1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
|
import numpy as np
from astropy.wcs import WCS
import warnings
from astropy import units as u
from astropy import log
from astropy.wcs import InconsistentAxisTypesError
from .utils import WCSWarning
wcs_parameters_to_preserve = ['cel_offset', 'dateavg', 'dateobs', 'equinox',
'latpole', 'lonpole', 'mjdavg', 'mjdobs', 'name',
'obsgeo', 'phi0', 'radesys', 'restfrq',
'restwav', 'specsys', 'ssysobs', 'ssyssrc',
'theta0', 'velangl', 'velosys', 'zsource']
wcs_projections = {"AZP", "SZP", "TAN", "STG", "SIN", "ARC", "ZPN", "ZEA",
"AIR", "CYP", "CEA", "CAR", "MER", "COP", "COE", "COD",
"COO", "SFL", "PAR", "MOL", "AIT", "BON", "PCO", "TSC",
"CSC", "QSC", "HPX", "XPH"}
# not writable:
# 'lat', 'lng', 'lattyp', 'lngtyp',
bad_spectypes_mapping = {'VELOCITY':'VELO',
'WAVELENG':'WAVE',
}
def drop_axis(wcs, dropax):
"""
Drop the ax on axis dropax
Remove an axis from the WCS
Parameters
----------
wcs: astropy.wcs.WCS
The WCS with naxis to be chopped to naxis-1
dropax: int
The index of the WCS to drop, counting from 0 (i.e., python convention,
not FITS convention)
"""
inds = list(range(wcs.wcs.naxis))
inds.pop(dropax)
inds = np.array(inds)
return reindex_wcs(wcs, inds)
def add_stokes_axis_to_wcs(wcs, add_before_ind):
"""
Add a new Stokes axis that is uncorrelated with any other axes
Parameters
----------
wcs: astropy.wcs.WCS
The WCS to add to
add_before_ind: int
Index of the WCS to insert the new Stokes axis in front of.
To add at the end, do add_before_ind = wcs.wcs.naxis
"""
naxin = wcs.wcs.naxis
naxout = naxin + 1
inds = list(range(naxout))
inds.pop(add_before_ind)
inds = np.array(inds)
outwcs = WCS(naxis=naxout)
for par in wcs_parameters_to_preserve:
setattr(outwcs.wcs, par, getattr(wcs.wcs, par))
pc = np.zeros([naxout, naxout])
pc[inds[:, np.newaxis], inds[np.newaxis, :]] = wcs.wcs.get_pc()
pc[add_before_ind, add_before_ind] = 1
def append_to_posn(val, posn, lst):
""" insert a value at index into a list """
return list(lst)[:posn] + [val] + list(lst)[posn:]
outwcs.wcs.crpix = append_to_posn(1, add_before_ind, wcs.wcs.crpix)
outwcs.wcs.cdelt = append_to_posn(1, add_before_ind, wcs.wcs.get_cdelt())
outwcs.wcs.crval = append_to_posn(1, add_before_ind, wcs.wcs.crval)
outwcs.wcs.cunit = append_to_posn("", add_before_ind, wcs.wcs.cunit)
outwcs.wcs.ctype = append_to_posn("STOKES", add_before_ind, wcs.wcs.ctype)
outwcs.wcs.cname = append_to_posn("STOKES", add_before_ind, wcs.wcs.cname)
outwcs.wcs.pc = pc
return outwcs
def wcs_swapaxes(wcs, ax0, ax1):
"""
Swap axes in a WCS
Parameters
----------
wcs: astropy.wcs.WCS
The WCS to have its axes swapped
ax0: int
ax1: int
The indices of the WCS to be swapped, counting from 0 (i.e., python
convention, not FITS convention)
"""
inds = list(range(wcs.wcs.naxis))
inds[ax0], inds[ax1] = inds[ax1], inds[ax0]
inds = np.array(inds)
return reindex_wcs(wcs, inds)
def reindex_wcs(wcs, inds):
"""
Re-index a WCS given indices. The number of axes may be reduced.
Parameters
----------
wcs: astropy.wcs.WCS
The WCS to be manipulated
inds: np.array(dtype='int')
The indices of the array to keep in the output.
e.g. swapaxes: [0,2,1,3]
dropaxes: [0,1,3]
"""
if not isinstance(inds, np.ndarray):
raise TypeError("Indices must be an ndarray")
if inds.dtype.kind != 'i':
raise TypeError('Indices must be integers')
outwcs = WCS(naxis=len(inds))
for par in wcs_parameters_to_preserve:
setattr(outwcs.wcs, par, getattr(wcs.wcs, par))
cdelt = wcs.wcs.get_cdelt()
pc = wcs.wcs.get_pc()
outwcs.wcs.crpix = wcs.wcs.crpix[inds]
outwcs.wcs.cdelt = cdelt[inds]
outwcs.wcs.crval = wcs.wcs.crval[inds]
outwcs.wcs.cunit = [wcs.wcs.cunit[i] for i in inds]
outwcs.wcs.ctype = [wcs.wcs.ctype[i] for i in inds]
outwcs.wcs.cname = [wcs.wcs.cname[i] for i in inds]
outwcs.wcs.pc = pc[inds[:, None], inds[None, :]]
matched_projections = [prj for prj in wcs_projections if any(prj in x for x in outwcs.wcs.ctype)]
matchproj_count = [sum(prj in x for x in outwcs.wcs.ctype) for prj in matched_projections]
if any(n == 1 for n in matchproj_count):
# unmatched celestial axes = there is only one of them
for prj in matched_projections:
match = [prj in ct for ct in outwcs.wcs.ctype].index(True)
outwcs.wcs.ctype[match] = outwcs.wcs.ctype[match].split("-")[0]
warnings.warn("Slicing across a celestial axis results "
"in an invalid WCS, so the celestial "
"projection ({0}) is being removed. "
"The WCS indices being kept were {1}."
.format(prj, inds),
WCSWarning)
pv_cards = []
for i, j in enumerate(inds):
for k, m, v in wcs.wcs.get_pv():
if k == j:
pv_cards.append((i, m, v))
outwcs.wcs.set_pv(pv_cards)
ps_cards = []
for i, j in enumerate(inds):
for k, m, v in wcs.wcs.get_ps():
if k == j:
ps_cards.append((i, m, v))
outwcs.wcs.set_ps(ps_cards)
outwcs.wcs.set()
return outwcs
def axis_names(wcs):
"""
Extract world names for each coordinate axis
Parameters
----------
wcs : astropy.wcs.WCS
The WCS object to extract names from
Returns
-------
A tuple of names along each axis
"""
names = list(wcs.wcs.cname)
types = wcs.wcs.ctype
for i in range(len(names)):
if len(names[i]) > 0:
continue
names[i] = types[i].split('-')[0]
return names
def slice_wcs(mywcs, view, shape=None, numpy_order=True,
drop_degenerate=False):
"""
Slice a WCS instance using a Numpy slice. The order of the slice should
be reversed (as for the data) compared to the natural WCS order.
Parameters
----------
view : tuple
A tuple containing the same number of slices as the WCS system.
The ``step`` method, the third argument to a slice, is not
presently supported.
numpy_order : bool
Use numpy order, i.e. slice the WCS so that an identical slice
applied to a numpy array will slice the array and WCS in the same
way. If set to `False`, the WCS will be sliced in FITS order,
meaning the first slice will be applied to the *last* numpy index
but the *first* WCS axis.
drop_degenerate : bool
Drop axes that are size-1, i.e., any that have an integer index as part
of their view? Otherwise, an Exception will be raised.
Returns
-------
wcs_new : `~astropy.wcs.WCS`
A new resampled WCS axis
"""
if hasattr(view, '__len__') and len(view) > mywcs.wcs.naxis:
raise ValueError("Must have # of slices <= # of WCS axes")
elif not hasattr(view, '__len__'): # view MUST be an iterable
view = [view]
if not all([isinstance(x, slice) for x in view]):
if drop_degenerate:
keeps = [mywcs.naxis-ii
for ii,ind in enumerate(view)
if isinstance(ind, slice)]
keeps.sort()
try:
mywcs = mywcs.sub(keeps)
except InconsistentAxisTypesError as ex:
# make a copy of the WCS because we need to modify it inplace
wcscp = mywcs.deepcopy()
for ct in wcscp.celestial.wcs.ctype:
match = list(wcscp.wcs.ctype).index(ct)
prj = wcscp.wcs.ctype[match].split("-")[-1]
wcscp.wcs.ctype[match] = wcscp.wcs.ctype[match].split("-")[0]
warnings.warn("Slicing across a celestial axis results "
"in an invalid WCS, so the celestial "
"projection ({0}) is being removed. "
"The view used was {1}."
.format(prj, view),
WCSWarning)
mywcs = wcscp.sub(keeps)
view = [x for x in view if isinstance(x, slice)]
else:
raise ValueError("Cannot downsample a WCS with indexing. Use "
"wcs.sub or wcs.dropaxis if you want to remove "
"axes.")
wcs_new = mywcs.deepcopy()
for i, iview in enumerate(view):
if iview.step is not None and iview.start is None:
# Slice from "None" is equivalent to slice from 0 (but one
# might want to downsample, so allow slices with
# None,None,step or None,stop,step)
iview = slice(0, iview.stop, iview.step)
if numpy_order:
wcs_index = mywcs.wcs.naxis - 1 - i
else:
wcs_index = i
if iview.step is not None and iview.step < 0:
if iview.step != -1:
raise NotImplementedError("Haven't dealt with resampling & reversing.")
# reverse indexing requires the use of shape
if shape is None:
raise ValueError("Cannot reverse-index a WCS without "
"specifying a shape.")
if iview.stop is not None:
refpix = iview.stop
else:
refpix = shape[i]
# this will raise an inconsistent axis type error if slicing over
# celestial axes is attempted
# wcs_index+1 is required because sub([0]) = sub([all])
crval = mywcs.sub([wcs_index+1]).wcs_pix2world([refpix-1], 0)[0]
crpix = 1
cdelt = mywcs.wcs.cdelt[wcs_index]
wcs_new.wcs.crpix[wcs_index] = crpix
wcs_new.wcs.crval[wcs_index] = crval
wcs_new.wcs.cdelt[wcs_index] = -cdelt
elif iview.start is not None:
if iview.step not in (None, 1):
crpix = mywcs.wcs.crpix[wcs_index]
cdelt = mywcs.wcs.cdelt[wcs_index]
# the logic is very annoying: the blc of the first pixel
# is at 0.5, so that value must be subtracted to get into
# numpy-compatible coordinates, then added back afterward
crp = ((crpix - iview.start - 0.5)/iview.step + 0.5)
# SIMPLE TEST:
# view(0, None, 1) w/crpix = 1
# crp = 1
# view(0, None, 2) w/crpix = 1
# crp = 0.75
# view(0, None, 4) w/crpix = 1
# crp = 0.625
# view(2, None, 1) w/crpix = 1
# crp = -1
# view(2, None, 2) w/crpix = 1
# crp = -0.25
# view(2, None, 4) w/crpix = 1
# crp = 0.125
wcs_new.wcs.crpix[wcs_index] = crp
wcs_new.wcs.cdelt[wcs_index] = cdelt * iview.step
else:
wcs_new.wcs.crpix[wcs_index] -= iview.start
# Without this, may cause a regression of #234
wcs_new.wcs.set()
return wcs_new
def check_equality(wcs1, wcs2, warn_missing=False,
ignore_keywords=['MJD-OBS', 'VELOSYS'],
wcs_tolerance=0.0):
"""
Check if two WCSs are equal
Parameters
----------
wcs1, wcs2: `astropy.wcs.WCS`
The WCSs
warn_missing: bool
Issue warnings if one header is missing a keyword that the other has?
ignore_keywords: list of str
Keywords that are stored as part of the WCS but do not define part of
the coordinate system and therefore can be safely ignored.
wcs_tolerance : float
The decimal level to check for equality.
For example, 1e-2 would have 0.001 and 0.002 as equal, but 1e-3 would
have them as inequal
"""
# TODO: use this to replace the rest of the check_equality code
#return wcs1.wcs.compare(wcs2.wcs, cmp=wcs.WCSCOMPARE_ANCILLARY,
# tolerance=tolerance)
#Until we've switched to the wcs.compare approach, we need to have
#np.testing.assert_almost_equal work
if wcs_tolerance == 0:
exact = True
else:
exact = False
# np.testing.assert_almost_equal wants an integer
# e.g., for 0.0001, the integer is 4
decimal = int(np.ceil(-np.log10(wcs_tolerance)))
# naive version:
# return str(wcs1.to_header()) != str(wcs2.to_header())
h1 = wcs1.to_header()
h2 = wcs2.to_header()
# Default to headers equal; everything below changes to false if there are
# any inequalities
OK = True
# to keep track of keywords in both
matched = []
for c1 in h1.cards:
key = c1[0]
if key in h2:
matched.append(key)
c2 = h2.cards[key]
# special check for units: "m/s" = "m s-1"
if 'UNIT' in key:
u1 = u.Unit(c1[1])
u2 = u.Unit(c2[1])
if u1 != u2:
if key in ignore_keywords:
log.debug("IGNORED Header 1, {0}: {1} != {2}".format(key,u1,u2))
else:
OK = False
log.debug("Header 1, {0}: {1} != {2}".format(key,u1,u2))
elif isinstance(c1[1], float):
try:
if exact:
assert c1[1] == c2[1]
else:
np.testing.assert_almost_equal(c1[1], c2[1], decimal=decimal)
except AssertionError:
if key in ('RESTFRQ','RESTWAV'):
warnings.warn("{0} is not equal in WCS; ignoring ".format(key)+
"under the assumption that you want to"
" compare velocity cubes.", WCSWarning)
continue
if key in ignore_keywords:
log.debug("IGNORED Header 1, {0}: {1} != {2}".format(key,c1[1],c2[1]))
else:
log.debug("Header 1, {0}: {1} != {2}".format(key,c1[1],c2[1]))
OK = False
elif c1[1] != c2[1]:
if key in ignore_keywords:
log.debug("IGNORED Header 1, {0}: {1} != {2}".format(key,c1[1],c2[1]))
else:
log.debug("Header 1, {0}: {1} != {2}".format(key,c1[1],c2[1]))
OK = False
else:
if warn_missing:
warnings.warn("WCS2 is missing card {0}".format(key), WCSWarning)
elif key not in ignore_keywords:
OK = False
# Check that there aren't any cards in header 2 that were missing from
# header 1
for c2 in h2.cards:
key = c2[0]
if key not in matched:
if warn_missing:
warnings.warn("WCS1 is missing card {0}".format(key), WCSWarning)
else:
OK = False
return OK
def strip_wcs_from_header(header):
"""
Given a header with WCS information, remove ALL WCS information from that
header
"""
hwcs = WCS(header)
wcsh = hwcs.to_header()
keys_to_keep = [k for k in header
if (k and k not in wcsh and 'NAXIS' not in k)]
newheader = header.copy()
# Strip blanks first. They appear to cause serious problems, like not
# deleting things they should!
if '' in newheader:
del newheader['']
for kw in list(newheader.keys()):
if kw not in keys_to_keep:
del newheader[kw]
for kw in ('CRPIX{ii}', 'CRVAL{ii}', 'CDELT{ii}', 'CUNIT{ii}', 'CTYPE{ii}',
'PC0{ii}_0{jj}', 'CD{ii}_{jj}', 'CROTA{ii}', 'PC{ii}_{jj}',
'PC{ii:03d}{jj:03d}', 'PV0{ii}_0{jj}', 'PV{ii}_{jj}'):
for ii in range(5):
for jj in range(5):
k = kw.format(ii=ii,jj=jj)
if k in newheader.keys():
del newheader[k]
return newheader
def diagonal_wcs_to_cdelt(mywcs):
"""
If a WCS has only diagonal pixel scale matrix elements (which are composed
from cdelt*pc), use them to reform the wcs as a CDELT-style wcs with no pc
or cd elements
"""
offdiag = ~np.eye(mywcs.pixel_scale_matrix.shape[0], dtype='bool')
if not any(mywcs.pixel_scale_matrix[offdiag]):
cdelt = mywcs.pixel_scale_matrix.diagonal()
del mywcs.wcs.pc
del mywcs.wcs.cd
mywcs.wcs.cdelt = cdelt
return mywcs
def is_pixel_axis_to_wcs_correlated(mywcs, axis):
"""
Check if the chosen pixel axis correlates to other WCS axes. This tests
whether the pixel axis is correlated only to 1 WCS axis and can be
considered independent of the others.
"""
axis_corr_matrix = mywcs.axis_correlation_matrix
# Map from numpy axis to WCS axis
wcs_axis = mywcs.world_n_dim - (axis + 1)
# Grab the row along the given spatial axis. This slice is along the WCS axes
wcs_axis_correlations = axis_corr_matrix[:, wcs_axis]
# The image axis should always be correlated to at least 1 WCS axis.
# i.e., the diagonal term is one in the matrix. Correlations with other axes will give
# a sum > 1
if wcs_axis_correlations.sum() > 1:
return True
return False
def find_spatial_pixel_index(cube, xlo, xhi, ylo, yhi):
'''
Given low and high cuts, return the pixel coordinates for a rectangular
region in the given cube or spatial projection. lo and hi inputs can be
given in pixels, "min"/"max", or in world coordinates.
When spatial WCS dimensions are given as an `~astropy.units.Quantity`,
the spatial coordinates of the 'lo' and 'hi' corners are solved together.
This minimizes WCS variations due to the sky curvature when slicing from
a large (>1 deg) image.
Parameters
----------
cube : :class:`~SpectralCube` or spatial :class:`~Projection`
A spectral-cube or projection/slice with spatial dimensions.
[xy]lo/[xy]hi : int or :class:`~astropy.units.Quantity` or ``min``/``max``
The endpoints to extract. If given as a ``Quantity``, will be
interpreted as World coordinates. If given as a ``string`` or
``int``, will be interpreted as pixel coordinates.
Returns
-------
limit_dict : dict
Pixel coordinates of [xy]lo/[xy]hi in the given ``cube``.
'''
ndim = cube.ndim
for val in (xlo,ylo,xhi,yhi):
if hasattr(val, 'unit') and not val.unit.is_equivalent(u.degree):
raise u.UnitsError("The X and Y slices must be specified in "
"degree-equivalent units.")
limit_dict = {}
# Match corners. If one uses a WCS coord, set 'min'/'max'
# To the lat or long extrema.
# We only care about matching spatial corners.
xlo_unit = hasattr(xlo, 'unit')
ylo_unit = hasattr(ylo, 'unit')
# Do min/max switching if the WCS grid increases/decreases
# with the pixel grid.
ymin = min if cube.wcs.wcs.cdelt[1] > 0 else max
xmin = min if cube.wcs.wcs.cdelt[0] > 0 else max
ymax = max if cube.wcs.wcs.cdelt[1] > 0 else min
xmax = max if cube.wcs.wcs.cdelt[0] > 0 else min
if not any([xlo_unit, ylo_unit]):
limit_dict['xlo'] = 0 if xlo == 'min' else xlo
limit_dict['ylo'] = 0 if ylo == 'min' else ylo
else:
if xlo_unit:
limit_dict['xlo'] = xlo
limit_dict['ylo'] = ymin(cube.latitude_extrema) if ylo == 'min' else ylo
if ylo_unit:
limit_dict['ylo'] = ylo
limit_dict['xlo'] = xmin(cube.longitude_extrema) if xlo == 'min' else xlo
xhi_unit = hasattr(xhi, 'unit')
yhi_unit = hasattr(yhi, 'unit')
if not any([xhi_unit, yhi_unit]):
# For 3D cube
if ndim == 3:
limit_dict['xhi'] = cube.shape[2] if xhi == 'max' else xhi
limit_dict['yhi'] = cube.shape[1] if yhi == 'max' else yhi
# For 2D spatial projection/slice
else:
limit_dict['xhi'] = cube.shape[1] if xhi == 'max' else xhi
limit_dict['yhi'] = cube.shape[0] if yhi == 'max' else yhi
else:
if xhi_unit:
limit_dict['xhi'] = xhi
limit_dict['yhi'] = ymax(cube.latitude_extrema) if yhi == 'max' else yhi
if yhi_unit:
limit_dict['yhi'] = yhi
limit_dict['xhi'] = xmax(cube.longitude_extrema) if xhi == 'max' else xhi
# list to track which entries had units
united = []
# Solve the spatial axes together.
# There's 3 options:
# (1) If both pixel units, do nothing
# (2) If both WCS units, use world_to_array_index_values
# (3) If mixed, minimize the distance between the spatial position grids
# for the cube to find the closest spatial pixel.
for corn in ['lo', 'hi']:
grids = {}
# Check if either were given as a WCS value with a unit
x_hasunit = hasattr(limit_dict['x'+corn], 'unit')
y_hasunit = hasattr(limit_dict['y'+corn], 'unit')
# print(limit_dict['x'+corn], limit_dict['y'+corn])
# print(x_hasunit, y_hasunit)
# (1) If both pixel units, we keep in pixel units.
if not any([x_hasunit, y_hasunit]):
continue
# (2) If both WCS units, use world_to_array_index_values
elif all([x_hasunit, y_hasunit]):
corn_arr = np.array([limit_dict['x'+corn].value,
limit_dict['y'+corn].value])
xmin, ymin = cube.wcs.celestial.world_to_array_index_values(corn_arr.reshape((1, 2)))[0]
limit_dict['y' + corn] = ymin
limit_dict['x' + corn] = xmin
if corn == 'hi':
united.append('y' + corn)
united.append('x' + corn)
# (3) If mixed, minimize the distance between the spatial position grids
# for the cube to find the closest spatial pixel, limited to the 1 pixel
# value that is given.
else:
# We change the dimensions being sliced depending on whether the
# x or y dim is given in pixel units.
# This allows for a 1D minimization instead of needing both spatial axes.
if x_hasunit:
pixval = limit_dict['y' + corn]
lim = 'x' + corn
slicedim = 0
else:
pixval = limit_dict['x' + corn]
lim = 'y' + corn
slicedim = 1
if corn == 'lo':
slice_pixdim = slice(pixval, pixval+1)
else:
slice_pixdim = slice(pixval-1, pixval)
limval = limit_dict[lim]
if hasattr(limval, 'unit'):
united.append(lim)
sl = [slice(None)]
sl.insert(slicedim, slice_pixdim)
if ndim == 3:
sl.insert(0, slice(0, 1))
sl = tuple(sl)
if slicedim == 0:
spine = cube.world[sl][2 if ndim == 3 else 1]
else:
spine = cube.world[sl][1 if ndim == 3 else 0]
val = np.argmin(np.abs(limval-spine))
if limval > spine.max() or limval < spine.min():
log.warning("The limit {0} is out of bounds."
" Using min/max instead.".format(lim))
limit_dict[lim] = val
# Correct ordering (this shouldn't be necessary but do a quick check)
for xx in 'yx':
hi,lo = limit_dict[xx+'hi'], limit_dict[xx+'lo']
if hi < lo:
# must have high > low
limit_dict[xx+'hi'], limit_dict[xx+'lo'] = lo, hi
if xx+'hi' in united:
# End-inclusive indexing: need to add one for the high slice
# Only do this for converted values, not for pixel values
# (i.e., if the xlo/ylo/zlo value had units)
limit_dict[xx+'hi'] += 1
return limit_dict
|