1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
import pytest
from packaging.version import Version, parse
from astropy import units as u
from astropy import wcs
import numpy as np
from . import path
from .helpers import assert_allclose, assert_array_equal
from .test_spectral_cube import cube_and_raw
from ..spectral_axis import doppler_gamma, doppler_beta, doppler_z, get_rest_value_from_wcs
try:
import regions
regionsOK = True
REGIONS_GT_03 = parse(regions.__version__) >= Version('0.3')
except ImportError:
regionsOK = REGIONS_GT_03 = False
try:
import scipy
scipyOK = True
except ImportError:
scipyOK = False
def test_subcube(data_advs, use_dask):
cube, data = cube_and_raw(data_advs, use_dask=use_dask)
sc1x = cube.subcube(xlo=1, xhi=3)
sc2x = cube.subcube(xlo=24.06269*u.deg, xhi=24.06206*u.deg)
sc2b = cube.subcube(xlo=24.06206*u.deg, xhi=24.06269*u.deg)
# Mixed should be equivalent to above
sc3x = cube.subcube(xlo=24.06269*u.deg, xhi=3)
sc4x = cube.subcube(xlo=1, xhi=24.06206*u.deg)
assert sc1x.shape == (2,3,2)
assert sc2x.shape == (2,3,2)
assert sc2b.shape == (2,3,2)
assert sc3x.shape == (2,3,2)
assert sc4x.shape == (2,3,2)
assert sc1x.wcs.wcs.compare(sc2x.wcs.wcs)
assert sc1x.wcs.wcs.compare(sc2b.wcs.wcs)
assert sc1x.wcs.wcs.compare(sc3x.wcs.wcs)
assert sc1x.wcs.wcs.compare(sc4x.wcs.wcs)
sc1y = cube.subcube(ylo=1, yhi=3)
sc2y = cube.subcube(ylo=29.93464 * u.deg,
yhi=29.93522 * u.deg)
sc3y = cube.subcube(ylo=1, yhi=29.93522 * u.deg)
sc4y = cube.subcube(ylo=29.93464 * u.deg, yhi=3)
assert sc1y.shape == (2, 2, 4)
assert sc2y.shape == (2, 2, 4)
assert sc3y.shape == (2, 2, 4)
assert sc4y.shape == (2, 2, 4)
assert sc1y.wcs.wcs.compare(sc2y.wcs.wcs)
assert sc1y.wcs.wcs.compare(sc3y.wcs.wcs)
assert sc1y.wcs.wcs.compare(sc4y.wcs.wcs)
# Test mixed slicing in both spatial directions
sc1xy = cube.subcube(xlo=1, xhi=3, ylo=1, yhi=3)
sc2xy = cube.subcube(xlo=24.06269*u.deg, xhi=3,
ylo=1,yhi=29.93522 * u.deg)
sc3xy = cube.subcube(xlo=1, xhi=24.06206*u.deg,
ylo=29.93464 * u.deg, yhi=3)
assert sc1xy.shape == (2, 2, 2)
assert sc2xy.shape == (2, 2, 2)
assert sc3xy.shape == (2, 2, 2)
assert sc1xy.wcs.wcs.compare(sc2xy.wcs.wcs)
assert sc1xy.wcs.wcs.compare(sc3xy.wcs.wcs)
sc1z = cube.subcube(zlo=1, zhi=2)
sc2z = cube.subcube(zlo=-320*u.km/u.s, zhi=-319*u.km/u.s)
sc3z = cube.subcube(zlo=1, zhi=-319 * u.km / u.s)
sc4z = cube.subcube(zlo=-320*u.km/u.s, zhi=2)
assert sc1z.shape == (1, 3, 4)
assert sc2z.shape == (1, 3, 4)
assert sc3z.shape == (1, 3, 4)
assert sc4z.shape == (1, 3, 4)
assert sc1z.wcs.wcs.compare(sc2z.wcs.wcs)
assert sc1z.wcs.wcs.compare(sc3z.wcs.wcs)
assert sc1z.wcs.wcs.compare(sc4z.wcs.wcs)
sc5 = cube.subcube()
assert sc5.shape == cube.shape
assert sc5.wcs.wcs.compare(cube.wcs.wcs)
assert np.all(sc5._data == cube._data)
@pytest.mark.skipif('not scipyOK', reason='Could not import scipy')
@pytest.mark.skipif('not regionsOK', reason='Could not import regions')
@pytest.mark.skipif('not REGIONS_GT_03', reason='regions version should be >= 0.3')
@pytest.mark.parametrize('regfile',
('255-fk5.reg', '255-pixel.reg'),
)
def test_ds9region_255(regfile, data_255, use_dask):
# specific test for correctness
cube, data = cube_and_raw(data_255, use_dask=use_dask)
shapelist = regions.Regions.read(path(regfile))
subcube = cube.subcube_from_regions(shapelist)
assert_array_equal(subcube[0, :, :].value,
np.array([11, 12, 16, 17]).reshape((2, 2)))
@pytest.mark.skipif('not scipyOK', reason='Could not import scipy')
@pytest.mark.skipif('not regionsOK', reason='Could not import regions')
@pytest.mark.skipif('not REGIONS_GT_03', reason='regions version should be >= 0.3')
@pytest.mark.parametrize(('regfile', 'result'),
(('fk5.reg', (slice(None), 1, slice(None))),
('fk5_twoboxes.reg', (slice(None), 1, slice(None))),
('image.reg', (slice(None), 1, slice(None))),
(
'partial_overlap_image.reg', (slice(None), 1, 1)),
('no_overlap_image.reg', ValueError),
('partial_overlap_fk5.reg', (slice(None), 1, 1)),
('no_overlap_fk5.reg', ValueError),
))
def test_ds9region_new(regfile, result, data_adv, use_dask):
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
regionlist = regions.Regions.read(path(regfile))
if isinstance(result, type) and issubclass(result, Exception):
with pytest.raises(result):
sc = cube.subcube_from_regions(regionlist)
else:
sc = cube.subcube_from_regions(regionlist)
# Shapes and size should be the same.
# squeeze on the cube is b/c is retains dimensions of size 1
assert sc.size == data[result].size
assert sc.filled_data[:].squeeze().shape == data[result].shape
# If sizes are the same, values should then be the same.
assert (sc.unitless_filled_data[:].squeeze() == data[result]).all()
scsum = sc.sum()
dsum = data[result].sum()
assert_allclose(scsum, dsum)
#region = 'fk5\ncircle(29.9346557, 24.0623827, 0.11111)'
#subcube = cube.subcube_from_ds9region(region)
# THIS TEST FAILS!
# I think the coordinate transformation in ds9 is wrong;
# it uses kapteyn?
#region = 'circle(2,2,2)'
#subcube = cube.subcube_from_ds9region(region)
@pytest.mark.skipif('not scipyOK', reason='Could not import scipy')
@pytest.mark.skipif('not regionsOK', reason='Could not import regions')
@pytest.mark.skipif('not REGIONS_GT_03', reason='regions version should be >= 0.3')
def test_regions_spectral(data_adv, use_dask):
cube, data = cube_and_raw(data_adv, use_dask=use_dask)
rf_cube = get_rest_value_from_wcs(cube.wcs).to("GHz",
equivalencies=u.spectral())
# content of image.reg
regpix = regions.RectanglePixelRegion(regions.PixCoord(0.5, 1), width=4, height=2)
# Velocity range in doppler_optical same as that of the cube.
vel_range_optical = u.Quantity([-318 * u.km/u.s, -320 * u.km/u.s])
regpix.meta['range'] = list(vel_range_optical)
sc1 = cube.subcube_from_regions([regpix])
scsum1 = sc1.sum()
freq_range = vel_range_optical.to("GHz",
equivalencies=u.doppler_optical(rf_cube))
regpix.meta['range'] = list(freq_range)
sc2 = cube.subcube_from_regions([regpix])
scsum2 = sc2.sum()
regpix.meta['restfreq'] = rf_cube
vel_range_gamma = freq_range.to("km/s", equivalencies=doppler_gamma(rf_cube))
regpix.meta['range'] = list(vel_range_gamma)
regpix.meta['veltype'] = 'GAMMA'
sc3 = cube.subcube_from_regions([regpix])
scsum3 = sc3.sum()
vel_range_beta = freq_range.to("km/s",
equivalencies=doppler_beta(rf_cube))
regpix.meta['range'] = list(vel_range_beta)
regpix.meta['veltype'] = 'BETA'
sc4 = cube.subcube_from_regions([regpix])
scsum4 = sc4.sum()
vel_range_z = freq_range.to("km/s",
equivalencies=doppler_z(rf_cube))
regpix.meta['range'] = list(vel_range_z)
regpix.meta['veltype'] = 'Z'
sc5 = cube.subcube_from_regions([regpix])
scsum5 = sc5.sum()
dsum = data[1:-1, 1, :].sum()
assert_allclose(scsum1, dsum)
# Proves that the vel/freq conversion works
assert_allclose(scsum1, scsum2)
assert_allclose(scsum2, scsum3)
assert_allclose(scsum3, scsum4)
assert_allclose(scsum4, scsum5)
|