1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
|
import re
import copy
import operator
import itertools
import warnings
import mmap
import sys
from packaging.version import Version, parse
import pytest
import astropy
from astropy import stats
from astropy.io import fits
from astropy import units as u
from astropy.wcs import WCS
from astropy.wcs import _wcs
from astropy.tests.helper import assert_quantity_allclose
from astropy.convolution import Gaussian2DKernel, Tophat2DKernel
from astropy.utils.exceptions import AstropyWarning
import numpy as np
from .. import (BooleanArrayMask,
FunctionMask, LazyMask, CompositeMask)
from ..spectral_cube import (OneDSpectrum, Projection,
VaryingResolutionOneDSpectrum,
LowerDimensionalObject)
from ..np_compat import allbadtonan
from .. import spectral_axis
from .. import base_class
from .. import utils
from .. import SpectralCube, VaryingResolutionSpectralCube, DaskSpectralCube
from . import path
from .helpers import assert_allclose, assert_array_equal
try:
import casatools
ia = casatools.image()
casaOK = True
except ImportError:
try:
from taskinit import ia
casaOK = True
except ImportError:
casaOK = False
WINDOWS = sys.platform == "win32"
# needed to test for warnings later
warnings.simplefilter('always', UserWarning)
warnings.simplefilter('error', utils.UnsupportedIterationStrategyWarning)
warnings.simplefilter('error', utils.NotImplementedWarning)
warnings.simplefilter('error', utils.WCSMismatchWarning)
warnings.simplefilter('error', FutureWarning)
warnings.filterwarnings(action='ignore', category=FutureWarning,
module='reproject')
try:
import yt
YT_INSTALLED = True
YT_LT_301 = parse(yt.__version__) < Version('3.0.1')
except ImportError:
YT_INSTALLED = False
YT_LT_301 = False
try:
import scipy
scipyOK = True
except ImportError:
scipyOK = False
import os
from radio_beam import Beam, Beams
from radio_beam.utils import BeamError
NUMPY_LT_19 = parse(np.__version__) < Version('1.9.0')
def cube_and_raw(filename, use_dask=None):
if use_dask is None:
raise ValueError('use_dask should be explicitly set')
p = path(filename)
if os.path.splitext(p)[-1] == '.fits':
with fits.open(p) as hdulist:
d = hdulist[0].data
c = SpectralCube.read(p, format='fits', mode='readonly', use_dask=use_dask)
elif os.path.splitext(p)[-1] == '.image':
ia.open(p)
d = ia.getchunk()
ia.unlock()
ia.close()
ia.done()
c = SpectralCube.read(p, format='casa_image', use_dask=use_dask)
else:
raise ValueError("Unsupported filetype")
return c, d
def test_huge_disallowed(data_vda_jybeam_lower, use_dask):
cube, data = cube_and_raw(data_vda_jybeam_lower, use_dask=use_dask)
assert not cube._is_huge
# We need to reduce the memory threshold rather than use a large cube to
# make sure we don't use too much memory during testing.
from .. import cube_utils
OLD_MEMORY_THRESHOLD = cube_utils.MEMORY_THRESHOLD
try:
cube_utils.MEMORY_THRESHOLD = 10
assert cube._is_huge
if use_dask:
with pytest.warns(UserWarning, match='whole cube into memory'):
cube.mad_std()
else:
with pytest.raises(ValueError, match='entire cube into memory'):
cube + 5*cube.unit
with pytest.raises(ValueError, match='entire cube into memory'):
cube.max(how='cube')
cube.allow_huge_operations = True
# just make sure it doesn't fail
cube + 5*cube.unit
finally:
cube_utils.MEMORY_THRESHOLD = OLD_MEMORY_THRESHOLD
del cube
class BaseTest(object):
@pytest.fixture(autouse=True)
def setup_method_fixture(self, request, data_adv, use_dask):
c, d = cube_and_raw(data_adv, use_dask=use_dask)
mask = BooleanArrayMask(d > 0.5, c._wcs)
c._mask = mask
self.c = c
self.mask = mask
self.d = d
class BaseTestMultiBeams(object):
@pytest.fixture(autouse=True)
def setup_method_fixture(self, request, data_adv_beams, use_dask):
c, d = cube_and_raw(data_adv_beams, use_dask=use_dask)
mask = BooleanArrayMask(d > 0.5, c._wcs)
c._mask = mask
self.c = c
self.mask = mask
self.d = d
@pytest.fixture
def filename(request):
return request.getfixturevalue(request.param)
translist = [('data_advs', [0, 1, 2, 3]),
('data_dvsa', [2, 3, 0, 1]),
('data_sdav', [0, 2, 1, 3]),
('data_sadv', [0, 1, 2, 3]),
('data_vsad', [3, 0, 1, 2]),
('data_vad', [2, 0, 1]),
('data_vda', [0, 2, 1]),
('data_adv', [0, 1, 2]),
]
translist_vrsc = [('data_vda_beams', [0, 2, 1])]
class TestSpectralCube(object):
@pytest.mark.parametrize(('filename', 'trans'), translist + translist_vrsc,
indirect=['filename'])
def test_consistent_transposition(self, filename, trans, use_dask):
"""data() should return velocity axis first, then world 1, then world 0"""
c, d = cube_and_raw(filename, use_dask=use_dask)
expected = np.squeeze(d.transpose(trans))
assert_allclose(c._get_filled_data(), expected)
@pytest.mark.parametrize(('filename', 'view'), (
('data_adv', np.s_[:, :,:]),
('data_adv', np.s_[::2, :, :2]),
('data_adv', np.s_[0]),
), indirect=['filename'])
def test_world(self, filename, view, use_dask):
p = path(filename)
# d = fits.getdata(p)
# wcs = WCS(p)
# c = SpectralCube(d, wcs)
c = SpectralCube.read(p)
wcs = c.wcs
# shp = d.shape
# inds = np.indices(d.shape)
shp = c.shape
inds = np.indices(c.shape)
pix = np.column_stack([i.ravel() for i in inds[::-1]])
world = wcs.all_pix2world(pix, 0).T
world = [w.reshape(shp) for w in world]
world = [w[view] * u.Unit(wcs.wcs.cunit[i])
for i, w in enumerate(world)][::-1]
w2 = c.world[view]
for result, expected in zip(w2, world):
assert_allclose(result, expected)
# Test world_flattened here, too
w2_flat = c.flattened_world(view=view)
for result, expected in zip(w2_flat, world):
print(result.shape, expected.flatten().shape)
assert_allclose(result, expected.flatten())
@pytest.mark.parametrize('view', (np.s_[:, :,:],
np.s_[:2, :3, ::2]))
def test_world_transposes_3d(self, view, data_adv, data_vad, use_dask):
c1, d1 = cube_and_raw(data_adv, use_dask=use_dask)
c2, d2 = cube_and_raw(data_vad, use_dask=use_dask)
for w1, w2 in zip(c1.world[view], c2.world[view]):
assert_allclose(w1, w2)
@pytest.mark.parametrize('view',
(np.s_[:, :,:],
np.s_[:2, :3, ::2],
np.s_[::3, ::2, :1],
np.s_[:], ))
def test_world_transposes_4d(self, view, data_advs, data_sadv, use_dask):
c1, d1 = cube_and_raw(data_advs, use_dask=use_dask)
c2, d2 = cube_and_raw(data_sadv, use_dask=use_dask)
for w1, w2 in zip(c1.world[view], c2.world[view]):
assert_allclose(w1, w2)
@pytest.mark.parametrize(('filename','masktype','unit','suffix'),
itertools.product(('data_advs', 'data_dvsa', 'data_sdav', 'data_sadv', 'data_vsad', 'data_vad', 'data_adv',),
(BooleanArrayMask, LazyMask, FunctionMask, CompositeMask),
('Hz', u.Hz),
('.fits', '.image') if casaOK else ('.fits',)
),
indirect=['filename'])
def test_with_spectral_unit(self, filename, masktype, unit, suffix, use_dask):
if suffix == '.image':
if not use_dask:
pytest.skip()
import casatasks
filename = str(filename)
casatasks.importfits(filename, filename.replace('.fits', '.image'))
filename = filename.replace('.fits', '.image')
cube, data = cube_and_raw(filename, use_dask=use_dask)
cube_freq = cube.with_spectral_unit(unit)
if masktype == BooleanArrayMask:
# don't use data here:
# data haven't necessarily been rearranged to the correct shape by
# cube_utils.orient
mask = BooleanArrayMask(cube.filled_data[:].value>0,
wcs=cube._wcs)
elif masktype == LazyMask:
mask = LazyMask(lambda x: x>0, cube=cube)
elif masktype == FunctionMask:
mask = FunctionMask(lambda x: x>0)
elif masktype == CompositeMask:
mask1 = FunctionMask(lambda x: x>0)
mask2 = LazyMask(lambda x: x>0, cube)
mask = CompositeMask(mask1, mask2)
cube2 = cube.with_mask(mask)
cube_masked_freq = cube2.with_spectral_unit(unit)
if suffix == '.fits':
assert cube_freq._wcs.wcs.ctype[cube_freq._wcs.wcs.spec] == 'FREQ-W2F'
assert cube_masked_freq._wcs.wcs.ctype[cube_masked_freq._wcs.wcs.spec] == 'FREQ-W2F'
assert cube_masked_freq._mask._wcs.wcs.ctype[cube_masked_freq._mask._wcs.wcs.spec] == 'FREQ-W2F'
elif suffix == '.image':
# this is *not correct* but it's a known failure in CASA: CASA's
# image headers don't support any of the FITS spectral standard, so
# it just ends up as 'FREQ'. This isn't on us to fix so this is
# really an "xfail" that we hope will change...
assert cube_freq._wcs.wcs.ctype[cube_freq._wcs.wcs.spec] == 'FREQ'
assert cube_masked_freq._wcs.wcs.ctype[cube_masked_freq._wcs.wcs.spec] == 'FREQ'
assert cube_masked_freq._mask._wcs.wcs.ctype[cube_masked_freq._mask._wcs.wcs.spec] == 'FREQ'
# values taken from header
rest = 1.42040571841E+09*u.Hz
crval = -3.21214698632E+05*u.m/u.s
outcv = crval.to(u.m, u.doppler_optical(rest)).to(u.Hz, u.spectral())
assert_allclose(cube_freq._wcs.wcs.crval[cube_freq._wcs.wcs.spec],
outcv.to(u.Hz).value)
assert_allclose(cube_masked_freq._wcs.wcs.crval[cube_masked_freq._wcs.wcs.spec],
outcv.to(u.Hz).value)
assert_allclose(cube_masked_freq._mask._wcs.wcs.crval[cube_masked_freq._mask._wcs.wcs.spec],
outcv.to(u.Hz).value)
@pytest.mark.parametrize(('operation', 'value'),
((operator.mul, 0.5*u.K),
(operator.truediv, 0.5*u.K),
))
def test_apply_everywhere(self, operation, value, data_advs, use_dask):
c1, d1 = cube_and_raw(data_advs, use_dask=use_dask)
# append 'o' to indicate that it has been operated on
c1o = c1._apply_everywhere(operation, value, check_units=True)
d1o = operation(u.Quantity(d1, u.K), value)
assert np.all(d1o == c1o.filled_data[:])
# allclose fails on identical data?
#assert_allclose(d1o, c1o.filled_data[:])
@pytest.mark.parametrize(('operation', 'value'), ((operator.add, 0.5*u.K),
(operator.sub, 0.5*u.K),))
def test_apply_everywhere_plusminus(self, operation, value, data_advs, use_dask):
c1, d1 = cube_and_raw(data_advs, use_dask=use_dask)
assert c1.unit == value.unit
# append 'o' to indicate that it has been operated on
# value.value: the __add__ function explicitly drops the units
c1o = c1._apply_everywhere(operation, value.value, check_units=False)
d1o = operation(u.Quantity(d1, u.K), value)
assert c1o.unit == c1.unit
assert c1o.unit == value.unit
assert np.all(d1o == c1o.filled_data[:])
@pytest.mark.parametrize(('operation', 'value'),
((operator.div if hasattr(operator,'div') else operator.floordiv, 0.5*u.K),))
def test_apply_everywhere_floordivide(self, operation, value, data_advs, use_dask):
c1, d1 = cube_and_raw(data_advs, use_dask=use_dask)
try:
c1o = c1._apply_everywhere(operation, value)
except Exception as ex:
isinstance(ex, (NotImplementedError, TypeError, u.UnitConversionError))
@pytest.mark.parametrize(('filename', 'trans'), translist, indirect=['filename'])
def test_getitem(self, filename, trans, use_dask):
c, d = cube_and_raw(filename, use_dask=use_dask)
expected = np.squeeze(d.transpose(trans))
assert_allclose(c[0,:,:].value, expected[0,:,:])
assert_allclose(c[:,:,0].value, expected[:,:,0])
assert_allclose(c[:,0,:].value, expected[:,0,:])
# Not implemented:
#assert_allclose(c[0,0,:].value, expected[0,0,:])
#assert_allclose(c[0,:,0].value, expected[0,:,0])
assert_allclose(c[:,0,0].value, expected[:,0,0])
assert_allclose(c[1,:,:].value, expected[1,:,:])
assert_allclose(c[:,:,1].value, expected[:,:,1])
assert_allclose(c[:,1,:].value, expected[:,1,:])
# Not implemented:
#assert_allclose(c[1,1,:].value, expected[1,1,:])
#assert_allclose(c[1,:,1].value, expected[1,:,1])
assert_allclose(c[:,1,1].value, expected[:,1,1])
c2 = c.with_spectral_unit(u.km/u.s, velocity_convention='radio')
assert_allclose(c2[0,:,:].value, expected[0,:,:])
assert_allclose(c2[:,:,0].value, expected[:,:,0])
assert_allclose(c2[:,0,:].value, expected[:,0,:])
# Not implemented:
#assert_allclose(c2[0,0,:].value, expected[0,0,:])
#assert_allclose(c2[0,:,0].value, expected[0,:,0])
assert_allclose(c2[:,0,0].value, expected[:,0,0])
assert_allclose(c2[1,:,:].value, expected[1,:,:])
assert_allclose(c2[:,:,1].value, expected[:,:,1])
assert_allclose(c2[:,1,:].value, expected[:,1,:])
# Not implemented:
#assert_allclose(c2[1,1,:].value, expected[1,1,:])
#assert_allclose(c2[1,:,1].value, expected[1,:,1])
assert_allclose(c2[:,1,1].value, expected[:,1,1])
@pytest.mark.parametrize(('filename', 'trans'), translist_vrsc, indirect=['filename'])
def test_getitem_vrsc(self, filename, trans, use_dask):
c, d = cube_and_raw(filename, use_dask=use_dask)
expected = np.squeeze(d.transpose(trans))
# No pv slices for VRSC.
assert_allclose(c[0,:,:].value, expected[0,:,:])
# Not implemented:
#assert_allclose(c[0,0,:].value, expected[0,0,:])
#assert_allclose(c[0,:,0].value, expected[0,:,0])
assert_allclose(c[:,0,0].value, expected[:,0,0])
assert_allclose(c[1,:,:].value, expected[1,:,:])
# Not implemented:
#assert_allclose(c[1,1,:].value, expected[1,1,:])
#assert_allclose(c[1,:,1].value, expected[1,:,1])
assert_allclose(c[:,1,1].value, expected[:,1,1])
c2 = c.with_spectral_unit(u.km/u.s, velocity_convention='radio')
assert_allclose(c2[0,:,:].value, expected[0,:,:])
# Not implemented:
#assert_allclose(c2[0,0,:].value, expected[0,0,:])
#assert_allclose(c2[0,:,0].value, expected[0,:,0])
assert_allclose(c2[:,0,0].value, expected[:,0,0])
assert_allclose(c2[1,:,:].value, expected[1,:,:])
# Not implemented:
#assert_allclose(c2[1,1,:].value, expected[1,1,:])
#assert_allclose(c2[1,:,1].value, expected[1,:,1])
assert_allclose(c2[:,1,1].value, expected[:,1,1])
class TestArithmetic(object):
# FIXME: in the tests below we need to manually do self.c1 = self.d1 = None
# because if we try and do this in a teardown method, the open-files check
# gets done first. This is an issue that should be resolved in pytest-openfiles.
@pytest.fixture(autouse=True)
def setup_method_fixture(self, request, data_adv_simple, use_dask):
self.c1, self.d1 = cube_and_raw(data_adv_simple, use_dask=use_dask)
@pytest.mark.parametrize(('value'),(1,1.0,2,2.0))
def test_add(self,value):
d2 = self.d1 + value
c2 = self.c1 + value*u.K
assert np.all(d2 == c2.filled_data[:].value)
assert c2.unit == u.K
with pytest.raises(ValueError,
match="Can only add cube objects from SpectralCubes or Quantities with a unit attribute."):
# c1 is something with Kelvin units, but you can't add a scalar
_ = self.c1 + value
with pytest.raises(u.UnitConversionError,
match=re.escape("'Jy' (spectral flux density) and 'K' (temperature) are not convertible")):
# c1 is something with Kelvin units, but you can't add a scalar
_ = self.c1 + value*u.Jy
# cleanup
self.c1 = self.d1 = None
def test_add_cubes(self):
d2 = self.d1 + self.d1
c2 = self.c1 + self.c1
assert np.all(d2 == c2.filled_data[:].value)
assert c2.unit == u.K
self.c1 = self.d1 = None
@pytest.mark.parametrize(('value'),(1,1.0,2,2.0))
def test_subtract(self, value):
d2 = self.d1 - value
c2 = self.c1 - value*u.K
assert np.all(d2 == c2.filled_data[:].value)
assert c2.unit == u.K
# regression test #251: the _data attribute must not be a quantity
assert not hasattr(c2._data, 'unit')
self.c1 = self.d1 = None
def test_subtract_cubes(self):
d2 = self.d1 - self.d1
c2 = self.c1 - self.c1
assert np.all(d2 == c2.filled_data[:].value)
assert np.all(c2.filled_data[:].value == 0)
assert c2.unit == u.K
# regression test #251: the _data attribute must not be a quantity
assert not hasattr(c2._data, 'unit')
self.c1 = self.d1 = None
@pytest.mark.parametrize(('value'),(1,1.0,2,2.0))
def test_mul(self, value):
d2 = self.d1 * value
c2 = self.c1 * value
assert np.all(d2 == c2.filled_data[:].value)
assert c2.unit == u.K
self.c1 = self.d1 = None
def test_mul_cubes(self):
d2 = self.d1 * self.d1
c2 = self.c1 * self.c1
assert np.all(d2 == c2.filled_data[:].value)
assert c2.unit == u.K**2
self.c1 = self.d1 = None
@pytest.mark.parametrize(('value'),(1,1.0,2,2.0))
def test_div(self, value):
d2 = self.d1 / value
c2 = self.c1 / value
assert np.all(d2 == c2.filled_data[:].value)
assert c2.unit == u.K
self.c1 = self.d1 = None
def test_div_cubes(self):
d2 = self.d1 / self.d1
c2 = self.c1 / self.c1
assert np.all((d2 == c2.filled_data[:].value) | (np.isnan(c2.filled_data[:])))
assert np.all((c2.filled_data[:] == 1) | (np.isnan(c2.filled_data[:])))
assert c2.unit == u.one
self.c1 = self.d1 = None
@pytest.mark.parametrize(('value'),(1,1.0,2,2.0))
def test_floordiv(self, value):
with pytest.raises(NotImplementedError,
match=re.escape("Floor-division (division with truncation) "
"is not supported.")):
c2 = self.c1 // value
self.c1 = self.d1 = None
@pytest.mark.parametrize(('value'),(1,1.0,2,2.0)*u.K)
def test_floordiv_fails(self, value):
with pytest.raises(NotImplementedError,
match=re.escape("Floor-division (division with truncation) "
"is not supported.")):
c2 = self.c1 // value
self.c1 = self.d1 = None
def test_floordiv_cubes(self):
with pytest.raises(NotImplementedError,
match=re.escape("Floor-division (division with truncation) "
"is not supported.")):
c2 = self.c1 // self.c1
self.c1 = self.d1 = None
@pytest.mark.parametrize(('value'),
(1,1.0,2,2.0))
def test_pow(self, value):
d2 = self.d1 ** value
c2 = self.c1 ** value
assert np.all(d2 == c2.filled_data[:].value)
assert c2.unit == u.K**value
self.c1 = self.d1 = None
def test_cube_add(self):
c2 = self.c1 + self.c1
d2 = self.d1 + self.d1
assert np.all(d2 == c2.filled_data[:].value)
assert c2.unit == u.K
self.c1 = self.d1 = None
class TestFilters(BaseTest):
def test_mask_data(self):
c, d = self.c, self.d
expected = np.where(d > .5, d, np.nan)
assert_allclose(c._get_filled_data(), expected)
expected = np.where(d > .5, d, 0)
assert_allclose(c._get_filled_data(fill=0), expected)
self.c = self.d = None
@pytest.mark.parametrize('operation', (operator.lt, operator.gt, operator.le, operator.ge))
def test_mask_comparison(self, operation):
c, d = self.c, self.d
dmask = operation(d, 0.6) & self.c.mask.include()
cmask = operation(c, 0.6*u.K)
assert (self.c.mask.include() & cmask.include()).sum() == dmask.sum()
assert np.all(c.with_mask(cmask).mask.include() == dmask)
np.testing.assert_almost_equal(c.with_mask(cmask).sum().value,
d[dmask].sum())
self.c = self.d = None
def test_flatten(self):
c, d = self.c, self.d
expected = d[d > 0.5]
assert_allclose(c.flattened(), expected)
self.c = self.d = None
def test_flatten_weights(self):
c, d = self.c, self.d
expected = d[d > 0.5] ** 2
assert_allclose(c.flattened(weights=d), expected)
self.c = self.d = None
def test_slice(self):
c, d = self.c, self.d
expected = d[:3, :2, ::2]
expected = expected[expected > 0.5]
assert_allclose(c[0:3, 0:2, 0::2].flattened(), expected)
self.c = self.d = None
class TestNumpyMethods(BaseTest):
def _check_numpy(self, cubemethod, array, func):
for axis in [None, 0, 1, 2]:
for how in ['auto', 'slice', 'cube', 'ray']:
expected = func(array, axis=axis)
actual = cubemethod(axis=axis)
assert_allclose(actual, expected)
def test_sum(self):
d = np.where(self.d > 0.5, self.d, np.nan)
self._check_numpy(self.c.sum, d, allbadtonan(np.nansum))
# Need a secondary check to make sure it works with no
# axis keyword being passed (regression test for issue introduced in
# 150)
assert np.all(self.c.sum().value == np.nansum(d))
self.c = self.d = None
def test_max(self):
d = np.where(self.d > 0.5, self.d, np.nan)
self._check_numpy(self.c.max, d, np.nanmax)
self.c = self.d = None
def test_min(self):
d = np.where(self.d > 0.5, self.d, np.nan)
self._check_numpy(self.c.min, d, np.nanmin)
self.c = self.d = None
def test_argmax(self):
d = np.where(self.d > 0.5, self.d, -10)
self._check_numpy(self.c.argmax, d, np.nanargmax)
self.c = self.d = None
def test_argmin(self):
d = np.where(self.d > 0.5, self.d, 10)
self._check_numpy(self.c.argmin, d, np.nanargmin)
self.c = self.d = None
def test_arg_rays(self, use_dask):
"""
regression test: argmax must have integer dtype
"""
if not use_dask:
result = self.c.argmax(how='ray')
assert 'int' in str(result.dtype)
result = self.c.argmin(how='ray')
assert 'int' in str(result.dtype)
@pytest.mark.parametrize('iterate_rays', (True,False))
def test_median(self, iterate_rays, use_dask):
# Make sure that medians ignore empty/bad/NaN values
m = np.empty(self.d.shape[1:])
for y in range(m.shape[0]):
for x in range(m.shape[1]):
ray = self.d[:, y, x]
# the cube mask is for values >0.5
ray = ray[ray > 0.5]
m[y, x] = np.median(ray)
if use_dask:
if iterate_rays:
self.c = self.d = None
pytest.skip()
else:
scmed = self.c.median(axis=0)
else:
scmed = self.c.median(axis=0, iterate_rays=iterate_rays)
assert_allclose(scmed, m)
assert not np.any(np.isnan(scmed.value))
assert scmed.unit == self.c.unit
self.c = self.d = None
@pytest.mark.skipif('NUMPY_LT_19')
def test_bad_median_apply(self):
# this is a test for manually-applied numpy medians, which are different
# from the cube.median method that does "the right thing"
#
# for regular median, we expect a failure, which is why we don't use
# regular median.
scmed = self.c.apply_numpy_function(np.median, axis=0)
assert np.count_nonzero(np.isnan(scmed)) == 6
scmed = self.c.apply_numpy_function(np.nanmedian, axis=0)
assert np.count_nonzero(np.isnan(scmed)) == 0
# use a more aggressive mask to force there to be some all-nan axes
m2 = self.c>0.74*self.c.unit
scmed = self.c.with_mask(m2).apply_numpy_function(np.nanmedian, axis=0)
assert np.count_nonzero(np.isnan(scmed)) == 1
self.c = self.d = None
@pytest.mark.parametrize('iterate_rays', (True,False))
def test_bad_median(self, iterate_rays, use_dask):
# This should have the same result as np.nanmedian, though it might be
# faster if bottleneck loads
if use_dask:
if iterate_rays:
self.c = self.d = None
pytest.skip()
else:
scmed = self.c.median(axis=0)
else:
scmed = self.c.median(axis=0, iterate_rays=iterate_rays)
assert np.count_nonzero(np.isnan(scmed)) == 0
m2 = self.c>0.74*self.c.unit
if use_dask:
scmed = self.c.with_mask(m2).median(axis=0)
else:
scmed = self.c.with_mask(m2).median(axis=0, iterate_rays=iterate_rays)
assert np.count_nonzero(np.isnan(scmed)) == 1
self.c = self.d = None
@pytest.mark.parametrize(('pct', 'iterate_rays'),
(zip((3,25,50,75,97)*2,(True,)*5 + (False,)*5)))
def test_percentile(self, pct, iterate_rays, use_dask):
m = np.empty(self.d.sum(axis=0).shape)
for y in range(m.shape[0]):
for x in range(m.shape[1]):
ray = self.d[:, y, x]
ray = ray[ray > 0.5]
m[y, x] = np.percentile(ray, pct)
if use_dask:
if iterate_rays:
self.c = self.d = None
pytest.skip()
else:
scpct = self.c.percentile(pct, axis=0)
else:
scpct = self.c.percentile(pct, axis=0, iterate_rays=iterate_rays)
assert_allclose(scpct, m)
assert not np.any(np.isnan(scpct.value))
assert scpct.unit == self.c.unit
self.c = self.d = None
@pytest.mark.parametrize('method', ('sum', 'min', 'max', 'std', 'mad_std',
'median', 'argmin', 'argmax'))
def test_transpose(self, method, data_adv, data_vad, use_dask):
c1, d1 = cube_and_raw(data_adv, use_dask=use_dask)
c2, d2 = cube_and_raw(data_vad, use_dask=use_dask)
for axis in [None, 0, 1, 2]:
assert_allclose(getattr(c1, method)(axis=axis),
getattr(c2, method)(axis=axis))
if not use_dask:
# check that all these accept progressbar kwargs
assert_allclose(getattr(c1, method)(axis=axis, progressbar=True),
getattr(c2, method)(axis=axis, progressbar=True))
self.c = self.d = None
@pytest.mark.parametrize('method', ('argmax_world', 'argmin_world'))
def test_transpose_arg_world(self, method, data_adv, data_vad, use_dask):
c1, d1 = cube_and_raw(data_adv, use_dask=use_dask)
c2, d2 = cube_and_raw(data_vad, use_dask=use_dask)
# The spectral axis should work in all of these test cases.
axis = 0
assert_allclose(getattr(c1, method)(axis=axis),
getattr(c2, method)(axis=axis))
if not use_dask:
# check that all these accept progressbar kwargs
assert_allclose(getattr(c1, method)(axis=axis, progressbar=True),
getattr(c2, method)(axis=axis, progressbar=True))
# But the spatial axes should fail since the pixel axes are correlated to
# the WCS celestial axes. Currently this will happen for ALL celestial axes.
for axis in [1, 2]:
with pytest.raises(utils.WCSCelestialError,
match=re.escape(f"{method} requires the celestial axes")):
assert_allclose(getattr(c1, method)(axis=axis),
getattr(c2, method)(axis=axis))
self.c = self.d = None
@pytest.mark.parametrize('method', ('argmax_world', 'argmin_world'))
def test_arg_world(self, method, data_adv, use_dask):
c1, d1 = cube_and_raw(data_adv, use_dask=use_dask)
# Pixel operation is same name with "_world" removed.
arg0_pixel = getattr(c1, method.split("_")[0])(axis=0)
arg0_world = np.take_along_axis(c1.spectral_axis[:, np.newaxis, np.newaxis],
arg0_pixel[np.newaxis, :, :], axis=0).squeeze()
assert_allclose(getattr(c1, method)(axis=0), arg0_world)
self.c = self.d = None
class TestSlab(BaseTest):
def test_closest_spectral_channel(self):
c = self.c
ms = u.m / u.s
assert c.closest_spectral_channel(-321214.698632 * ms) == 0
assert c.closest_spectral_channel(-319926.48366321 * ms) == 1
assert c.closest_spectral_channel(-318638.26869442 * ms) == 2
assert c.closest_spectral_channel(-320000 * ms) == 1
assert c.closest_spectral_channel(-340000 * ms) == 0
assert c.closest_spectral_channel(0 * ms) == 3
self.c = self.d = None
def test_spectral_channel_bad_units(self):
with pytest.raises(u.UnitsError,
match=re.escape("'value' should be in frequency equivalent or velocity units (got s)")):
self.c.closest_spectral_channel(1 * u.s)
with pytest.raises(u.UnitsError,
match=re.escape("Spectral axis is in velocity units and 'value' is in frequency-equivalent units - use SpectralCube.with_spectral_unit first to convert the cube to frequency-equivalent units, or search for a velocity instead")):
self.c.closest_spectral_channel(1. * u.Hz)
self.c = self.d = None
def test_slab(self):
ms = u.m / u.s
c2 = self.c.spectral_slab(-320000 * ms, -318600 * ms)
assert_allclose(c2._data, self.d[1:3])
assert c2._mask is not None
self.c = self.d = None
def test_slab_reverse_limits(self):
ms = u.m / u.s
c2 = self.c.spectral_slab(-318600 * ms, -320000 * ms)
assert_allclose(c2._data, self.d[1:3])
assert c2._mask is not None
self.c = self.d = None
def test_slab_preserves_wcs(self):
# regression test
ms = u.m / u.s
crpix = list(self.c._wcs.wcs.crpix)
self.c.spectral_slab(-318600 * ms, -320000 * ms)
assert list(self.c._wcs.wcs.crpix) == crpix
self.c = self.d = None
class TestSlabMultiBeams(BaseTestMultiBeams, TestSlab):
""" same tests with multibeams """
pass
# class TestRepr(BaseTest):
# def test_repr(self):
# assert repr(self.c) == """
# SpectralCube with shape=(4, 3, 2) and unit=K:
# n_x: 2 type_x: RA---SIN unit_x: deg range: 24.062698 deg: 24.063349 deg
# n_y: 3 type_y: DEC--SIN unit_y: deg range: 29.934094 deg: 29.935209 deg
# n_s: 4 type_s: VOPT unit_s: km / s range: -321.215 km / s: -317.350 km / s
# """.strip()
# self.c = self.d = None
# def test_repr_withunit(self):
# self.c._unit = u.Jy
# assert repr(self.c) == """
# SpectralCube with shape=(4, 3, 2) and unit=Jy:
# n_x: 2 type_x: RA---SIN unit_x: deg range: 24.062698 deg: 24.063349 deg
# n_y: 3 type_y: DEC--SIN unit_y: deg range: 29.934094 deg: 29.935209 deg
# n_s: 4 type_s: VOPT unit_s: km / s range: -321.215 km / s: -317.350 km / s
# """.strip()
# self.c = self.d = None
@pytest.mark.skipif('not YT_INSTALLED')
class TestYt():
@pytest.fixture(autouse=True)
def setup_method_fixture(self, request, data_adv, use_dask):
print("HERE")
self.cube = SpectralCube.read(data_adv, use_dask=use_dask)
# Without any special arguments
print(self.cube)
print(self.cube.to_yt)
self.ytc1 = self.cube.to_yt()
# With spectral factor = 0.5
self.spectral_factor = 0.5
self.ytc2 = self.cube.to_yt(spectral_factor=self.spectral_factor)
# With nprocs = 4
self.nprocs = 4
self.ytc3 = self.cube.to_yt(nprocs=self.nprocs)
print("DONE")
def test_yt(self):
# The following assertions just make sure everything is
# kosher with the datasets generated in different ways
ytc1,ytc2,ytc3 = self.ytc1,self.ytc2,self.ytc3
ds1,ds2,ds3 = ytc1.dataset, ytc2.dataset, ytc3.dataset
assert_array_equal(ds1.domain_dimensions, ds2.domain_dimensions)
assert_array_equal(ds2.domain_dimensions, ds3.domain_dimensions)
assert_allclose(ds1.domain_left_edge.value, ds2.domain_left_edge.value)
assert_allclose(ds2.domain_left_edge.value, ds3.domain_left_edge.value)
assert_allclose(ds1.domain_width.value,
ds2.domain_width.value*np.array([1,1,1.0/self.spectral_factor]))
assert_allclose(ds1.domain_width.value, ds3.domain_width.value)
assert self.nprocs == len(ds3.index.grids)
ds1.index
ds2.index
ds3.index
unit1 = ds1.field_info["fits","flux"].units
unit2 = ds2.field_info["fits","flux"].units
unit3 = ds3.field_info["fits","flux"].units
ds1.quan(1.0,unit1)
ds2.quan(1.0,unit2)
ds3.quan(1.0,unit3)
self.cube = self.ytc1 = self.ytc2 = self.ytc3 = None
@pytest.mark.skipif('YT_LT_301', reason='yt 3.0 has a FITS-related bug')
def test_yt_fluxcompare(self):
# Now check that we can compute quantities of the flux
# and that they are equal
ytc1,ytc2,ytc3 = self.ytc1,self.ytc2,self.ytc3
ds1,ds2,ds3 = ytc1.dataset, ytc2.dataset, ytc3.dataset
dd1 = ds1.all_data()
dd2 = ds2.all_data()
dd3 = ds3.all_data()
flux1_tot = dd1.quantities.total_quantity("flux")
flux2_tot = dd2.quantities.total_quantity("flux")
flux3_tot = dd3.quantities.total_quantity("flux")
flux1_min, flux1_max = dd1.quantities.extrema("flux")
flux2_min, flux2_max = dd2.quantities.extrema("flux")
flux3_min, flux3_max = dd3.quantities.extrema("flux")
assert flux1_tot == flux2_tot
assert flux1_tot == flux3_tot
assert flux1_min == flux2_min
assert flux1_min == flux3_min
assert flux1_max == flux2_max
assert flux1_max == flux3_max
self.cube = self.ytc1 = self.ytc2 = self.ytc3 = None
def test_yt_roundtrip_wcs(self):
# Now test round-trip conversions between yt and world coordinates
ytc1,ytc2,ytc3 = self.ytc1,self.ytc2,self.ytc3
ds1,ds2,ds3 = ytc1.dataset, ytc2.dataset, ytc3.dataset
yt_coord1 = ds1.domain_left_edge + np.random.random(size=3)*ds1.domain_width
world_coord1 = ytc1.yt2world(yt_coord1)
assert_allclose(ytc1.world2yt(world_coord1), yt_coord1.value)
yt_coord2 = ds2.domain_left_edge + np.random.random(size=3)*ds2.domain_width
world_coord2 = ytc2.yt2world(yt_coord2)
assert_allclose(ytc2.world2yt(world_coord2), yt_coord2.value)
yt_coord3 = ds3.domain_left_edge + np.random.random(size=3)*ds3.domain_width
world_coord3 = ytc3.yt2world(yt_coord3)
assert_allclose(ytc3.world2yt(world_coord3), yt_coord3.value)
self.cube = self.ytc1 = self.ytc2 = self.ytc3 = None
def test_read_write_rountrip(tmpdir, data_adv, use_dask):
cube = SpectralCube.read(data_adv, use_dask=use_dask)
tmp_file = str(tmpdir.join('test.fits'))
cube.write(tmp_file)
cube2 = SpectralCube.read(tmp_file, use_dask=use_dask)
assert cube.shape == cube.shape
assert_allclose(cube._data, cube2._data)
if (((hasattr(_wcs, '__version__')
and parse(_wcs.__version__) < Version('5.9'))
or not hasattr(_wcs, '__version__'))):
# see https://github.com/astropy/astropy/pull/3992 for reasons:
# we should upgrade this for 5.10 when the absolute accuracy is
# maximized
assert cube._wcs.to_header_string() == cube2._wcs.to_header_string()
# in 5.11 and maybe even 5.12, the round trip fails. Maybe
# https://github.com/astropy/astropy/issues/4292 will solve it?
@pytest.mark.parametrize(('memmap', 'base'),
((True, mmap.mmap),
(False, None)))
def test_read_memmap(memmap, base, data_adv):
cube = SpectralCube.read(data_adv, memmap=memmap)
bb = cube.base
while hasattr(bb, 'base'):
bb = bb.base
if base is None:
assert bb is None
else:
assert isinstance(bb, base)
def _dummy_cube(use_dask):
data = np.array([[[0, 1, 2, 3, 4]]])
wcs = WCS(naxis=3)
wcs.wcs.ctype = ['RA---TAN', 'DEC--TAN', 'VELO-HEL']
def lower_threshold(data, wcs, view=()):
return data[view] > 0
m1 = FunctionMask(lower_threshold)
cube = SpectralCube(data, wcs=wcs, mask=m1, use_dask=use_dask)
return cube
def test_with_mask(use_dask):
def upper_threshold(data, wcs, view=()):
return data[view] < 3
m2 = FunctionMask(upper_threshold)
cube = _dummy_cube(use_dask)
cube2 = cube.with_mask(m2)
assert_allclose(cube._get_filled_data(), [[[np.nan, 1, 2, 3, 4]]])
assert_allclose(cube2._get_filled_data(), [[[np.nan, 1, 2, np.nan, np.nan]]])
def test_with_mask_with_boolean_array(use_dask):
cube = _dummy_cube(use_dask)
mask = np.random.random(cube.shape) > 0.5
cube2 = cube.with_mask(mask, inherit_mask=False)
assert isinstance(cube2._mask, BooleanArrayMask)
assert cube2._mask._wcs is cube._wcs
assert cube2._mask._mask is mask
def test_with_mask_with_good_array_shape(use_dask):
cube = _dummy_cube(use_dask)
mask = np.zeros((1, 5), dtype=bool)
cube2 = cube.with_mask(mask, inherit_mask=False)
assert isinstance(cube2._mask, BooleanArrayMask)
np.testing.assert_equal(cube2._mask._mask, mask.reshape((1, 1, 5)))
def test_with_mask_with_bad_array_shape(use_dask):
cube = _dummy_cube(use_dask)
mask = np.zeros((5, 5), dtype=bool)
with pytest.raises(ValueError) as exc:
cube.with_mask(mask)
assert exc.value.args[0] == ("Mask shape is not broadcastable to data shape: "
"(5, 5) vs (1, 1, 5)")
class TestMasks(BaseTest):
@pytest.mark.parametrize('op', (operator.gt, operator.lt,
operator.le, operator.ge))
def test_operator_threshold(self, op):
# choose thresh to exercise proper equality tests
thresh = self.d.ravel()[0]
m = op(self.c, thresh*u.K)
self.c._mask = m
expected = self.d[op(self.d, thresh)]
actual = self.c.flattened()
assert_allclose(actual, expected)
self.c = self.d = None
def test_preserve_spectral_unit(data_advs, use_dask):
# astropy.wcs has a tendancy to change spectral units from e.g. km/s to
# m/s, so we have a workaround - check that it works.
cube, data = cube_and_raw(data_advs, use_dask=use_dask)
cube_freq = cube.with_spectral_unit(u.GHz)
assert cube_freq.wcs.wcs.cunit[2] == 'Hz' # check internal
assert cube_freq.spectral_axis.unit is u.GHz
# Check that this preferred unit is propagated
new_cube = cube_freq.with_fill_value(fill_value=3.4)
assert new_cube.spectral_axis.unit is u.GHz
def test_endians(use_dask):
"""
Test that the endianness checking returns something in Native form
(this is only needed for non-numpy functions that worry about the
endianness of their data)
WARNING: Because the endianness is machine-dependent, this may fail on
different architectures! This is because numpy automatically converts
little-endian to native in the dtype parameter; I need a workaround for
this.
"""
pytest.importorskip('bottleneck')
big = np.array([[[1],[2]]], dtype='>f4')
lil = np.array([[[1],[2]]], dtype='<f4')
mywcs = WCS(naxis=3)
mywcs.wcs.ctype[0] = 'RA'
mywcs.wcs.ctype[1] = 'DEC'
mywcs.wcs.ctype[2] = 'VELO'
bigcube = SpectralCube(data=big, wcs=mywcs, use_dask=use_dask)
xbig = bigcube._get_filled_data(check_endian=True)
lilcube = SpectralCube(data=lil, wcs=mywcs, use_dask=use_dask)
xlil = lilcube._get_filled_data(check_endian=True)
assert xbig.dtype.byteorder == '='
assert xlil.dtype.byteorder == '='
xbig = bigcube._get_filled_data(check_endian=False)
xlil = lilcube._get_filled_data(check_endian=False)
assert xbig.dtype.byteorder == '>'
assert xlil.dtype.byteorder == '='
def test_header_naxis(data_advs, use_dask):
cube, data = cube_and_raw(data_advs, use_dask=use_dask)
assert cube.header['NAXIS'] == 3 # NOT data.ndim == 4
assert cube.header['NAXIS1'] == data.shape[3]
assert cube.header['NAXIS2'] == data.shape[2]
assert cube.header['NAXIS3'] == data.shape[1]
assert 'NAXIS4' not in cube.header
def test_slicing(data_advs, use_dask):
cube, data = cube_and_raw(data_advs, use_dask)
# just to check that we're starting in the right place
assert cube.shape == (2,3,4)
sl = cube[:,1,:]
assert sl.shape == (2,4)
v = cube[1:2,:,:]
assert v.shape == (1,3,4)
# make sure this works. Not sure what keys to test for...
v.header
assert cube[:,:,:].shape == (2,3,4)
assert cube[:,:].shape == (2,3,4)
assert cube[:].shape == (2,3,4)
assert cube[:1,:1,:1].shape == (1,1,1)
@pytest.mark.parametrize(('view','naxis'),
[((slice(None), 1, slice(None)), 2),
((1, slice(None), slice(None)), 2),
((slice(None), slice(None), 1), 2),
((slice(None), slice(None), slice(1)), 3),
((slice(1), slice(1), slice(1)), 3),
((slice(None, None, -1), slice(None), slice(None)), 3),
])
def test_slice_wcs(view, naxis, data_advs, use_dask):
cube, data = cube_and_raw(data_advs, use_dask=use_dask)
sl = cube[view]
assert sl.wcs.naxis == naxis
# Ensure slices work without a beam
cube._beam = None
sl = cube[view]
assert sl.wcs.naxis == naxis
def test_slice_wcs_reversal(data_advs, use_dask):
cube, data = cube_and_raw(data_advs, use_dask=use_dask)
view = (slice(None,None,-1), slice(None), slice(None))
rcube = cube[view]
rrcube = rcube[view]
np.testing.assert_array_equal(np.diff(cube.spectral_axis),
-np.diff(rcube.spectral_axis))
np.testing.assert_array_equal(rrcube.spectral_axis.value,
cube.spectral_axis.value)
np.testing.assert_array_equal(rcube.spectral_axis.value,
cube.spectral_axis.value[::-1])
np.testing.assert_array_equal(rrcube.world_extrema.value,
cube.world_extrema.value)
# check that the lon, lat arrays are *entirely* unchanged
np.testing.assert_array_equal(rrcube.spatial_coordinate_map[0].value,
cube.spatial_coordinate_map[0].value)
np.testing.assert_array_equal(rrcube.spatial_coordinate_map[1].value,
cube.spatial_coordinate_map[1].value)
def test_spectral_slice_preserve_units(data_advs, use_dask):
cube, data = cube_and_raw(data_advs, use_dask=use_dask)
cube = cube.with_spectral_unit(u.km/u.s)
sl = cube[:,0,0]
assert cube._spectral_unit == u.km/u.s
assert sl._spectral_unit == u.km/u.s
assert cube.spectral_axis.unit == u.km/u.s
assert sl.spectral_axis.unit == u.km/u.s
def test_header_units_consistent(data_advs, use_dask):
cube, data = cube_and_raw(data_advs, use_dask=use_dask)
cube_ms = cube.with_spectral_unit(u.m/u.s)
cube_kms = cube.with_spectral_unit(u.km/u.s)
cube_Mms = cube.with_spectral_unit(u.Mm/u.s)
assert cube.header['CUNIT3'] == 'km s-1'
assert cube_ms.header['CUNIT3'] == 'm s-1'
assert cube_kms.header['CUNIT3'] == 'km s-1'
assert cube_Mms.header['CUNIT3'] == 'Mm s-1'
# Wow, the tolerance here is really terrible...
assert_allclose(cube_Mms.header['CDELT3'], cube.header['CDELT3']/1e3,rtol=1e-3,atol=1e-5)
assert_allclose(cube.header['CDELT3'], cube_kms.header['CDELT3'],rtol=1e-2,atol=1e-5)
assert_allclose(cube.header['CDELT3']*1e3, cube_ms.header['CDELT3'],rtol=1e-2,atol=1e-5)
cube_freq = cube.with_spectral_unit(u.Hz)
assert cube_freq.header['CUNIT3'] == 'Hz'
cube_freq_GHz = cube.with_spectral_unit(u.GHz)
assert cube_freq_GHz.header['CUNIT3'] == 'GHz'
def test_spectral_unit_conventions(data_advs, use_dask):
cube, data = cube_and_raw(data_advs, use_dask=use_dask)
cube_frq = cube.with_spectral_unit(u.Hz)
cube_opt = cube.with_spectral_unit(u.km/u.s,
rest_value=cube_frq.spectral_axis[0],
velocity_convention='optical')
cube_rad = cube.with_spectral_unit(u.km/u.s,
rest_value=cube_frq.spectral_axis[0],
velocity_convention='radio')
cube_rel = cube.with_spectral_unit(u.km/u.s,
rest_value=cube_frq.spectral_axis[0],
velocity_convention='relativistic')
# should all be exactly 0 km/s
for x in (cube_rel.spectral_axis[0], cube_rad.spectral_axis[0],
cube_opt.spectral_axis[0]):
np.testing.assert_almost_equal(0,x.value)
assert cube_rel.spectral_axis[1] != cube_rad.spectral_axis[1]
assert cube_opt.spectral_axis[1] != cube_rad.spectral_axis[1]
assert cube_rel.spectral_axis[1] != cube_opt.spectral_axis[1]
assert cube_rel.velocity_convention == u.doppler_relativistic
assert cube_rad.velocity_convention == u.doppler_radio
assert cube_opt.velocity_convention == u.doppler_optical
def test_invalid_spectral_unit_conventions(data_advs, use_dask):
cube, data = cube_and_raw(data_advs, use_dask=use_dask)
with pytest.raises(ValueError,
match=("Velocity convention must be radio, optical, "
"or relativistic.")):
cube.with_spectral_unit(u.km/u.s,
velocity_convention='invalid velocity convention')
@pytest.mark.parametrize('rest', (50, 50*u.K))
def test_invalid_rest(rest, data_advs, use_dask):
cube, data = cube_and_raw(data_advs, use_dask=use_dask)
with pytest.raises(ValueError,
match=("Rest value must be specified as an astropy "
"quantity with spectral equivalence.")):
cube.with_spectral_unit(u.km/u.s,
velocity_convention='radio',
rest_value=rest)
def test_airwave_to_wave(data_advs, use_dask):
cube, data = cube_and_raw(data_advs, use_dask=use_dask)
cube._wcs.wcs.ctype[2] = 'AWAV'
cube._wcs.wcs.cunit[2] = 'm'
cube._spectral_unit = u.m
cube._wcs.wcs.cdelt[2] = 1e-7
cube._wcs.wcs.crval[2] = 5e-7
ax1 = cube.spectral_axis
ax2 = cube.with_spectral_unit(u.m).spectral_axis
np.testing.assert_almost_equal(spectral_axis.air_to_vac(ax1).value,
ax2.value)
@pytest.mark.parametrize(('func','how','axis','filename'),
itertools.product(('sum','std','max','min','mean'),
('slice','cube','auto'),
(0,1,2),
('data_advs', 'data_advs_nobeam'),
), indirect=['filename'])
def test_twod_numpy(func, how, axis, filename, use_dask):
# Check that a numpy function returns the correct result when applied along
# one axis
# This is partly a regression test for #211
if use_dask and how != 'cube':
pytest.skip()
cube, data = cube_and_raw(filename, use_dask=use_dask)
cube._meta['BUNIT'] = 'K'
cube._unit = u.K
if use_dask:
proj = getattr(cube, func)(axis=axis)
else:
proj = getattr(cube, func)(axis=axis, how=how)
# data has a redundant 1st axis
dproj = getattr(data,func)(axis=(0,axis+1)).squeeze()
assert isinstance(proj, Projection)
np.testing.assert_almost_equal(proj.value, dproj)
assert cube.unit == proj.unit
@pytest.mark.parametrize(('func','how','axis','filename'),
itertools.product(('sum','std','max','min','mean'),
('slice','cube','auto'),
((0,1),(1,2),(0,2)),
('data_advs', 'data_advs_nobeam'),
), indirect=['filename'])
def test_twod_numpy_twoaxes(func, how, axis, filename, use_dask):
# Check that a numpy function returns the correct result when applied along
# one axis
# This is partly a regression test for #211
if use_dask and how != 'cube':
pytest.skip()
cube, data = cube_and_raw(filename, use_dask=use_dask)
cube._meta['BUNIT'] = 'K'
cube._unit = u.K
with warnings.catch_warnings(record=True) as wrn:
if use_dask:
spec = getattr(cube, func)(axis=axis)
else:
spec = getattr(cube, func)(axis=axis, how=how)
if func == 'mean' and axis != (1,2):
assert 'Averaging over a spatial and a spectral' in str(wrn[-1].message)
# data has a redundant 1st axis
dspec = getattr(data.squeeze(),func)(axis=axis)
if axis == (1,2):
assert isinstance(spec, OneDSpectrum)
assert cube.unit == spec.unit
np.testing.assert_almost_equal(spec.value, dspec)
else:
np.testing.assert_almost_equal(spec, dspec)
def test_preserves_header_values(data_advs, use_dask):
# Check that the non-WCS header parameters are preserved during projection
cube, data = cube_and_raw(data_advs, use_dask=use_dask)
cube._meta['BUNIT'] = 'K'
cube._unit = u.K
cube._header['OBJECT'] = 'TestName'
if use_dask:
proj = cube.sum(axis=0)
else:
proj = cube.sum(axis=0, how='auto')
assert isinstance(proj, Projection)
assert proj.header['OBJECT'] == 'TestName'
assert proj.hdu.header['OBJECT'] == 'TestName'
def test_preserves_header_meta_values(data_advs, use_dask):
# Check that additional parameters in meta are preserved
cube, data = cube_and_raw(data_advs, use_dask=use_dask)
cube.meta['foo'] = 'bar'
assert cube.header['FOO'] == 'bar'
# check that long keywords are also preserved
cube.meta['too_long_keyword'] = 'too_long_information'
assert 'too_long_keyword=too_long_information' in cube.header['COMMENT']
if use_dask:
proj = cube.sum(axis=0)
else:
proj = cube.sum(axis=0, how='auto')
# Checks that the header is preserved when passed to LDOs
for ldo in (proj, cube[:,0,0]):
assert isinstance(ldo, LowerDimensionalObject)
assert ldo.header['FOO'] == 'bar'
assert ldo.hdu.header['FOO'] == 'bar'
# make sure that the meta preservation works on the LDOs themselves too
ldo.meta['bar'] = 'foo'
assert ldo.header['BAR'] == 'foo'
assert 'too_long_keyword=too_long_information' in ldo.header['COMMENT']
@pytest.mark.parametrize(('func', 'filename'),
itertools.product(('sum','std','max','min','mean'),
('data_advs', 'data_advs_nobeam',),
), indirect=['filename'])
def test_oned_numpy(func, filename, use_dask):
# Check that a numpy function returns an appropriate spectrum
cube, data = cube_and_raw(filename, use_dask=use_dask)
cube._meta['BUNIT'] = 'K'
cube._unit = u.K
spec = getattr(cube,func)(axis=(1,2))
dspec = getattr(data,func)(axis=(2,3)).squeeze()
assert isinstance(spec, (OneDSpectrum, VaryingResolutionOneDSpectrum))
# data has a redundant 1st axis
np.testing.assert_equal(spec.value, dspec)
assert cube.unit == spec.unit
def test_oned_slice(data_advs, use_dask):
# Check that a slice returns an appropriate spectrum
cube, data = cube_and_raw(data_advs, use_dask=use_dask)
cube._meta['BUNIT'] = 'K'
cube._unit = u.K
spec = cube[:,0,0]
assert isinstance(spec, OneDSpectrum)
# data has a redundant 1st axis
np.testing.assert_equal(spec.value, data[0,:,0,0])
assert cube.unit == spec.unit
assert spec.header['BUNIT'] == cube.header['BUNIT']
def test_oned_slice_beams(data_sdav_beams, use_dask):
# Check that a slice returns an appropriate spectrum
cube, data = cube_and_raw(data_sdav_beams, use_dask=use_dask)
cube._meta['BUNIT'] = 'K'
cube._unit = u.K
spec = cube[:,0,0]
assert isinstance(spec, VaryingResolutionOneDSpectrum)
# data has a redundant 1st axis
np.testing.assert_equal(spec.value, data[:,0,0,0])
assert cube.unit == spec.unit
assert spec.header['BUNIT'] == cube.header['BUNIT']
assert hasattr(spec, 'beams')
assert 'BMAJ' in spec.hdulist[1].data.names
def test_subcube_slab_beams(data_sdav_beams, use_dask):
cube, data = cube_and_raw(data_sdav_beams, use_dask=use_dask)
slcube = cube[1:]
assert all(slcube.hdulist[1].data['CHAN'] == np.arange(slcube.shape[0]))
try:
# Make sure Beams has been sliced correctly
assert all(cube.beams[1:] == slcube.beams)
except TypeError:
# in 69eac9241220d3552c06b173944cb7cdebeb47ef, radio_beam switched to
# returning a single value
assert cube.beams[1:] == slcube.beams
# collapsing to one dimension raywise doesn't make sense and is therefore
# not supported.
@pytest.mark.parametrize('how', ('auto', 'cube', 'slice'))
def test_oned_collapse(how, data_advs, use_dask):
# Check that an operation along the spatial dims returns an appropriate
# spectrum
if use_dask and how != 'cube':
pytest.skip()
cube, data = cube_and_raw(data_advs, use_dask=use_dask)
cube._meta['BUNIT'] = 'K'
cube._unit = u.K
if use_dask:
spec = cube.mean(axis=(1,2))
else:
spec = cube.mean(axis=(1,2), how=how)
assert isinstance(spec, OneDSpectrum)
# data has a redundant 1st axis
np.testing.assert_equal(spec.value, data.mean(axis=(0,2,3)))
assert cube.unit == spec.unit
assert spec.header['BUNIT'] == cube.header['BUNIT']
def test_oned_collapse_beams(data_sdav_beams, use_dask):
# Check that an operation along the spatial dims returns an appropriate
# spectrum
cube, data = cube_and_raw(data_sdav_beams, use_dask=use_dask)
cube._meta['BUNIT'] = 'K'
cube._unit = u.K
spec = cube.mean(axis=(1,2))
assert isinstance(spec, VaryingResolutionOneDSpectrum)
# data has a redundant 1st axis
# we changed to assert_almost_equal in 2025 because, for no known reason, epsilon-level differences crept in
np.testing.assert_almost_equal(spec.value, np.nanmean(data, axis=(1,2,3)))
assert cube.unit == spec.unit
assert spec.header['BUNIT'] == cube.header['BUNIT']
assert hasattr(spec, 'beams')
assert 'BMAJ' in spec.hdulist[1].data.names
def test_preserve_bunit(data_advs, use_dask):
cube, data = cube_and_raw(data_advs, use_dask=use_dask)
assert cube.header['BUNIT'] == 'K'
hdul = fits.open(data_advs)
hdu = hdul[0]
hdu.header['BUNIT'] = 'Jy'
cube = SpectralCube.read(hdu)
assert cube.unit == u.Jy
assert cube.header['BUNIT'] == 'Jy'
hdul.close()
def test_preserve_beam(data_advs, use_dask):
cube, data = cube_and_raw(data_advs, use_dask=use_dask)
beam = Beam.from_fits_header(str(data_advs))
assert cube.beam == beam
def test_beam_attach_to_header(data_adv, use_dask):
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
header = cube._header.copy()
del header["BMAJ"], header["BMIN"], header["BPA"]
newcube = SpectralCube(data=data, wcs=cube.wcs, header=header,
beam=cube.beam)
assert cube.header["BMAJ"] == newcube.header["BMAJ"]
assert cube.header["BMIN"] == newcube.header["BMIN"]
assert cube.header["BPA"] == newcube.header["BPA"]
# Should be in meta too
assert newcube.meta['beam'] == cube.beam
def test_beam_custom(data_adv, use_dask):
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
header = cube._header.copy()
beam = Beam.from_fits_header(header)
del header["BMAJ"], header["BMIN"], header["BPA"]
newcube = SpectralCube(data=data, wcs=cube.wcs, header=header)
# newcube should now not have a beam
# Should raise exception
try:
newcube.beam
except utils.NoBeamError:
pass
# Attach the beam
newcube = newcube.with_beam(beam=beam)
assert newcube.beam == cube.beam
# Header should be updated
assert cube.header["BMAJ"] == newcube.header["BMAJ"]
assert cube.header["BMIN"] == newcube.header["BMIN"]
assert cube.header["BPA"] == newcube.header["BPA"]
# Should be in meta too
assert newcube.meta['beam'] == cube.beam
# Try changing the beam properties
newbeam = Beam(beam.major * 2)
newcube2 = newcube.with_beam(beam=newbeam)
assert newcube2.beam == newbeam
# Header should be updated
assert newcube2.header["BMAJ"] == newbeam.major.value
assert newcube2.header["BMIN"] == newbeam.minor.value
assert newcube2.header["BPA"] == newbeam.pa.value
# Should be in meta too
assert newcube2.meta['beam'] == newbeam
def test_cube_with_no_beam(data_adv, use_dask):
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
header = cube._header.copy()
beam = Beam.from_fits_header(header)
del header["BMAJ"], header["BMIN"], header["BPA"]
newcube = SpectralCube(data=data, wcs=cube.wcs, header=header)
# Accessing beam raises an error
try:
newcube.beam
except utils.NoBeamError:
pass
# But is still has a beam attribute
assert hasattr(newcube, "_beam")
# Attach the beam
newcube = newcube.with_beam(beam=beam)
# But now it should have an accessible beam
try:
newcube.beam
except utils.NoBeamError as exc:
raise exc
def test_multibeam_custom(data_vda_beams, use_dask):
cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask)
# Make a new set of beams that differs from the original.
new_beams = Beams([1.] * cube.shape[0] * u.deg)
# Attach the beam
newcube = cube.with_beams(new_beams, raise_error_jybm=False)
try:
assert all(new_beams == newcube.beams)
except TypeError:
# in 69eac9241220d3552c06b173944cb7cdebeb47ef, radio_beam switched to
# returning a single value
assert new_beams == newcube.beams
@pytest.mark.openfiles_ignore
@pytest.mark.xfail(raises=ValueError, strict=True)
def test_multibeam_custom_wrongshape(data_vda_beams, use_dask):
cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask)
# Make a new set of beams that differs from the original.
new_beams = Beams([1.] * cube.shape[0] * u.deg)
# Attach the beam
cube.with_beams(new_beams[:1], raise_error_jybm=False)
@pytest.mark.openfiles_ignore
@pytest.mark.xfail(raises=utils.BeamUnitsError, strict=True)
def test_multibeam_jybm_error(data_vda_beams, use_dask):
cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask)
# Make a new set of beams that differs from the original.
new_beams = Beams([1.] * cube.shape[0] * u.deg)
# Attach the beam
newcube = cube.with_beams(new_beams, raise_error_jybm=True)
def test_multibeam_slice(data_vda_beams, use_dask):
cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask)
assert isinstance(cube, VaryingResolutionSpectralCube)
np.testing.assert_almost_equal(cube.beams[0].major.value, 0.4)
np.testing.assert_almost_equal(cube.beams[0].minor.value, 0.1)
np.testing.assert_almost_equal(cube.beams[3].major.value, 0.4)
scube = cube[:2,:,:]
np.testing.assert_almost_equal(scube.beams[0].major.value, 0.4)
np.testing.assert_almost_equal(scube.beams[0].minor.value, 0.1)
np.testing.assert_almost_equal(scube.beams[1].major.value, 0.3)
np.testing.assert_almost_equal(scube.beams[1].minor.value, 0.2)
flatslice = cube[0,:,:]
np.testing.assert_almost_equal(flatslice.header['BMAJ'],
(0.4/3600.))
# Test returning a VRODS
spec = cube[:, 0, 0]
assert (cube.beams == spec.beams).all()
# And make sure that Beams gets slice for part of a spectrum
spec_part = cube[:1, 0, 0]
assert cube.beams[0] == spec.beams[0]
def test_basic_unit_conversion(data_advs, use_dask):
cube, data = cube_and_raw(data_advs, use_dask=use_dask)
assert cube.unit == u.K
mKcube = cube.to(u.mK)
np.testing.assert_almost_equal(mKcube.filled_data[:].value,
(cube.filled_data[:].value *
1e3))
def test_basic_unit_conversion_beams(data_vda_beams, use_dask):
cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask)
cube._unit = u.K # want beams, but we want to force the unit to be something non-beamy
cube._meta['BUNIT'] = 'K'
assert cube.unit == u.K
mKcube = cube.to(u.mK)
np.testing.assert_almost_equal(mKcube.filled_data[:].value,
(cube.filled_data[:].value *
1e3))
def test_unit_conversion_brightness_temperature_without_beam(data_adv, use_dask):
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
cube = SpectralCube(data, wcs=cube.wcs)
cube._unit = u.Jy / u.sr
cube._meta['BUNIT'] = 'sr-1 Jy'
# Make sure unit is correct and no beam is defined
assert cube.unit == u.Jy / u.sr
assert cube._beam is None
with pytest.raises(utils.NoBeamError):
cube.beam
brightness_t_cube = cube.to(u.K)
np.testing.assert_almost_equal(brightness_t_cube.filled_data[:].value,
(cube.filled_data[:].value *
1.60980084e-05))
# And convert back
cube_jy_angle = brightness_t_cube.to(u.Jy / u.arcsec**2)
np.testing.assert_almost_equal(cube_jy_angle.filled_data[:].value,
(cube.filled_data[:].value /
4.25451703e+10))
bunits_list = [u.Jy / u.beam, u.K, u.Jy / u.sr, u.Jy / u.pix, u.Jy / u.arcsec**2,
u.mJy / u.beam, u.mK]
@pytest.mark.parametrize(('init_unit'), bunits_list)
def test_unit_conversions_general(data_advs, use_dask, init_unit):
cube, data = cube_and_raw(data_advs, use_dask=use_dask)
cube._meta['BUNIT'] = init_unit.to_string()
cube._unit = init_unit
# Check all unit conversion combos:
for targ_unit in bunits_list:
newcube = cube.to(targ_unit)
if init_unit == targ_unit:
np.testing.assert_almost_equal(newcube.filled_data[:].value,
cube.filled_data[:].value)
else:
roundtrip_cube = newcube.to(init_unit)
np.testing.assert_almost_equal(roundtrip_cube.filled_data[:].value,
cube.filled_data[:].value)
@pytest.mark.parametrize(('init_unit'), bunits_list)
def test_multibeam_unit_conversions_general(data_vda_beams, use_dask, init_unit):
cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask)
cube._meta['BUNIT'] = init_unit.to_string()
cube._unit = init_unit
# Check all unit conversion combos:
for targ_unit in bunits_list:
newcube = cube.to(targ_unit)
if init_unit == targ_unit:
np.testing.assert_almost_equal(newcube.filled_data[:].value,
cube.filled_data[:].value)
else:
roundtrip_cube = newcube.to(init_unit)
np.testing.assert_almost_equal(roundtrip_cube.filled_data[:].value,
cube.filled_data[:].value)
def test_beam_jpix_checks_array(data_advs, use_dask):
'''
Ensure round-trip consistency in our defined K -> Jy/pix conversions.
'''
cube, data = cube_and_raw(data_advs, use_dask=use_dask)
cube._meta['BUNIT'] = 'Jy / beam'
cube._unit = u.Jy/u.beam
jtok = cube.beam.jtok(cube.with_spectral_unit(u.GHz).spectral_axis)
pixperbeam = cube.pixels_per_beam * u.pix
cube_jypix = cube.to(u.Jy / u.pix)
np.testing.assert_almost_equal(cube_jypix.filled_data[:].value,
(cube.filled_data[:].value /
pixperbeam).value)
Kcube = cube.to(u.K)
np.testing.assert_almost_equal(Kcube.filled_data[:].value,
(cube_jypix.filled_data[:].value *
jtok[:,None,None] * pixperbeam).value)
# Round trips.
roundtrip_cube = cube_jypix.to(u.Jy / u.beam)
np.testing.assert_almost_equal(cube.filled_data[:].value,
roundtrip_cube.filled_data[:].value)
Kcube_from_jypix = cube_jypix.to(u.K)
np.testing.assert_almost_equal(Kcube.filled_data[:].value,
Kcube_from_jypix.filled_data[:].value)
def test_multibeam_jpix_checks_array(data_vda_beams, use_dask):
'''
Ensure round-trip consistency in our defined K -> Jy/pix conversions.
'''
cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask)
cube._meta['BUNIT'] = 'Jy / beam'
cube._unit = u.Jy/u.beam
# NOTE: We are no longer using jtok_factors for conversions. This may need to be removed
# in the future
jtok = cube.jtok_factors()
pixperbeam = cube.pixels_per_beam * u.pix
cube_jypix = cube.to(u.Jy / u.pix)
np.testing.assert_almost_equal(cube_jypix.filled_data[:].value,
(cube.filled_data[:].value /
pixperbeam[:, None, None]).value)
Kcube = cube.to(u.K)
np.testing.assert_almost_equal(Kcube.filled_data[:].value,
(cube_jypix.filled_data[:].value *
jtok[:,None,None] *
pixperbeam[:, None, None]).value)
# Round trips.
roundtrip_cube = cube_jypix.to(u.Jy / u.beam)
np.testing.assert_almost_equal(cube.filled_data[:].value,
roundtrip_cube.filled_data[:].value)
Kcube_from_jypix = cube_jypix.to(u.K)
np.testing.assert_almost_equal(Kcube.filled_data[:].value,
Kcube_from_jypix.filled_data[:].value)
def test_beam_jtok_array(data_advs, use_dask):
cube, data = cube_and_raw(data_advs, use_dask=use_dask)
cube._meta['BUNIT'] = 'Jy / beam'
cube._unit = u.Jy/u.beam
jtok = cube.beam.jtok(cube.with_spectral_unit(u.GHz).spectral_axis)
# test that the beam equivalencies are correctly automatically defined
Kcube = cube.to(u.K)
np.testing.assert_almost_equal(Kcube.filled_data[:].value,
(cube.filled_data[:].value *
jtok[:,None,None]).value)
def test_multibeam_jtok_array(data_vda_beams, use_dask):
cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask)
assert cube.meta['BUNIT'].strip() == 'Jy / beam'
assert cube.unit.is_equivalent(u.Jy/u.beam)
#equiv = [bm.jtok_equiv(frq) for bm, frq in zip(cube.beams, cube.with_spectral_unit(u.GHz).spectral_axis)]
jtok = u.Quantity([bm.jtok(frq) for bm, frq in zip(cube.beams, cube.with_spectral_unit(u.GHz).spectral_axis)])
# don't try this, it's nonsense for the multibeam case
# Kcube = cube.to(u.K, equivalencies=equiv)
# np.testing.assert_almost_equal(Kcube.filled_data[:].value,
# (cube.filled_data[:].value *
# jtok[:,None,None]).value)
# test that the beam equivalencies are correctly automatically defined
Kcube = cube.to(u.K)
np.testing.assert_almost_equal(Kcube.filled_data[:].value,
(cube.filled_data[:].value *
jtok[:,None,None]).value)
def test_beam_jtok(data_advs, use_dask):
# regression test for an error introduced when the previous test was solved
# (the "is this an array?" test used len(x) where x could be scalar)
cube, data = cube_and_raw(data_advs, use_dask=use_dask)
# technically this should be jy/beam, but astropy's equivalency doesn't
# handle this yet
cube._meta['BUNIT'] = 'Jy'
cube._unit = u.Jy
equiv = cube.beam.jtok_equiv(np.median(cube.with_spectral_unit(u.GHz).spectral_axis))
jtok = cube.beam.jtok(np.median(cube.with_spectral_unit(u.GHz).spectral_axis))
Kcube = cube.to(u.K, equivalencies=equiv)
np.testing.assert_almost_equal(Kcube.filled_data[:].value,
(cube.filled_data[:].value *
jtok).value)
def test_varyres_moment(data_vda_beams, use_dask):
cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask)
assert isinstance(cube, VaryingResolutionSpectralCube)
# the beams are very different, but for this test we don't care
cube.beam_threshold = 1.0
with pytest.warns(UserWarning, match="Arithmetic beam averaging is being performed"):
m0 = cube.moment0()
assert_quantity_allclose(m0.meta['beam'].major, 0.35*u.arcsec)
def test_varyres_unitconversion_roundtrip(data_vda_beams, use_dask):
cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask)
assert isinstance(cube, VaryingResolutionSpectralCube)
assert cube.unit == u.Jy/u.beam
roundtrip = cube.to(u.mJy/u.beam).to(u.Jy/u.beam)
assert_quantity_allclose(cube.filled_data[:], roundtrip.filled_data[:])
# you can't straightforwardly roundtrip to Jy/beam yet
# it requires a per-beam equivalency, which is why there's
# a specific hack to go from Jy/beam (in each channel) -> K
def test_append_beam_to_hdr(data_advs, use_dask):
cube, data = cube_and_raw(data_advs, use_dask=use_dask)
orig_hdr = fits.getheader(data_advs)
assert cube.header['BMAJ'] == orig_hdr['BMAJ']
assert cube.header['BMIN'] == orig_hdr['BMIN']
assert cube.header['BPA'] == orig_hdr['BPA']
def test_cube_with_swapped_axes(data_vda, use_dask):
"""
Regression test for #208
"""
cube, data = cube_and_raw(data_vda, use_dask=use_dask)
# Check that masking works (this should apply a lazy mask)
cube.filled_data[:]
def test_jybeam_upper(data_vda_jybeam_upper, use_dask):
cube, data = cube_and_raw(data_vda_jybeam_upper, use_dask=use_dask)
assert cube.unit == u.Jy/u.beam
assert hasattr(cube, 'beam')
np.testing.assert_almost_equal(cube.beam.sr.value,
(((1*u.arcsec/np.sqrt(8*np.log(2)))**2).to(u.sr)*2*np.pi).value)
def test_jybeam_lower(data_vda_jybeam_lower, use_dask):
cube, data = cube_and_raw(data_vda_jybeam_lower, use_dask=use_dask)
assert cube.unit == u.Jy/u.beam
assert hasattr(cube, 'beam')
np.testing.assert_almost_equal(cube.beam.sr.value,
(((1*u.arcsec/np.sqrt(8*np.log(2)))**2).to(u.sr)*2*np.pi).value)
def test_jybeam_whitespace(data_vda_jybeam_whitespace, use_dask):
# Regression test for #257 (https://github.com/radio-astro-tools/spectral-cube/pull/257)
cube, data = cube_and_raw(data_vda_jybeam_whitespace, use_dask=use_dask)
assert cube.unit == u.Jy/u.beam
assert hasattr(cube, 'beam')
np.testing.assert_almost_equal(cube.beam.sr.value,
(((1*u.arcsec/np.sqrt(8*np.log(2)))**2).to(u.sr)*2*np.pi).value)
def test_beam_proj_meta(data_advs, use_dask):
cube, data = cube_and_raw(data_advs, use_dask=use_dask)
moment = cube.moment0(axis=0)
# regression test for #250
assert 'beam' in moment.meta
assert 'BMAJ' in moment.hdu.header
slc = cube[0,:,:]
assert 'beam' in slc.meta
proj = cube.max(axis=0)
assert 'beam' in proj.meta
def test_proj_meta(data_advs, use_dask):
cube, data = cube_and_raw(data_advs, use_dask=use_dask)
moment = cube.moment0(axis=0)
assert 'BUNIT' in moment.meta
assert moment.meta['BUNIT'] == 'K'
slc = cube[0,:,:]
assert 'BUNIT' in slc.meta
assert slc.meta['BUNIT'] == 'K'
proj = cube.max(axis=0)
assert 'BUNIT' in proj.meta
assert proj.meta['BUNIT'] == 'K'
def test_pix_sign(data_advs, use_dask):
cube, data = cube_and_raw(data_advs, use_dask=use_dask)
s,y,x = (cube._pix_size_slice(ii) for ii in range(3))
assert s>0
assert y>0
assert x>0
cube.wcs.wcs.cdelt *= -1
s,y,x = (cube._pix_size_slice(ii) for ii in range(3))
assert s>0
assert y>0
assert x>0
cube.wcs.wcs.pc *= -1
s,y,x = (cube._pix_size_slice(ii) for ii in range(3))
assert s>0
assert y>0
assert x>0
def test_varyres_moment_logic_issue364(data_vda_beams, use_dask):
""" regression test for issue364 """
cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask)
assert isinstance(cube, VaryingResolutionSpectralCube)
# the beams are very different, but for this test we don't care
cube.beam_threshold = 1.0
with pytest.warns(UserWarning, match="Arithmetic beam averaging is being performed"):
# note that cube.moment(order=0) is different from cube.moment0()
# because cube.moment0() calls cube.moment(order=0, axis=(whatever)),
# but cube.moment doesn't necessarily have to receive the axis kwarg
m0 = cube.moment(order=0)
# note that this is just a sanity check; one should never use the average beam
assert_quantity_allclose(m0.meta['beam'].major, 0.35*u.arcsec)
@pytest.mark.skipif('not casaOK')
@pytest.mark.parametrize('filename', ['data_vda_beams',
'data_vda_beams_image'],
indirect=['filename'])
def test_mask_bad_beams(filename, use_dask):
"""
Prior to #543, this tested two different scenarios of beam masking. After
that, the tests got mucked up because we can no longer have minor>major in
the beams.
"""
if 'image' in str(filename) and not use_dask:
pytest.skip()
cube, data = cube_and_raw(filename, use_dask=use_dask)
assert isinstance(cube, base_class.MultiBeamMixinClass)
# make sure all of the beams are initially good (finite)
assert np.all(cube.goodbeams_mask)
# make sure cropping the cube maintains the mask
assert np.all(cube[:3].goodbeams_mask)
# middle two beams have same area
masked_cube = cube.mask_out_bad_beams(0.01,
reference_beam=Beam(0.3*u.arcsec,
0.2*u.arcsec,
60*u.deg))
assert np.all(masked_cube.mask.include()[:,0,0] == [False,True,True,False])
assert np.all(masked_cube.goodbeams_mask == [False,True,True,False])
mean = masked_cube.mean(axis=0)
assert np.all(mean == cube[1:3,:,:].mean(axis=0))
#doesn't test anything any more
# masked_cube2 = cube.mask_out_bad_beams(0.5,)
# mean2 = masked_cube2.mean(axis=0)
# assert np.all(mean2 == (cube[2,:,:]+cube[1,:,:])/2)
# assert np.all(masked_cube2.goodbeams_mask == [False,True,True,False])
def test_convolve_to_equal(data_vda, use_dask):
cube, data = cube_and_raw(data_vda, use_dask=use_dask)
convolved = cube.convolve_to(cube.beam)
assert np.all(convolved.filled_data[:].value == cube.filled_data[:].value)
# And one channel
plane = cube[0]
convolved = plane.convolve_to(cube.beam)
assert np.all(convolved.value == plane.value)
# Pass a kwarg to the convolution function
convolved = plane.convolve_to(cube.beam, nan_treatment='fill')
def test_convolve_to(data_vda_beams, use_dask):
cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask)
convolved = cube.convolve_to(Beam(0.5*u.arcsec))
# Pass a kwarg to the convolution function
convolved = cube.convolve_to(Beam(0.5*u.arcsec),
nan_treatment='fill')
def test_convolve_to_jybeam_onebeam(point_source_5_one_beam, use_dask):
cube, data = cube_and_raw(point_source_5_one_beam, use_dask=use_dask)
convolved = cube.convolve_to(Beam(10*u.arcsec))
# The peak of the point source should remain constant in Jy/beam
np.testing.assert_allclose(convolved[:, 5, 5].value, cube[:, 5, 5].value, atol=1e-5, rtol=1e-5)
assert cube.unit == u.Jy / u.beam
def test_convolve_to_jybeam_multibeams(point_source_5_spectral_beams, use_dask):
cube, data = cube_and_raw(point_source_5_spectral_beams, use_dask=use_dask)
convolved = cube.convolve_to(Beam(10*u.arcsec))
# The peak of the point source should remain constant in Jy/beam
np.testing.assert_allclose(convolved[:, 5, 5].value, cube[:, 5, 5].value, atol=1e-5, rtol=1e-5)
assert cube.unit == u.Jy / u.beam
def test_convolve_to_with_bad_beams(data_vda_beams, use_dask):
cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask)
convolved = cube.convolve_to(Beam(0.5*u.arcsec))
# From: https://github.com/radio-astro-tools/radio-beam/pull/87
# updated exception to BeamError when the beam cannot be deconvolved.
# BeamError is not new in the radio_beam package, only its use here.
# Keeping the ValueError for testing against <v0.3.3 versions
with pytest.raises((BeamError, ValueError),
match="Beam could not be deconvolved"):
# should not work: biggest beam is 0.4"
convolved = cube.convolve_to(Beam(0.35*u.arcsec))
# middle two beams are smaller than 0.4
masked_cube = cube.mask_channels([False, True, True, False])
# should work: biggest beam is 0.3 arcsec (major)
convolved = masked_cube.convolve_to(Beam(0.35*u.arcsec))
# this is a copout test; should really check for correctness...
assert np.all(np.isfinite(convolved.filled_data[1:3]))
def test_jybeam_factors(data_vda_beams, use_dask):
cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask)
assert_allclose(cube.jtok_factors(),
[15111171.12641629, 10074201.06746361, 10074287.73828087,
15111561.14508185],
rtol=5e-7
)
def test_channelmask_singlebeam(data_adv, use_dask):
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
masked_cube = cube.mask_channels([False, True, True, False])
assert np.all(masked_cube.mask.include()[:,0,0] == [False, True, True, False])
def test_mad_std(data_adv, use_dask):
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
if int(astropy.__version__[0]) < 2:
with pytest.raises(NotImplementedError) as exc:
cube.mad_std()
else:
# mad_std run manually on data
result = np.array([[0.3099842, 0.2576232],
[0.1822292, 0.6101782],
[0.2819404, 0.2084236]])
np.testing.assert_almost_equal(cube.mad_std(axis=0).value, result)
mcube = cube.with_mask(cube < 0.98*u.K)
result2 = np.array([[0.3099842, 0.2576232],
[0.1822292, 0.6101782],
[0.2819404, 0.2084236]])
np.testing.assert_almost_equal(mcube.mad_std(axis=0).value, result2)
def test_mad_std_nan(data_adv, use_dask):
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
# HACK in a nan
data[1, 1, 0] = np.nan
hdu = copy.copy(cube.hdu)
hdu.data = copy.copy(data)
# use the include-everything mask so we're really testing that nan is
# ignored
oldmask = copy.copy(cube.mask)
if use_dask:
cube = DaskSpectralCube.read(hdu)
else:
cube = SpectralCube.read(hdu)
if int(astropy.__version__[0]) < 2:
with pytest.raises(NotImplementedError) as exc:
cube.mad_std()
else:
# mad_std run manually on data
# (note: would have entry [1,0] = nan in bad case)
result = np.array([[0.30998422, 0.25762317],
[0.24100427, 0.6101782 ],
[0.28194039, 0.20842358]])
resultB = stats.mad_std(data, axis=0, ignore_nan=True)
# this test is to make sure we're testing against the right stuff
np.testing.assert_almost_equal(result, resultB)
assert cube.mask.include().sum() == 23
np.testing.assert_almost_equal(cube.mad_std(axis=0).value, result)
# run the test with the inclusive mask
cube._mask = oldmask
assert cube.mask.include().sum() == 24
np.testing.assert_almost_equal(cube.mad_std(axis=0).value, result)
# try to force closure
del hdu
del cube
del data
del oldmask
del result
def test_mad_std_params(data_adv, use_dask):
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
# mad_std run manually on data
result = np.array([[0.3099842, 0.2576232],
[0.1822292, 0.6101782],
[0.2819404, 0.2084236]])
if use_dask:
np.testing.assert_almost_equal(cube.mad_std(axis=0).value, result)
cube.mad_std(axis=1)
cube.mad_std(axis=(1, 2))
else:
np.testing.assert_almost_equal(cube.mad_std(axis=0, how='cube').value, result)
np.testing.assert_almost_equal(cube.mad_std(axis=0, how='ray').value, result)
with pytest.raises(NotImplementedError):
cube.mad_std(axis=0, how='slice')
with pytest.raises(NotImplementedError):
cube.mad_std(axis=1, how='slice')
with pytest.raises(NotImplementedError):
cube.mad_std(axis=(1,2), how='ray')
def test_caching(data_adv, use_dask):
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
assert len(cube._cache) == 0
worldextrema = cube.world_extrema
assert len(cube._cache) == 1
# see https://stackoverflow.com/questions/46181936/access-a-parent-class-property-getter-from-the-child-class
world_extrema_function = base_class.SpatialCoordMixinClass.world_extrema.fget.wrapped_function
assert cube.world_extrema is cube._cache[(world_extrema_function, ())]
np.testing.assert_almost_equal(worldextrema.value,
cube.world_extrema.value)
def test_spatial_smooth_g2d(data_adv, use_dask):
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
# Guassian 2D smoothing test
g2d = Gaussian2DKernel(3)
cube_g2d = cube.spatial_smooth(g2d)
# Check first slice
result0 = np.array([[0.0585795, 0.0588712],
[0.0612525, 0.0614312],
[0.0576757, 0.057723 ]])
np.testing.assert_almost_equal(cube_g2d[0].value, result0)
# Check third slice
result2 = np.array([[0.027322 , 0.027257 ],
[0.0280423, 0.02803 ],
[0.0259688, 0.0260123]])
np.testing.assert_almost_equal(cube_g2d[2].value, result2)
def test_spatial_smooth_preserves_unit(data_adv, use_dask):
"""
Regression test for issue527
"""
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
cube._unit = u.K
# Guassian 2D smoothing test
g2d = Gaussian2DKernel(3)
cube_g2d = cube.spatial_smooth(g2d)
assert cube_g2d.unit == u.K
def test_spatial_smooth_t2d(data_adv, use_dask):
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
# Tophat 2D smoothing test
t2d = Tophat2DKernel(3)
cube_t2d = cube.spatial_smooth(t2d)
# Check first slice
result0 = np.array([[0.1265607, 0.1265607],
[0.1265607, 0.1265607],
[0.1265607, 0.1265607]])
np.testing.assert_almost_equal(cube_t2d[0].value, result0)
# Check third slice
result2 = np.array([[0.0585135, 0.0585135],
[0.0585135, 0.0585135],
[0.0585135, 0.0585135]])
np.testing.assert_almost_equal(cube_t2d[2].value, result2)
@pytest.mark.openfiles_ignore
@pytest.mark.parametrize('filename', ['point_source_5_one_beam', 'point_source_5_spectral_beams'],
indirect=['filename'])
@pytest.mark.xfail(raises=utils.BeamUnitsError, strict=True)
def test_spatial_smooth_jybm_error(filename, use_dask):
'''Raise an error when Jy/beam units are getting spatially smoothed. This tests SCs and VRSCs'''
cube, data = cube_and_raw(filename, use_dask=use_dask)
# Tophat 2D smoothing test
t2d = Tophat2DKernel(3)
cube_t2d = cube.spatial_smooth(t2d)
@pytest.mark.openfiles_ignore
@pytest.mark.parametrize('filename', ['point_source_5_one_beam', 'point_source_5_spectral_beams'],
indirect=['filename'])
@pytest.mark.xfail(raises=utils.BeamUnitsError, strict=True)
def test_spatial_smooth_median_jybm_error(filename, use_dask):
'''Raise an error when Jy/beam units are getting spatially median smoothed. This tests SCs and VRSCs'''
cube, data = cube_and_raw(filename, use_dask=use_dask)
cube_median = cube.spatial_smooth_median(3)
def test_spatial_smooth_median(data_adv, use_dask):
pytest.importorskip('scipy.ndimage')
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
cube_median = cube.spatial_smooth_median(3)
# Check first slice
result0 = np.array([[0.8172354, 0.9038805],
[0.7068793, 0.8172354],
[0.7068793, 0.7068793]])
np.testing.assert_almost_equal(cube_median[0].value, result0)
# Check third slice
result2 = np.array([[0.3038468, 0.3038468],
[0.303744 , 0.3038468],
[0.1431722, 0.303744 ]])
np.testing.assert_almost_equal(cube_median[2].value, result2)
@pytest.mark.parametrize('num_cores', (None, 1))
def test_spatial_smooth_maxfilter(num_cores, data_adv, use_dask):
pytest.importorskip('scipy.ndimage')
from scipy import ndimage
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
cube_spatial_max = cube.spatial_filter([3, 3],
filter=ndimage.filters.maximum_filter, num_cores=num_cores)
# Check first slice
result = np.array([[0.90950237, 0.90950237],
[0.90950237, 0.90950237],
[0.90388047, 0.90388047]])
np.testing.assert_almost_equal(cube_spatial_max[0, :, :].value, result)
@pytest.mark.parametrize('num_cores', (None, 1))
def test_spectral_smooth_maxfilter(num_cores, data_adv, use_dask):
pytest.importorskip('scipy.ndimage')
from scipy import ndimage
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
cube_spectral_max = cube.spectral_filter(3,
filter=ndimage.filters.maximum_filter, num_cores=num_cores)
# Check first slice
result = np.array([0.90388047, 0.90388047, 0.96629004, 0.96629004])
np.testing.assert_almost_equal(cube_spectral_max[:,1,1].value, result)
@pytest.mark.parametrize('num_cores', (None, 1))
def test_spectral_smooth_median(num_cores, data_adv, use_dask):
pytest.importorskip('scipy.ndimage')
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
cube_spectral_median = cube.spectral_smooth_median(3, num_cores=num_cores)
# Check first slice
result = np.array([0.9038805, 0.1431722, 0.1431722, 0.9662900])
np.testing.assert_almost_equal(cube_spectral_median[:,1,1].value, result)
@pytest.mark.skipif('WINDOWS')
def test_spectral_smooth_median_4cores(data_adv, use_dask):
pytest.importorskip('joblib')
pytest.importorskip('scipy.ndimage')
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
cube_spectral_median = cube.spectral_smooth_median(3, num_cores=4)
# Check first slice
result = np.array([0.9038805, 0.1431722, 0.1431722, 0.9662900])
np.testing.assert_almost_equal(cube_spectral_median[:,1,1].value, result)
def update_function():
print("Update Function Call")
@pytest.mark.skipif('WINDOWS')
def test_smooth_update_function_parallel(capsys, data_adv):
pytest.importorskip('joblib')
pytest.importorskip('scipy.ndimage')
cube, data = cube_and_raw(data_adv, use_dask=False)
# this is potentially a major disaster: if update_function can't be
# pickled, it won't work, which is why update_function is (very badly)
# defined outside of this function
cube_spectral_median = cube.spectral_smooth_median(3, num_cores=4,
update_function=update_function)
sys.stdout.flush()
captured = capsys.readouterr()
assert captured.out == "Update Function Call\n"*6
def test_smooth_update_function_serial(capsys, data_adv):
# This function only makes sense for the plain SpectralCube class
pytest.importorskip('scipy.ndimage')
cube, data = cube_and_raw(data_adv, use_dask=False)
def update_function():
print("Update Function Call")
cube_spectral_median = cube.spectral_smooth_median(3, num_cores=1, parallel=False,
update_function=update_function)
captured = capsys.readouterr()
assert captured.out == "Update Function Call\n"*6
@pytest.mark.skipif('not scipyOK')
def test_parallel_bad_params(data_adv):
# This function only makes sense for the plain SpectralCube class
cube, data = cube_and_raw(data_adv, use_dask=False)
with pytest.raises(ValueError,
match=("parallel execution was not requested, but "
"multiple cores were: these are incompatible "
"options. Either specify num_cores=1 or "
"parallel=True")):
with warnings.catch_warnings():
# FITSFixed warnings can pop up here and break the raises check
warnings.simplefilter('ignore', AstropyWarning)
cube.spectral_smooth_median(3, num_cores=2, parallel=False,
update_function=update_function)
with warnings.catch_warnings(record=True) as wrn:
warnings.simplefilter('ignore', AstropyWarning)
cube.spectral_smooth_median(3, num_cores=1, parallel=True,
update_function=update_function)
assert ("parallel=True was specified but num_cores=1. "
"Joblib will be used to run the task with a "
"single thread.") in '|'.join(str(w.message) for w in wrn)
def test_initialization_from_units(data_adv, use_dask):
"""
Regression test for issue 447
"""
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
newcube = SpectralCube(data=cube.filled_data[:], wcs=cube.wcs)
assert newcube.unit == cube.unit
def test_varyres_spectra(data_vda_beams, use_dask):
cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask)
assert isinstance(cube, VaryingResolutionSpectralCube)
sp = cube[:,0,0]
assert isinstance(sp, VaryingResolutionOneDSpectrum)
assert hasattr(sp, 'beams')
sp = cube.mean(axis=(1,2))
assert isinstance(sp, VaryingResolutionOneDSpectrum)
assert hasattr(sp, 'beams')
def test_median_2axis(data_adv, use_dask):
"""
As of this writing the bottleneck.nanmedian did not accept an axis that is a
tuple/list so this test is to make sure that is properly taken into account.
"""
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
cube_median = cube.median(axis=(1, 2))
# Check first slice
result0 = np.array([0.7620573, 0.3086828, 0.3037954, 0.7455546])
np.testing.assert_almost_equal(cube_median.value, result0)
def test_varyres_mask(data_vda_beams, use_dask):
cube, data = cube_and_raw(data_vda_beams, use_dask=use_dask)
cube._beams.major.value[0] = 0.9
cube._beams.minor.value[0] = 0.05
cube._beams.major.value[3] = 0.6
cube._beams.minor.value[3] = 0.09
# mask out one beams
goodbeams = cube.identify_bad_beams(0.5, )
assert all(goodbeams == np.array([False, True, True, True]))
mcube = cube.mask_out_bad_beams(0.5)
assert hasattr(mcube, '_goodbeams_mask')
assert all(mcube.goodbeams_mask == goodbeams)
assert len(mcube.beams) == 3
sp_masked = mcube[:,0,0]
assert hasattr(sp_masked, '_goodbeams_mask')
assert all(sp_masked.goodbeams_mask == goodbeams)
assert len(sp_masked.beams) == 3
try:
assert mcube.unmasked_beams == cube.beams
except ValueError:
# older versions of beams
assert np.all(mcube.unmasked_beams == cube.beams)
try:
# check that slicing works too
assert mcube[:5].unmasked_beams == cube[:5].beams
except ValueError:
assert np.all(mcube[:5].unmasked_beams == cube[:5].beams)
def test_mask_none(use_dask):
# Regression test for issues that occur when mask is None
data = np.arange(24).reshape((2, 3, 4))
wcs = WCS(naxis=3)
wcs.wcs.ctype = ['RA---TAN', 'DEC--TAN', 'VELO-HEL']
cube = SpectralCube(data * u.Jy / u.beam, wcs=wcs, use_dask=use_dask)
assert_quantity_allclose(cube[0, :, :],
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]] * u.Jy / u.beam)
assert_quantity_allclose(cube[:, 0, 0],
[0, 12] * u.Jy / u.beam)
@pytest.mark.parametrize('filename', ['data_vda', 'data_vda_beams'],
indirect=['filename'])
def test_mask_channels_preserve_mask(filename, use_dask):
# Regression test for a bug that caused the mask to not be preserved.
cube, data = cube_and_raw(filename, use_dask=use_dask)
# Add a mask to the cube
mask = np.ones(cube.shape, dtype=bool)
mask[:, ::2, ::2] = False
cube = cube.with_mask(mask)
# Mask by channels
cube = cube.mask_channels([False, True, False, True])
# Check final mask is a combination of both
expected_mask = mask.copy()
expected_mask[::2] = False
np.testing.assert_equal(cube.mask.include(), expected_mask)
def test_minimal_subcube(use_dask):
if not use_dask:
pytest.importorskip('scipy')
data = np.arange(210, dtype=float).reshape((5, 6, 7))
data[0] = np.nan
data[2] = np.nan
data[4] = np.nan
data[:,0] = np.nan
data[:,3:4] = np.nan
data[:, :, 0:2] = np.nan
data[:, :, 4:7] = np.nan
wcs = WCS(naxis=3)
wcs.wcs.ctype = ['RA---TAN', 'DEC--TAN', 'VELO-HEL']
cube = SpectralCube(data * u.Jy / u.beam, wcs=wcs, use_dask=use_dask)
cube = cube.with_mask(np.isfinite(data))
subcube = cube.minimal_subcube()
assert subcube.shape == (3, 5, 2)
def test_minimal_subcube_nomask(use_dask):
if not use_dask:
pytest.importorskip('scipy')
data = np.arange(210, dtype=float).reshape((5, 6, 7))
wcs = WCS(naxis=3)
wcs.wcs.ctype = ['RA---TAN', 'DEC--TAN', 'VELO-HEL']
cube = SpectralCube(data * u.Jy / u.beam, wcs=wcs, use_dask=use_dask)
# verify that there is no mask
assert cube._mask is None
# this should not raise an Exception
subcube = cube.minimal_subcube()
# shape is unchanged
assert subcube.shape == (5, 6, 7)
def test_regression_719(data_adv, use_dask):
"""
Issue 719: exception raised when checking for beam
"""
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
# force unit for use below
cube._unit = u.Jy/u.beam
assert hasattr(cube, 'beam')
slc = cube[0,:,:]
# check that the hasattr tests work
from .. cube_utils import _has_beam, _has_beams
assert _has_beam(slc)
assert not _has_beams(slc)
# regression test: full example that broke
mx = cube.max(axis=0)
beam = cube.beam
cfrq = 100*u.GHz
# This should not raise an exception
mx_K = (mx*u.beam).to(u.K,
u.brightness_temperature(beam_area=beam,
frequency=cfrq))
def test_unitless_comparison(data_adv, use_dask):
"""
Issue 819: unitless cubes should be comparable to numbers
"""
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
# force unit for use below
cube._unit = u.dimensionless_unscaled
# do a comparison to verify that no error occurs
mask = cube > 1
|