File: fitting.rst

package info (click to toggle)
specutils 1.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,544 kB
  • sloc: python: 8,662; makefile: 113
file content (722 lines) | stat: -rw-r--r-- 23,062 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
=====================
Line/Spectrum Fitting
=====================

One of the primary tasks in spectroscopic analysis is fitting models of spectra.
This concept is often applied mainly to line-fitting, but the same general
approach applies to continuum fitting or even full-spectrum fitting.
``specutils`` provides conveniences that aim to leverage the  general fitting
framework of `astropy.modeling` to spectral-specific tasks.

At a high level, this fitting  takes the `~specutils.Spectrum1D` object and a
list of `~astropy.modeling.Model` objects that have initial guesses for each of
the parameters. these are used to create a compound model created from the model
initial guesses.  This model is then actually fit to the spectrum's ``flux``,
yielding a single composite model result (which can be split back into its
components if desired).

Line Finding
------------

There are two techniques implemented in order to find emission and/or absorption
lines in a `~specutils.Spectrum1D` spectrum.

The first technique is `~specutils.fitting.find_lines_threshold` that will
find lines by thresholding the flux based on a factor applied to the
spectrum uncertainty.  The second technique is
`~specutils.fitting.find_lines_derivative` that will find the lines based
on calculating the derivative and then thresholding based on it.  Both techniques
return an `~astropy.table.QTable` that contains columns ``line_center``,
``line_type`` and ``line_center_index``.

We start with a synthetic spectrum:

.. plot::
   :include-source:
   :align: center

   >>> import numpy as np
   >>> from astropy.modeling import models
   >>> import astropy.units as u
   >>> from specutils import Spectrum1D, SpectralRegion

   >>> np.random.seed(42)
   >>> g1 = models.Gaussian1D(1, 4.6, 0.2)
   >>> g2 = models.Gaussian1D(2.5, 5.5, 0.1)
   >>> g3 = models.Gaussian1D(-1.7, 8.2, 0.1)
   >>> x = np.linspace(0, 10, 200)
   >>> y = g1(x) + g2(x) + g3(x) + np.random.normal(0., 0.2, x.shape)
   >>> spectrum = Spectrum1D(flux=y*u.Jy, spectral_axis=x*u.um)

   >>> from matplotlib import pyplot as plt
   >>> plt.plot(spectrum.spectral_axis, spectrum.flux) # doctest: +IGNORE_OUTPUT
   >>> plt.xlabel('Spectral Axis ({})'.format(spectrum.spectral_axis.unit)) # doctest: +IGNORE_OUTPUT
   >>> plt.ylabel('Flux Axis({})'.format(spectrum.flux.unit)) # doctest: +IGNORE_OUTPUT
   >>> plt.grid(True) # doctest: +IGNORE_OUTPUT

While we know the true uncertainty here, this is often not the case with real
data.  Therefore, since `~specutils.fitting.find_lines_threshold` requires an
uncertainty, we will produce an estimate of the uncertainty by calling the
`~specutils.manipulation.noise_region_uncertainty` function:

.. code-block:: python

   >>> from specutils.manipulation import noise_region_uncertainty
   >>> noise_region = SpectralRegion(0*u.um, 3*u.um)
   >>> spectrum = noise_region_uncertainty(spectrum, noise_region)

   >>> from specutils.fitting import find_lines_threshold
   >>> lines = find_lines_threshold(spectrum, noise_factor=3)

   >>> lines[lines['line_type'] == 'emission']  # doctest:+FLOAT_CMP
   <QTable length=4>
      line_center    line_type line_center_index
           um
        float64        str10         int64
   ----------------- --------- -----------------
   4.572864321608041  emission                91
   4.824120603015076  emission                96
   5.477386934673367  emission               109
    8.99497487437186  emission               179

   >>> lines[lines['line_type'] == 'absorption']  # doctest:+FLOAT_CMP
   <QTable length=1>
      line_center    line_type  line_center_index
           um
        float64        str10          int64
   ----------------- ---------- -----------------
   8.190954773869347 absorption               163

An example using the `~specutils.fitting.find_lines_derivative`:

.. code-block:: python

   >>> # Define a noise region for adding the uncertainty
   >>> noise_region = SpectralRegion(0*u.um, 3*u.um)

   >>> # Derivative technique
   >>> from specutils.fitting import find_lines_derivative
   >>> lines = find_lines_derivative(spectrum, flux_threshold=0.75)

   >>> lines[lines['line_type'] == 'emission']  # doctest:+FLOAT_CMP
   <QTable length=2>
      line_center    line_type line_center_index
           um
        float64        str10         int64
   ----------------- --------- -----------------
   4.522613065326634  emission                90
   5.477386934673367  emission               109

   >>> lines[lines['line_type'] == 'absorption']  # doctest:+FLOAT_CMP
   <QTable length=1>
      line_center    line_type  line_center_index
           um
        float64        str10          int64
   ----------------- ---------- -----------------
   8.190954773869347 absorption               163


While it might be surprising that these tables do not contain more information
about the lines, this is because the "toolbox" philosophy of ``specutils`` aims to
keep such functionality in separate distinct functions.  See :doc:`analysis` for
functions that can be used to fill out common line measurements more
completely.

Parameter Estimation
--------------------

Given a spectrum with a set of lines, the `~specutils.fitting.estimate_line_parameters`
can be called to estimate the `~astropy.modeling.Model` parameters given a spectrum.

For the `~astropy.modeling.functional_models.Gaussian1D`,
`~astropy.modeling.functional_models.Voigt1D`, and
`~astropy.modeling.functional_models.Lorentz1D` models, there are predefined estimators for each
of the parameters. For all other models one must define the estimators (see example below).
Note that in many (most?) cases where another model is needed, it may be better to create
your own template models tailored to your specific spectra and skip this function entirely.


For example, based on the spectrum defined above we can first select a region:

.. code-block:: python

   >>> from specutils import SpectralRegion
   >>> from specutils.fitting import estimate_line_parameters
   >>> from specutils.manipulation import extract_region

   >>> sub_region = SpectralRegion(4*u.um, 5*u.um)
   >>> sub_spectrum = extract_region(spectrum, sub_region)

Then estimate the line  parameters it it for a Gaussian line profile::

   >>> print(estimate_line_parameters(sub_spectrum, models.Gaussian1D()))  # doctest:+FLOAT_CMP
      Model: Gaussian1D
      Inputs: ('x',)
      Outputs: ('y',)
      Model set size: 1
      Parameters:
              amplitude            mean             stddev
                  Jy                um                um
          ------------------ ---------------- -------------------
          1.1845669151078486 4.57517271067525 0.19373372929165977


If an `~astropy.modeling.Model` is used that does not have the predefined
parameter estimators, or if one wants to use different parameter estimators then
one can create a dictionary where the key is the parameter name and the value is
a function that operates on a spectrum (lambda functions are very useful for
this purpose). For example if one wants to estimate the line parameters of a
line fit for a `~astropy.modeling.functional_models.RickerWavelet1D` one can
define the ``estimators`` dictionary and use it to populate the ``estimator``
attribute of the model's parameters:

.. code-block:: python

   >>> from specutils import SpectralRegion
   >>> from specutils.fitting import estimate_line_parameters
   >>> from specutils.manipulation import extract_region
   >>> from specutils.analysis import centroid, fwhm

   >>> sub_region = SpectralRegion(4*u.um, 5*u.um)
   >>> sub_spectrum = extract_region(spectrum, sub_region)

   >>> ricker = models.RickerWavelet1D()
   >>> ricker.amplitude.estimator = lambda s: max(s.flux)
   >>> ricker.x_0.estimator = lambda s: centroid(s, region=None)
   >>> ricker.sigma.estimator = lambda s: fwhm(s)

   >>> print(estimate_line_parameters(spectrum, ricker))  # doctest:+FLOAT_CMP
   Model: RickerWavelet1D
   Inputs: ('x',)
   Outputs: ('y',)
   Model set size: 1
   Parameters:
           amplitude             x_0                sigma
              Jy                 um                  um
      ------------------ ------------------ -------------------
      2.4220683957581444 3.6045476935889367 0.24416769183724707


Model (Line) Fitting
--------------------

The generic model fitting machinery is well-suited to fitting spectral lines.
The first step is to create a set of models with initial guesses as the
parameters. To achieve better fits it may be wise to include a set of bounds for
each parameter, but that is optional.

.. note::
  A method to make plausible initial guesses will be provided in a future
  version, but user defined initial guesses are required at present.

Below are a series of examples of this sort of fitting.


Simple Example
^^^^^^^^^^^^^^

Below is a simple example to demonstrate how to use the
`~specutils.fitting.fit_lines` method to fit a spectrum to an Astropy model
initial guess.

.. plot::
   :include-source:
   :align: center

    import numpy as np
    import matplotlib.pyplot as plt

    from astropy.modeling import models
    from astropy import units as u

    from specutils.spectra import Spectrum1D
    from specutils.fitting import fit_lines

    # Create a simple spectrum with a Gaussian.
    np.random.seed(0)
    x = np.linspace(0., 10., 200)
    y = 3 * np.exp(-0.5 * (x- 6.3)**2 / 0.8**2)
    y += np.random.normal(0., 0.2, x.shape)
    spectrum = Spectrum1D(flux=y*u.Jy, spectral_axis=x*u.um)

    # Fit the spectrum and calculate the fitted flux values (``y_fit``)
    g_init = models.Gaussian1D(amplitude=3.*u.Jy, mean=6.1*u.um, stddev=1.*u.um)
    g_fit = fit_lines(spectrum, g_init)
    y_fit = g_fit(x*u.um)

    # Plot the original spectrum and the fitted.
    plt.plot(x, y)
    plt.plot(x, y_fit)
    plt.title('Single fit peak')
    plt.grid(True)
    plt.legend('Original Spectrum', 'Specutils Fit Result')


Simple Example with Different Units
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Similar fit example to above, but the Gaussian model initial guess has different
units. The fit will convert the initial guess to the spectral units, fit and then
output the fitted model in the spectrum units.

.. plot::
    :include-source:
    :align: center

    import numpy as np
    import matplotlib.pyplot as plt

    from astropy.modeling import models
    from astropy import units as u

    from specutils.spectra import Spectrum1D
    from specutils.fitting import fit_lines

    # Create a simple spectrum with a Gaussian.
    np.random.seed(0)
    x = np.linspace(0., 10., 200)
    y = 3 * np.exp(-0.5 * (x- 6.3)**2 / 0.8**2)
    y += np.random.normal(0., 0.2, x.shape)

    # Create the spectrum
    spectrum = Spectrum1D(flux=y*u.Jy, spectral_axis=x*u.um)

    # Fit the spectrum
    g_init = models.Gaussian1D(amplitude=3.*u.Jy, mean=61000*u.AA, stddev=10000.*u.AA)
    g_fit = fit_lines(spectrum, g_init)
    y_fit = g_fit(x*u.um)

    plt.plot(x, y)
    plt.plot(x, y_fit)
    plt.title('Single fit peak, different model units')
    plt.grid(True)


Single Peak Fit Within a Window (Defined by Center)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Single peak fit with a window of ``2*u.um`` around the center of the
mean of the model initial guess (so ``2*u.um`` around ``5.5*u.um``).

.. plot::
    :include-source:
    :align: center

    import numpy as np
    import matplotlib.pyplot as plt

    from astropy.modeling import models
    from astropy import units as u

    from specutils.spectra import Spectrum1D
    from specutils.fitting import fit_lines

    # Create a simple spectrum with a Gaussian.
    np.random.seed(0)
    x = np.linspace(0., 10., 200)
    y = 3 * np.exp(-0.5 * (x- 6.3)**2 / 0.8**2)
    y += np.random.normal(0., 0.2, x.shape)

    # Create the spectrum
    spectrum = Spectrum1D(flux=y*u.Jy, spectral_axis=x*u.um)

    # Fit the spectrum
    g_init = models.Gaussian1D(amplitude=3.*u.Jy, mean=5.5*u.um, stddev=1.*u.um)
    g_fit = fit_lines(spectrum, g_init, window=2*u.um)
    y_fit = g_fit(x*u.um)

    plt.plot(x, y)
    plt.plot(x, y_fit)
    plt.title('Single fit peak window')
    plt.grid(True)


Single Peak Fit Within a Window (Defined by Left and Right)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Single peak fit using spectral data *only* within the window
``6*u.um`` to ``7*u.um``, all other data will be ignored.

.. plot::
    :include-source:
    :align: center

    import numpy as np
    import matplotlib.pyplot as plt

    from astropy.modeling import models
    from astropy import units as u

    from specutils.spectra import Spectrum1D
    from specutils.fitting import fit_lines

    # Create a simple spectrum with a Gaussian.
    np.random.seed(0)
    x = np.linspace(0., 10., 200)
    y = 3 * np.exp(-0.5 * (x- 6.3)**2 / 0.8**2)
    y += np.random.normal(0., 0.2, x.shape)

    # Create the spectrum
    spectrum = Spectrum1D(flux=y*u.Jy, spectral_axis=x*u.um)

    # Fit the spectrum
    g_init = models.Gaussian1D(amplitude=3.*u.Jy, mean=5.5*u.um, stddev=1.*u.um)
    g_fit = fit_lines(spectrum, g_init, window=(6*u.um, 7*u.um))
    y_fit = g_fit(x*u.um)

    plt.plot(x, y)
    plt.plot(x, y_fit)
    plt.title('Single fit peak window')
    plt.grid(True)


Double Peak Fit
^^^^^^^^^^^^^^^

Double peak fit compound model initial guess in and compound
model out.

.. plot::
    :include-source:
    :align: center

    import numpy as np
    import matplotlib.pyplot as plt

    from astropy.modeling import models
    from astropy import units as u

    from specutils.spectra import Spectrum1D
    from specutils.fitting import fit_lines

    # Create a simple spectrum with a Gaussian.
    np.random.seed(42)

    g1 = models.Gaussian1D(1, 4.6, 0.2)
    g2 = models.Gaussian1D(2.5, 5.5, 0.1)
    x = np.linspace(0, 10, 200)
    y = g1(x) + g2(x) + np.random.normal(0., 0.2, x.shape)

    # Create the spectrum to fit
    spectrum = Spectrum1D(flux=y*u.Jy, spectral_axis=x*u.um)

    # Fit the spectrum
    g1_init = models.Gaussian1D(amplitude=2.3*u.Jy, mean=5.6*u.um, stddev=0.1*u.um)
    g2_init = models.Gaussian1D(amplitude=1.*u.Jy, mean=4.4*u.um, stddev=0.1*u.um)
    g12_fit = fit_lines(spectrum, g1_init+g2_init)
    y_fit = g12_fit(x*u.um)

    plt.plot(x, y)
    plt.plot(x, y_fit)
    plt.title('Double Peak Fit')
    plt.grid(True)


Double Peak Fit Within a Window
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Double peak fit using data in the spectrum from ``4.3*u.um`` to ``5.3*u.um``, only.

.. plot::
    :include-source:
    :align: center

    import numpy as np
    import matplotlib.pyplot as plt

    from astropy.modeling import models
    from astropy import units as u

    from specutils.spectra import Spectrum1D
    from specutils.fitting import fit_lines

    # Create a simple spectrum with a Gaussian.
    np.random.seed(42)

    g1 = models.Gaussian1D(1, 4.6, 0.2)
    g2 = models.Gaussian1D(2.5, 5.5, 0.1)
    x = np.linspace(0, 10, 200)
    y = g1(x) + g2(x) + np.random.normal(0., 0.2, x.shape)

    # Create the spectrum to fit
    spectrum = Spectrum1D(flux=y*u.Jy, spectral_axis=x*u.um)

    # Fit the spectrum
    g2_init = models.Gaussian1D(amplitude=1.*u.Jy, mean=4.7*u.um, stddev=0.2*u.um)
    g2_fit = fit_lines(spectrum, g2_init, window=(4.3*u.um, 5.3*u.um))
    y_fit = g2_fit(x*u.um)

    plt.plot(x, y)
    plt.plot(x, y_fit)
    plt.title('Double Peak Fit Within a Window')
    plt.grid(True)


Double Peak Fit Within Around a Center Window
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Double peak fit using data in the spectrum centered on ``4.7*u.um`` +/- ``0.3*u.um``.

.. plot::
    :include-source:
    :align: center

    import numpy as np
    import matplotlib.pyplot as plt

    from astropy.modeling import models
    from astropy import units as u

    from specutils.spectra import Spectrum1D
    from specutils.fitting import fit_lines

    # Create a simple spectrum with a Gaussian.
    np.random.seed(42)

    g1 = models.Gaussian1D(1, 4.6, 0.2)
    g2 = models.Gaussian1D(2.5, 5.5, 0.1)
    x = np.linspace(0, 10, 200)
    y = g1(x) + g2(x) + np.random.normal(0., 0.2, x.shape)

    # Create the spectrum to fit
    spectrum = Spectrum1D(flux=y*u.Jy, spectral_axis=x*u.um)

    # Fit the spectrum
    g2_init = models.Gaussian1D(amplitude=1.*u.Jy, mean=4.7*u.um, stddev=0.2*u.um)
    g2_fit = fit_lines(spectrum, g2_init, window=0.3*u.um)
    y_fit = g2_fit(x*u.um)

    plt.plot(x, y)
    plt.plot(x, y_fit)
    plt.title('Double Peak Fit Around a Center Window')
    plt.grid(True)


Double Peak Fit - Two Separate Peaks
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Double peak fit where each model ``gl_init`` and ``gr_init`` is fit separately,
each within ``0.2*u.um`` of the model's mean.

.. plot::
    :include-source:
    :align: center

    import numpy as np
    import matplotlib.pyplot as plt

    from astropy.modeling import models
    from astropy import units as u

    from specutils.spectra import Spectrum1D
    from specutils.fitting import fit_lines

    # Create a simple spectrum with a Gaussian.
    np.random.seed(42)

    g1 = models.Gaussian1D(1, 4.6, 0.2)
    g2 = models.Gaussian1D(2.5, 5.5, 0.1)
    x = np.linspace(0, 10, 200)
    y = g1(x) + g2(x) + np.random.normal(0., 0.2, x.shape)

    # Create the spectrum to fit
    spectrum = Spectrum1D(flux=y*u.Jy, spectral_axis=x*u.um)

    # Fit each peak
    gl_init = models.Gaussian1D(amplitude=1.*u.Jy, mean=4.8*u.um, stddev=0.2*u.um)
    gr_init = models.Gaussian1D(amplitude=2.*u.Jy, mean=5.3*u.um, stddev=0.2*u.um)
    gl_fit, gr_fit = fit_lines(spectrum, [gl_init, gr_init], window=0.2*u.um)
    yl_fit = gl_fit(x*u.um)
    yr_fit = gr_fit(x*u.um)

    plt.plot(x, y)
    plt.plot(x, yl_fit)
    plt.plot(x, yr_fit)
    plt.title('Double Peak - Two Models')
    plt.grid(True)


Double Peak Fit - Two Separate Peaks With Two Windows
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Double peak fit where each model ``gl_init`` and ``gr_init`` is fit within
the corresponding window.

.. plot::
    :include-source:
    :align: center

    import numpy as np
    import matplotlib.pyplot as plt

    from astropy.modeling import models
    from astropy import units as u

    from specutils.spectra import Spectrum1D
    from specutils.fitting import fit_lines

    # Create a simple spectrum with a Gaussian.
    np.random.seed(42)

    g1 = models.Gaussian1D(1, 4.6, 0.2)
    g2 = models.Gaussian1D(2.5, 5.5, 0.1)
    x = np.linspace(0, 10, 200)
    y = g1(x) + g2(x) + np.random.normal(0., 0.2, x.shape)

    # Create the spectrum to fit
    spectrum = Spectrum1D(flux=y*u.Jy, spectral_axis=x*u.um)

    # Fit each peak
    gl_init = models.Gaussian1D(amplitude=1.*u.Jy, mean=4.8*u.um, stddev=0.2*u.um)
    gr_init = models.Gaussian1D(amplitude=2.*u.Jy, mean=5.3*u.um, stddev=0.2*u.um)
    gl_fit, gr_fit = fit_lines(spectrum, [gl_init, gr_init], window=[(5.3*u.um, 5.8*u.um), (4.6*u.um, 5.3*u.um)])
    yl_fit = gl_fit(x*u.um)
    yr_fit = gr_fit(x*u.um)

    plt.plot(x, y)
    plt.plot(x, yl_fit)
    plt.plot(x, yr_fit)
    plt.title('Double Peak - Two Models and Two Windows')
    plt.grid(True)


Double Peak Fit - Exclude One Region
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Double peak fit where each model ``gl_init`` and ``gr_init`` is fit using
all the data *except* between ``5.2*u.um`` and ``5.8*u.um``.

.. plot::
    :include-source:
    :align: center

    import numpy as np
    import matplotlib.pyplot as plt

    from astropy.modeling import models
    from astropy import units as u

    from specutils.spectra import Spectrum1D, SpectralRegion
    from specutils.fitting import fit_lines

    # Create a simple spectrum with a Gaussian.
    np.random.seed(42)

    g1 = models.Gaussian1D(1, 4.6, 0.2)
    g2 = models.Gaussian1D(2.5, 5.5, 0.1)
    x = np.linspace(0, 10, 200)
    y = g1(x) + g2(x) + np.random.normal(0., 0.2, x.shape)

    # Create the spectrum to fit
    spectrum = Spectrum1D(flux=y*u.Jy, spectral_axis=x*u.um)

    # Fit each peak
    gl_init = models.Gaussian1D(amplitude=1.*u.Jy, mean=4.8*u.um, stddev=0.2*u.um)
    gl_fit = fit_lines(spectrum, gl_init, exclude_regions=[SpectralRegion(5.2*u.um, 5.8*u.um)])
    yl_fit = gl_fit(x*u.um)

    plt.plot(x, y)
    plt.plot(x, yl_fit)
    plt.title('Double Peak - Single Models and Exclude Region')
    plt.grid(True)

.. _specutils-continuum-fitting:

Continuum Fitting
-----------------

While the line-fitting machinery can be used to fit continuua at the same time
as models, often it is convenient to subtract or normalize a spectrum by its
continuum before other processing is done.  ``specutils`` provides some
convenience functions to perform exactly this task.  An example is shown below.

.. plot::
    :include-source:
    :align: center
    :context: close-figs

    import numpy as np
    import matplotlib.pyplot as plt

    from astropy.modeling import models
    from astropy import units as u

    from specutils.spectra import Spectrum1D, SpectralRegion
    from specutils.fitting import fit_generic_continuum

    np.random.seed(0)
    x = np.linspace(0., 10., 200)
    y = 3 * np.exp(-0.5 * (x - 6.3)**2 / 0.1**2)
    y += np.random.normal(0., 0.2, x.shape)

    y_continuum = 3.2 * np.exp(-0.5 * (x - 5.6)**2 / 4.8**2)
    y += y_continuum

    spectrum = Spectrum1D(flux=y*u.Jy, spectral_axis=x*u.um)

    g1_fit = fit_generic_continuum(spectrum)

    y_continuum_fitted = g1_fit(x*u.um)

    plt.plot(x, y)
    plt.plot(x, y_continuum_fitted)
    plt.title('Continuum Fitting')
    plt.grid(True)

The normalized spectrum is simply the old spectrum devided by the
fitted continuum, which returns a new object:

.. plot::
    :include-source:
    :align: center
    :context: close-figs

    spec_normalized = spectrum / y_continuum_fitted

    plt.plot(spec_normalized.spectral_axis, spec_normalized.flux)
    plt.title('Continuum normalized spectrum')
    plt.grid('on')


When fitting over a specific wavelength region of a spectrum, one
should use the ``window`` parameter to specify the region. Windows
can be comprised of more than one wavelength interval; each interval
is specified by a sequence:

.. plot::
    :include-source:
    :align: center
    :context: close-figs

    import numpy as np
    import matplotlib.pyplot as plt
    import astropy.units as u

    from specutils.spectra.spectrum1d import Spectrum1D
    from specutils.fitting.continuum import fit_continuum

    np.random.seed(0)
    x = np.linspace(0., 10., 200)
    y = 3 * np.exp(-0.5 * (x - 6.3)**2 / 0.1**2)
    y += np.random.normal(0., 0.2, x.shape)
    y += 3.2 * np.exp(-0.5 * (x - 5.6)**2 / 4.8**2)

    spectrum = Spectrum1D(flux=y * u.Jy, spectral_axis=x * u.um)

    region = [(4.*u.um, 5.*u.um), (8.*u.um, 10.*u.um)]

    fitted_continuum = fit_continuum(spectrum, window=region)

    y_fit = fitted_continuum(x*u.um)

    plt.plot(x, y)
    plt.plot(x, y_fit)
    plt.title("Continuum Fitting")
    plt.grid(True)


Reference/API
-------------

.. automodapi:: specutils.fitting
    :no-heading: