_computed, crvalf, rtol=1.e-2)
    assert_allclose(cdeltf_computed, cdeltf, rtol=1.e-2)

    cdeltf_computed_byfunction = cdelt_derivative(crvalv_computed, cdeltv_computed,
                                                  intype='speed',
                                                  outtype='frequency',
                                                  rest=restfreq)
    # this should be EXACT
    assert cdeltf_computed == cdeltf_computed_byfunction


def test_byhand_vrad():
    # VRAD
    CRVAL3F = 1.37847121643E+09
    CDELT3F = 9.764775E+04
    RESTFRQR= 1.420405752E+09
    CRVAL3R = 8.85075090419E+06
    CDELT3R = -2.0609645E+04
    CUNIT3R = 'm/s'
    CUNIT3F = 'Hz'

    crvalf = CRVAL3F * u.Unit(CUNIT3F)
    crvalv = CRVAL3R * u.Unit(CUNIT3R)
    restfreq = RESTFRQR * u.Unit(CUNIT3F)
    cdeltf = CDELT3F * u.Unit(CUNIT3F)
    cdeltv = CDELT3R * u.Unit(CUNIT3R)

    # (Pdb) crval_in,crval_lin1,crval_lin2,crval_out
    # (<Quantity 1378471216.43 Hz>, <Quantity 1378471216.43 Hz>, <Quantity 8850750.904040769 m / s>, <Quantity 8850750.904040769 m / s>)
    # (Pdb) cdelt_in, cdelt_lin1, cdelt_lin2, cdelt_out
    # (<Quantity 97647.75 Hz>, <Quantity 97647.75 Hz>, <Quantity -20609.645482954576 m / s>, <Quantity -20609.645482954576 m / s>)
    crvalv_computed = crvalf.to(CUNIT3R, u.doppler_radio(restfreq))
    cdeltv_computed = -(cdeltf / restfreq)*constants.c

    assert_allclose(crvalv_computed, crvalv, rtol=1.e-3)
    assert_allclose(cdeltv_computed, cdeltv, rtol=1.e-3)

    crvalf_computed = crvalv_computed.to(CUNIT3F, u.doppler_radio(restfreq))
    cdeltf_computed = -(cdeltv_computed/constants.c) * restfreq

    assert_allclose(crvalf_computed, crvalf, rtol=1.e-3)
    assert_allclose(cdeltf_computed, cdeltf, rtol=1.e-3)

    # round trip:
    # (Pdb) crval_in,crval_lin1,crval_lin2,crval_out
    # (<Quantity 8850750.904040769 m / s>, <Quantity 8850750.904040769 m / s>, <Quantity 1378471216.43 Hz>, <Quantity 1378471216.43 Hz>)
    # (Pdb) cdelt_in, cdelt_lin1, cdelt_lin2, cdelt_out
    # (<Quantity -20609.645482954576 m / s>, <Quantity -20609.645482954576 m / s>, <Quantity 94888.9338036023 Hz>, <Quantity 94888.9338036023 Hz>)
    # (Pdb) myunit,lin_cunit,out_lin_cunit,outunit
    # WRONG (Unit("m / s"), Unit("m / s"), Unit("Hz"), Unit("Hz"))


def test_byhand_vopt():
    # VOPT: case "Z"
    CRVAL3F = 1.37847121643E+09
    CDELT3F = 9.764775E+04
    CUNIT3F = 'Hz'
    RESTWAVZ= 0.211061139
    #CTYPE3Z = 'VOPT-F2W'
    # This comes from Greisen 2006, but appears to be wrong: CRVAL3Z = 9.120000E+06
    CRVAL3Z = 9.120002206E+06
    CDELT3Z = -2.1882651E+04
    CUNIT3Z = 'm/s'

    crvalf = CRVAL3F * u.Unit(CUNIT3F)
    crvalv = CRVAL3Z * u.Unit(CUNIT3Z)
    restwav = RESTWAVZ * u.m
    cdeltf = CDELT3F * u.Unit(CUNIT3F)
    cdeltv = CDELT3Z * u.Unit(CUNIT3Z)

    # Forward: freq -> vopt
    # crval: (<Quantity 1378471216.43 Hz>, <Quantity 1378471216.43 Hz>, <Quantity 0.2174818410618759 m>, <Quantity 9120002.205689976 m / s>)
    # cdelt: (<Quantity 97647.75 Hz>, <Quantity 97647.75 Hz>, <Quantity -1.540591649098696e-05 m>, <Quantity -21882.652554887027 m / s>)
    #crvalv_computed = crvalf.to(CUNIT3R, u.doppler_radio(restwav))
    crvalw_computed = crvalf.to(u.m, u.spectral())
    crvalw_computed32 = crvalf.astype('float32').to(u.m, u.spectral())
    cdeltw_computed = -(cdeltf / crvalf**2)*constants.c
    cdeltw_computed_byfunction = cdelt_derivative(crvalf, cdeltf,
                                                  intype='frequency',
                                                  outtype='length',
                                                  rest=None)
    # this should be EXACT
    assert cdeltw_computed == cdeltw_computed_byfunction

    crvalv_computed = crvalw_computed.to(CUNIT3Z, u.doppler_optical(restwav))
    crvalv_computed32 = crvalw_computed32.astype('float32').to(CUNIT3Z, u.doppler_optical(restwav))
    #cdeltv_computed = (cdeltw_computed *
    #                   4*constants.c*crvalw_computed*restwav**2 /
    #                   (restwav**2+crvalw_computed**2)**2)
    cdeltv_computed = (cdeltw_computed / restwav)*constants.c
    cdeltv_computed_byfunction = cdelt_derivative(crvalw_computed,
                                                  cdeltw_computed,
                                                  intype='length',
                                                  outtype='speed',
                                                  rest=restwav,
                                                  linear=True)

    # Disagreement is 2.5e-7: good, but not really great...
    #assert np.abs((crvalv_computed-crvalv)/crvalv) < 1e-6
    assert_allclose(crvalv_computed, crvalv, rtol=1.e-2)
    assert_allclose(cdeltv_computed, cdeltv, rtol=1.e-2)

    # Round=trip test:
    # from velo_opt -> freq
    # (<Quantity 9120002.205689976 m / s>, <Quantity 0.2174818410618759 m>, <Quantity 1378471216.43 Hz>, <Quantity 1378471216.43 Hz>)
    # (<Quantity -21882.652554887027 m / s>, <Quantity -1.540591649098696e-05 m>, <Quantity 97647.75 Hz>, <Quantity 97647.75 Hz>)

    crvalw_computed = crvalv_computed.to(u.m, u.doppler_optical(restwav))
    cdeltw_computed = (cdeltv_computed/constants.c) * restwav
    cdeltw_computed_byfunction = cdelt_derivative(crvalv_computed,
                                                  cdeltv_computed,
                                                  intype='speed',
                                                  outtype='length',
                                                  rest=restwav,
                                                  linear=True)
    assert cdeltw_computed == cdeltw_computed_byfunction

    crvalf_computed = crvalw_computed.to(CUNIT3F, u.spectral())
    cdeltf_computed = -cdeltw_computed * constants.c / crvalw_computed**2

    assert_allclose(crvalf_computed, crvalf, rtol=1.e-3)
    assert_allclose(cdeltf_computed, cdeltf, rtol=1.e-3)

    cdeltf_computed_byfunction = cdelt_derivative(crvalw_computed, cdeltw_computed,
                                                  intype='length',
                                                  outtype='frequency',
                                                  rest=None)
    assert cdeltf_computed == cdeltf_computed_byfunction

    # Fails intentionally (but not really worth testing)
    #crvalf_computed = crvalv_computed.to(CUNIT3F, u.spectral()+u.doppler_optical(restwav))
    #cdeltf_computed = -(cdeltv_computed / constants.c) * restwav.to(u.Hz, u.spectral())

    #assert_allclose(crvalf_computed, crvalf, rtol=1.e-3)
    #assert_allclose(cdeltf_computed, cdeltf, rtol=1.e-3)


def test_byhand_f2w():
    CRVAL3F = 1.37847121643E+09
    CDELT3F = 9.764775E+04
    CUNIT3F = 'Hz'
    #CTYPE3W = 'WAVE-F2W'
    CRVAL3W = 0.217481841062
    CDELT3W = -1.5405916E-05
    CUNIT3W = 'm'

    crvalf = CRVAL3F * u.Unit(CUNIT3F)
    crvalw = CRVAL3W * u.Unit(CUNIT3W)
    cdeltf = CDELT3F * u.Unit(CUNIT3F)
    cdeltw = CDELT3W * u.Unit(CUNIT3W)

    crvalf_computed = crvalw.to(CUNIT3F, u.spectral())
    cdeltf_computed = -constants.c * cdeltw / crvalw**2

    assert_allclose(crvalf_computed, crvalf, rtol=0.1)
    assert_allclose(cdeltf_computed, cdeltf, rtol=0.1)


@pytest.mark.parametrize(('ctype','unit','velocity_convention','result'),
                         (('VELO-F2V', "Hz", None, 'FREQ'),
                          ('VELO-F2V', "m", None, 'WAVE-F2W'),
                          ('VOPT', "m", None, 'WAVE'),
                          ('VOPT', "Hz", None, 'FREQ-W2F'),
                          ('VELO', "Hz", None, 'FREQ-V2F'),
                          ('WAVE', "Hz", None, 'FREQ-W2F'),
                          ('FREQ', 'm/s', None, ValueError('A velocity convention must be specified')),
                          ('FREQ', 'm/s', u.doppler_radio, 'VRAD'),
                          ('FREQ', 'm/s', u.doppler_optical, 'VOPT-F2W'),
                          ('FREQ', 'm/s', u.doppler_relativistic, 'VELO-F2V'),
                          ('WAVE', 'm/s', u.doppler_radio, 'VRAD-W2F')))
def test_ctype_determinator(ctype,unit,velocity_convention,result):

    if isinstance(result, Exception):
        with pytest.raises(Exception) as exc:
            determine_ctype_from_vconv(ctype, unit,
                                       velocity_convention=velocity_convention)
        assert exc.value.args[0] == result.args[0]
        assert type(exc.value) == type(result)
    else:
        outctype = determine_ctype_from_vconv(ctype, unit,
                                              velocity_convention=velocity_convention)
        assert outctype == result


@pytest.mark.parametrize(('ctype','vconv'),
                         (('VELO-F2W', u.doppler_optical),
                          ('VELO-F2V', u.doppler_relativistic),
                          ('VRAD', u.doppler_radio),
                          ('VOPT', u.doppler_optical),
                          ('VELO', u.doppler_relativistic),
                          ('WAVE', u.doppler_optical),
                          ('WAVE-F2W', u.doppler_optical),
                          ('WAVE-V2W', u.doppler_optical),
                          ('FREQ', u.doppler_radio),
                          ('FREQ-V2F', u.doppler_radio),
                          ('FREQ-W2F', u.doppler_radio),))
def test_vconv_determinator(ctype, vconv):
    assert determine_vconv_from_ctype(ctype) == vconv


@pytest.fixture
def filename(request):
    return request.getfixturevalue(request.param)

@pytest.mark.parametrize(('filename'),
                         (('data_advs'),
                          ('data_dvsa'),
                          ('data_sdav'),
                          ('data_sadv'),
                          ('data_vsad'),
                          ('data_vad'),
                          ('data_adv'),
                          ), indirect=['filename'])
def test_vopt_to_freq(filename):
    h = fits.getheader(filename)
    wcs0 = wcs.WCS(h)

    # check to make sure astropy.wcs's "fix" changes VELO-HEL to VOPT
    assert wcs0.wcs.ctype[wcs0.wcs.spec] == 'VOPT'

    out_ctype = determine_ctype_from_vconv('VOPT', u.Hz)

    wcs1 = convert_spectral_axis(wcs0, u.Hz, out_ctype)

    assert wcs1.wcs.ctype[wcs1.wcs.spec] == 'FREQ-W2F'


@pytest.mark.parametrize('wcstype',('Z','W','R','V','F'))
def test_change_rest_frequency(wcstype):
    # This is the header extracted from Greisen 2006, including many examples
    # of valid transforms.  It should be the gold standard (in principle)
    hdr = fits.Header.fromtextfile(data_path('greisen2006.hdr'))

    wcs0 = wcs.WCS(hdr, key=wcstype)

    old_rest = get_rest_value_from_wcs(wcs0)
    if old_rest is None:
        # This test doesn't matter if there was no rest frequency in the first
        # place but I prefer to keep the option open in case we want to try
        # forcing a rest frequency on some of the non-velocity frames at some
        # point
        return
    vconv1 = determine_vconv_from_ctype(hdr['CTYPE3'+wcstype])
    new_rest = (100*u.km/u.s).to(u.Hz, vconv1(old_rest))

    wcs1 = wcs.WCS(hdr, key='V')
    vconv2 = determine_vconv_from_ctype(hdr['CTYPE3V'])

    inunit = u.Unit(wcs0.wcs.cunit[wcs0.wcs.spec])
    outunit = u.Unit(wcs1.wcs.cunit[wcs1.wcs.spec])
    # VELO-F2V
    out_ctype = wcs1.wcs.ctype[wcs1.wcs.spec]

    wcs2 = convert_spectral_axis(wcs0,
                                 outunit,
                                 out_ctype,
                                 rest_value=new_rest)

    sp1 = wcs1.sub([wcs.WCSSUB_SPECTRAL])
    sp2 = wcs2.sub([wcs.WCSSUB_SPECTRAL])

    p_old = sp1.wcs_world2pix([old_rest.to(inunit, vconv1(old_rest)).value,
                               new_rest.to(inunit, vconv1(old_rest)).value],0)
    p_new = sp2.wcs_world2pix([old_rest.to(outunit, vconv2(new_rest)).value,
                               new_rest.to(outunit, vconv2(new_rest)).value],0)

    assert_allclose(p_old, p_new, rtol=1e-3)
    assert_allclose(p_old, p_new, rtol=1e-3)


# from http://classic.sdss.org/dr5/products/spectra/vacwavelength.html
# these aren't accurate enough for my liking, but I can't find a better one readily
air_vac = {
    'H-beta':(4861.363, 4862.721)*u.AA,
    '[O III]':(4958.911, 4960.295)*u.AA,
    '[O III]':(5006.843, 5008.239)*u.AA,
    '[N II]':(6548.05, 6549.86)*u.AA,
    'H-alpha':(6562.801, 6564.614)*u.AA,
    '[N II]':(6583.45, 6585.27)*u.AA,
    '[S II]':(6716.44, 6718.29)*u.AA,
    '[S II]':(6730.82, 6732.68)*u.AA,
}


@pytest.mark.parametrize(('air','vac'), air_vac.values())
def test_air_to_vac(air, vac):
    # This is the accuracy provided by the line list we have.
    # I'm not sure if the formula are incorrect or if the reference wavelengths
    # are, but this is an accuracy of only 6 km/s, which is *very bad* for
    # astrophysical applications.
    assert np.abs((air_to_vac(air)- vac)) < 0.15*u.AA
    assert np.abs((vac_to_air(vac)- air)) < 0.15*u.AA

    assert np.abs((air_to_vac(air)- vac)/vac) < 2e-5
    assert np.abs((vac_to_air(vac)- air)/air) < 2e-5

    # round tripping
    assert np.abs((vac_to_air(air_to_vac(air))-air))/air < 1e-8
    assert np.abs((air_to_vac(vac_to_air(vac))-vac))/vac < 1e-8


def test_byhand_awav2vel():
    # AWAV
    CRVAL3A = (6560*u.AA).to(u.m).value
    CDELT3A = (1.0*u.AA).to(u.m).value
    CUNIT3A = 'm'
    CRPIX3A = 1.0
    # restwav MUST be vacuum
    restwl = air_to_vac(6562.81*u.AA)
    RESTWAV = restwl.to(u.m).value
    CRVAL3V = (CRVAL3A*u.m).to(u.m/u.s,
                               u.doppler_optical(restwl)).value
    CDELT3V = (CDELT3A*u.m*air_to_vac_deriv(CRVAL3A*u.m)/restwl) * constants.c
    CUNIT3V = 'm/s'

    mywcs = wcs.WCS(naxis=1)
    mywcs.wcs.ctype[0] = 'AWAV'
    mywcs.wcs.crval[0] = CRVAL3A
    mywcs.wcs.crpix[0] = CRPIX3A
    mywcs.wcs.cunit[0] = CUNIT3A
    mywcs.wcs.cdelt[0] = CDELT3A
    mywcs.wcs.restwav = RESTWAV
    mywcs.wcs.set()


    newwcs = convert_spectral_axis(mywcs, u.km/u.s,
                                   determine_ctype_from_vconv(mywcs.wcs.ctype[0],
                                                              u.km/u.s,
                                                              'optical'))

    newwcs.wcs.set()
    assert newwcs.wcs.cunit[0] == 'm / s'
    np.testing.assert_almost_equal(newwcs.wcs.crval,
                                   air_to_vac(CRVAL3A*u.m).to(u.m/u.s,
                                                              u.doppler_optical(restwl)).value)
    # Check that the cdelts match the expected cdelt, 1 angstrom / rest
    # wavelength (vac)
    np.testing.assert_almost_equal(newwcs.wcs.cdelt, CDELT3V.to(u.m/u.s).value)
    # Check that the reference wavelength is 2.81 angstroms up
    np.testing.assert_almost_equal(newwcs.wcs_pix2world((2.81,), 0), 0.0, decimal=3)


    # Go through a full-on sanity check:
    vline = 100*u.km/u.s
    wave_line_vac = vline.to(u.AA, u.doppler_optical(restwl))
    wave_line_air = vac_to_air(wave_line_vac)

    pix_line_input = mywcs.wcs_world2pix((wave_line_air.to(u.m).value,), 0)
    pix_line_output = newwcs.wcs_world2pix((vline.to(u.m/u.s).value,), 0)

    np.testing.assert_almost_equal(pix_line_output, pix_line_input, decimal=4)


def test_byhand_awav2wav():
    # AWAV
    CRVAL3A = (6560*u.AA).to(u.m).value
    CDELT3A = (1.0*u.AA).to(u.m).value
    CUNIT3A = 'm'
    CRPIX3A = 1.0

    mywcs = wcs.WCS(naxis=1)
    mywcs.wcs.ctype[0] = 'AWAV'
    mywcs.wcs.crval[0] = CRVAL3A
    mywcs.wcs.crpix[0] = CRPIX3A
    mywcs.wcs.cunit[0] = CUNIT3A
    mywcs.wcs.cdelt[0] = CDELT3A
    mywcs.wcs.set()


    newwcs = convert_spectral_axis(mywcs, u.AA, 'WAVE')
    newwcs.wcs.set()

    np.testing.assert_almost_equal(newwcs.wcs_pix2world((0,),0),
                                   air_to_vac(mywcs.wcs_pix2world((0,),0)*u.m).value)

    np.testing.assert_almost_equal(newwcs.wcs_pix2world((10,),0),
                                   air_to_vac(mywcs.wcs_pix2world((10,),0)*u.m).value)

    # At least one of the components MUST change
    assert not (mywcs.wcs.crval[0] == newwcs.wcs.crval[0]
                and mywcs.wcs.crpix[0] == newwcs.wcs.crpix[0])


class test_nir_sinfoni_base(object):

    def setup_method(self, method):
        CD3_3   = 0.000245000002905726 # CD rotation matrix
        CTYPE3  = 'WAVE    '           # wavelength axis in microns
        CRPIX3  =                1109. # Reference pixel in z
        CRVAL3  =     2.20000004768372 # central wavelength
        CDELT3  = 0.000245000002905726 # microns per pixel
        CUNIT3  = 'um      '           # spectral unit
        SPECSYS = 'TOPOCENT'           # Coordinate reference frame

        self.rest_wavelength = 2.1218*u.um

        self.mywcs = wcs.WCS(naxis=1)
        self.mywcs.wcs.ctype[0] = CTYPE3
        self.mywcs.wcs.crval[0] = CRVAL3
        self.mywcs.wcs.crpix[0] = CRPIX3
        self.mywcs.wcs.cunit[0] = CUNIT3
        self.mywcs.wcs.cdelt[0] = CDELT3
        self.mywcs.wcs.cd = [[CD3_3]]
        self.mywcs.wcs.specsys = SPECSYS
        self.mywcs.wcs.set()

        self.wavelengths = np.array([[2.12160005e-06,   2.12184505e-06,   2.12209005e-06]])

        np.testing.assert_almost_equal(self.mywcs.wcs_pix2world([788,789,790], 0),
                                       self.wavelengths)

    def test_nir_sinfoni_example_optical(self):

        mywcs = self.mywcs.copy()

        velocities_opt = ((self.wavelengths*u.m-self.rest_wavelength)/(self.wavelengths*u.m) * constants.c).to(u.km/u.s)

        newwcs_opt = convert_spectral_axis(mywcs, u.km/u.s, 'VOPT',
                                           rest_value=self.rest_wavelength)
        assert newwcs_opt.wcs.cunit[0] == u.km/u.s
        newwcs_opt.wcs.set()
        worldpix_opt = newwcs_opt.wcs_pix2world([788,789,790], 0)
        assert newwcs_opt.wcs.cunit[0] == u.m/u.s

        np.testing.assert_almost_equal(worldpix_opt,
                                       velocities_opt.to(newwcs_opt.wcs.cunit[0]).value)

    def test_nir_sinfoni_example_radio(self):

        mywcs = self.mywcs.copy()

        velocities_rad = ((self.wavelengths*u.m-self.rest_wavelength)/(self.rest_wavelength) * constants.c).to(u.km/u.s)

        newwcs_rad = convert_spectral_axis(mywcs, u.km/u.s, 'VRAD',
                                           rest_value=self.rest_wavelength)
        assert newwcs_rad.wcs.cunit[0] == u.km/u.s
        newwcs_rad.wcs.set()
        worldpix_rad = newwcs_rad.wcs_pix2world([788,789,790], 0)
        assert newwcs_rad.wcs.cunit[0] == u.m/u.s

        np.testing.assert_almost_equal(worldpix_rad,
                                       velocities_rad.to(newwcs_rad.wcs.cunit[0]).value)


def test_equivalencies():
    """
    Testing spectral equivalencies
    """
    # range in "RADIO" with "100 * u.GHz" as rest frequancy
    range = u.Quantity([-318 * u.km / u.s, -320 * u.km / u.s])

    # range in freq
    r1 = range.to("GHz", equivalencies=u.doppler_radio(100 * u.GHz))

    # round conversion for "doppler_z"
    r2 = r1.to("km/s", equivalencies=doppler_z(100 * u.GHz))
    r3 = r2.to("GHz", equivalencies=doppler_z(100*u.GHz))
    assert_quantity_allclose(r1, r3)

    # round conversion for "doppler_beta"
    r2 = r1.to("km/s", equivalencies=doppler_beta(100 * u.GHz))
    r3 = r2.to("GHz", equivalencies=doppler_beta(100 * u.GHz))
    assert_quantity_allclose(r1, r3)

    # round conversion for "doppler_gamma"
    r2 = r1.to("km/s", equivalencies=doppler_gamma(100 * u.GHz))
    r3 = r2.to("GHz", equivalencies=doppler_gamma(100 * u.GHz))
    assert_quantity_allclose(r1, r3)