File: analysis.rst

package info (click to toggle)
specutils 2.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,460 kB
  • sloc: python: 13,497; makefile: 111
file content (330 lines) | stat: -rw-r--r-- 14,162 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
.. currentmodule:: specutils.analysis

========
Analysis
========

The specutils package comes with a set of tools for doing common analysis
tasks on astronomical spectra. Some examples of applying these tools are
described below. The basic spectrum shown here is used in the examples in the
sub-sections below - a gaussian-profile line with flux of 5 GHz Jy.  See
:doc:`spectrum` for more on creating spectra:

.. plot::
    :include-source: true
    :context:

    >>> import numpy as np
    >>> from astropy import units as u
    >>> from astropy.nddata import StdDevUncertainty
    >>> from astropy.modeling import models
    >>> from specutils import Spectrum, SpectralRegion
    >>> np.random.seed(42)
    >>> spectral_axis = np.linspace(11., 1., 200) * u.GHz
    >>> spectral_model = models.Gaussian1D(amplitude=5*(2*np.pi*0.8**2)**-0.5*u.Jy, mean=5*u.GHz, stddev=0.8*u.GHz)
    >>> flux = spectral_model(spectral_axis)
    >>> flux += np.random.normal(0., 0.05, spectral_axis.shape) * u.Jy
    >>> uncertainty = StdDevUncertainty(0.2*np.ones(flux.shape)*u.Jy)
    >>> noisy_gaussian = Spectrum(spectral_axis=spectral_axis, flux=flux, uncertainty=uncertainty)
    >>> import matplotlib.pyplot as plt #doctest:+SKIP
    >>> plt.step(noisy_gaussian.spectral_axis, noisy_gaussian.flux) #doctest:+SKIP


SNR
---

The signal-to-noise ratio of a spectrum is often a valuable quantity for
evaluating the quality of a spectrum.  The `~specutils.analysis.snr` function
performs this task, either on the spectrum as a whole, or sub-regions of a
spectrum:

.. code-block:: python

    >>> from specutils.analysis import snr
    >>> snr(noisy_gaussian)  # doctest:+FLOAT_CMP
    <Quantity 2.47730726>
    >>> snr(noisy_gaussian, SpectralRegion(6*u.GHz, 4*u.GHz))  # doctest:+FLOAT_CMP
    <Quantity 9.8300873>


A second method to calculate SNR does not require the uncertainty defined
on the `~specutils.Spectrum` object. This computes the signal to noise
ratio DER_SNR following the definition set forth by the Spectral
Container Working Group of ST-ECF, MAST and CADC. This algorithm is described at
https://esahubble.org/static/archives/stecfnewsletters/pdf/hst_stecf_0042.pdf

.. code-block:: python

    >>> from specutils.analysis import snr_derived
    >>> snr_derived(noisy_gaussian)  # doctest:+FLOAT_CMP
    <Quantity 1.13359867>
    >>> snr_derived(noisy_gaussian, SpectralRegion(6*u.GHz, 4*u.GHz))  # doctest:+FLOAT_CMP
    <Quantity 42.10020601>

The conditions on the data for this implementation for it to be an unbiased estimator of the SNR
are strict.  In particular:

  * the noise is uncorrelated in wavelength bins spaced two pixels apart
  * for large wavelength regions, the signal over the scale of 5 or more pixels can be approximated by a straight line


Line Flux Estimates
-------------------

While line-fitting (see :doc:`fitting`) is a more thorough way to measure
spectral line fluxes, direct measures of line flux are very useful for either
quick-look settings or for spectra not amedable to fitting.  The
`~specutils.analysis.line_flux` function addresses that use case. The closely
related `specutils.analysis.equivalent_width` computes the equivalent width
of a spectral feature, a flux measure that is normalized against the continuum
of a spectrum.  Both are demonstrated below:

.. note::
    The `~specutils.analysis.line_flux` function assumes the spectrum has
    already been continuum-subtracted, while
    `~specutils.analysis.equivalent_width` assumes the continuum is at a fixed,
    known level (defaulting to 1, meaning continuum-normalized).
    :ref:`specutils-continuum-fitting` describes how continuua can be generated
    to prepare a spectrum for use with these functions.

.. code-block:: python

    >>> from specutils.analysis import line_flux
    >>> line_flux(noisy_gaussian, SpectralRegion(7*u.GHz, 3*u.GHz))  # doctest:+FLOAT_CMP
    <Quantity 4.93784874 GHz Jy>
    >>> line_flux(noisy_gaussian).to(u.erg * u.cm**-2 * u.s**-1)  # doctest:+FLOAT_CMP
    <Quantity 4.97951087e-14 erg / (s cm2)>

These line_flux measurements also include uncertainties if the spectrum itself
has uncertainties:

.. code-block:: python

    >>> flux = line_flux(noisy_gaussian)
    >>> flux.uncertainty.to(u.erg * u.cm**-2 * u.s**-1) # doctest:+FLOAT_CMP
    <Quantity 1.42132016e-15 erg / (s cm2)>
    >>> line_flux(noisy_gaussian, SpectralRegion(7*u.GHz, 3*u.GHz))  # doctest:+FLOAT_CMP
    <Quantity 4.93784874 GHz Jy>

For the equivalent width, note the need to add a continuum level:

.. code-block:: python

    >>> from specutils.analysis import equivalent_width
    >>> noisy_gaussian_with_continuum = noisy_gaussian + 1*u.Jy
    >>> equivalent_width(noisy_gaussian_with_continuum)  # doctest:+FLOAT_CMP
    <Quantity -4.97951 GHz>
    >>> equivalent_width(noisy_gaussian_with_continuum, regions=SpectralRegion(7*u.GHz, 3*u.GHz))  # doctest:+FLOAT_CMP
    <Quantity -4.93785 GHz>


Centroid
--------

The `~specutils.analysis.centroid` function provides a first-moment analysis to
estimate the center of a spectral feature:

.. code-block:: python

    >>> from specutils.analysis import centroid
    >>> centroid(noisy_gaussian, SpectralRegion(7*u.GHz, 3*u.GHz))  # doctest:+FLOAT_CMP
    <Quantity 4.99909151 GHz>

While this example is "pre-subtracted", this function only performs well if the
contiuum has already been subtracted, as for the other functions above and
below. If the input spectrum has an ``uncertainty``, the result returned by
`~specutils.analysis.centroid` will also have attached ``uncertainty`` and
``uncertainty_type`` attributes. By default, the centroid and uncertainty results
given are the analytical solution, but specifying ``analytic=False`` in the input
to the function will instead return the mean and standard deviation of an
`~astropy.uncertainty` Monte Carlo distribution generated using the ``uncertainty``
values of the input spectrum's flux.


Moment
------

The `~specutils.analysis.moment` function computes moments of any order:

.. code-block:: python

    >>> from specutils.analysis import moment
    >>> moment(noisy_gaussian, SpectralRegion(7*u.GHz, 3*u.GHz)) # doctest:+FLOAT_CMP
    <Quantity 4.93784874 GHz Jy>
    >>> moment(noisy_gaussian, SpectralRegion(7*u.GHz, 3*u.GHz), order=1) # doctest:+FLOAT_CMP
    <Quantity 4.99909151 GHz>
    >>> moment(noisy_gaussian, SpectralRegion(7*u.GHz, 3*u.GHz), order=2) # doctest:+FLOAT_CMP
    <Quantity 0.58586695 GHz2>

By default the moment is calculated along the spectral axis, but any axis can be specified with
the ``axis`` keyword. Non-spectral-axis moments are calculated using integer pixel values for the
dispersion and return unitless values. Although they are available, they are perhaps of
questionable usefulness.


Line Widths
-----------

There are several width statistics that are provided by the
`specutils.analysis` submodule.

The `~gaussian_sigma_width` function estimates the width of the spectrum by
computing a second-moment-based approximation of the standard deviation.

The `~gaussian_fwhm` function estimates the width of the spectrum at half max,
again by computing an approximation of the standard deviation.

Both of these functions assume that the spectrum is approximately gaussian, and
also have an ``analytic`` input argument that can be set to ``False`` to use
an `~astropy.uncertainty` Monte Carlo distribution in the same was as
`specutils.analysis.centroid`.

The function `~fwhm` provides an estimate of the full width of the spectrum at
half max that does not assume the spectrum is gaussian. It locates the maximum,
and then locates the value closest to half of the maximum on either side, and
measures the distance between them.

A function to calculate the full width at zero intensity (i.e. the width of a
spectral feature at the continuum) is provided as `~fwzi`. Like the `~fwhm`
calculation, it does not make assumptions about the shape of the feature
and calculates the width by finding the points at either side of maximum
that reach the continuum value. In this case, it assumes the provided
spectrum has been continuum subtracted.

Each of the width analysis functions are applied to this spectrum below:

.. code-block:: python

   >>> from specutils.analysis import gaussian_sigma_width, gaussian_fwhm, fwhm, fwzi
   >>> gaussian_sigma_width(noisy_gaussian) # doctest: +FLOAT_CMP
   <Quantity 0.74075431 GHz>
   >>> gaussian_fwhm(noisy_gaussian) # doctest: +FLOAT_CMP
   <Quantity 1.74434311 GHz>
   >>> fwhm(noisy_gaussian) # doctest: +FLOAT_CMP
   <Quantity 1.86047666 GHz>
   >>> fwzi(noisy_gaussian) # doctest: +FLOAT_CMP
   <Quantity 94.99997484 GHz>


Template comparison
-------------------

The `~specutils.analysis.template_match` function takes an
observed spectrum and ``n`` template spectra and returns the best template that
matches the observed spectrum via chi-square minimization.

If the redshift is known, the user can set that for the ``redshift`` parameter
and then run the
`~specutils.analysis.template_match` function.
This function will:

    1. Match the resolution and wavelength spacing of the observed spectrum.
    2. Compute the chi-square between the observed spectrum and each template.
    3. Return the lowest chi-square and its corresponding template spectrum,
       normalized to the observed spectrum (and the index of the template
       spectrum if the list of templates is iterable).

If the redshift is unknown, the user specifies a grid of redshift values in the
form of an iterable object such as a list, tuple, or numpy array with the redshift
values to use. As an example, a simple linear grid can be built with:

.. code-block:: python

    >>> rs_values = np.arange(1., 3.25, 0.25)

The `~specutils.analysis.template_match` function will then:

    1. Move each template to the first term in the redshift grid.
    2. Run steps 1 and 2 of the case with known redshift.
    3. Move to the next term in the redshift grid.
    4. Run steps 1 and 2 of the case with known redshift.
    5. Repeat the steps until the end of the grid is reached.
    6. Return the best redshift, the lowest chi-square and its corresponding
       template spectrum, and a list with all chi2 values, one per template.
       The returned template spectrum corresponding to the lowest chi2 is redshifted
       and normalized to the observed spectrum (and the index of the template spectrum if
       the list of templates is iterable). When multiple templates are matched
       with a redshift grid, a list-of-lists is returned with the trial chi-square
       values computed for every combination redshift-template. The external list
       spans the range of templates in the collection/list, while each internal list
       contains all chi2 values for a given template.

An example of how to do template matching with an unknown redshift is:

.. code-block:: python

   >>> from specutils.analysis import template_comparison
   >>> spec_axis = np.linspace(0, 50, 50) * u.AA
   >>> observed_redshift = 2.0
   >>> min_redshift = 1.0
   >>> max_redshift = 3.0
   >>> delta_redshift = .25
   >>> resample_method = "flux_conserving"
   >>> rs_values = np.arange(min_redshift, max_redshift+delta_redshift, delta_redshift)

   >>> observed_spectrum = Spectrum(spectral_axis=spec_axis*(1+observed_redshift), flux=np.random.randn(50) * u.Jy, uncertainty=StdDevUncertainty(np.random.sample(50), unit='Jy'))
   >>> spectral_template = Spectrum(spectral_axis=spec_axis, flux=np.random.randn(50) * u.Jy, uncertainty=StdDevUncertainty(np.random.sample(50), unit='Jy'))
   >>> tm_result = template_comparison.template_match(observed_spectrum=observed_spectrum, spectral_templates=spectral_template, resample_method=resample_method, redshift=rs_values) # doctest:+FLOAT_CMP


Dust extinction
---------------

Dust extinction can be applied to Spectrum instances via their internal arrays, using
the ``dust_extinction`` package (http://dust-extinction.readthedocs.io/en/latest)

Below is an example of how to apply extinction.

.. code-block:: python

    from astropy.modeling.blackbody import blackbody_lambda
    from dust_extinction.parameter_averages import F99

    wave = np.logspace(np.log10(1000), np.log10(3e4), num=10) * u.AA
    flux = blackbody_lambda(wave, 10000 * u.K)
    spec = Spectrum(spectral_axis=wave, flux=flux)

    # define the model
    ext = F99(Rv=3.1)

    # extinguish (redden) the spectrum
    flux_ext = spec.flux * ext.extinguish(spec.spectral_axis, Ebv=0.5)
    spec_ext = Spectrum(spectral_axis=wave, flux=flux_ext)


Template Cross-correlation
--------------------------

The cross-correlation function between an observed spectrum and a template spectrum that both share a common spectral
axis can be calculated with the function `~template_correlate` in the `~specutils.analysis` module.

An example of how to get the cross correlation follows. Note that the observed spectrum must have a rest wavelength
value set.

.. code-block:: python

    >>> from specutils.analysis import correlation
    >>> size = 200
    >>> spec_axis = np.linspace(4500., 6500., num=size) * u.AA
    >>> f1 = np.random.randn(size)*0.5 * u.Jy
    >>> f2 = np.random.randn(size)*0.5 * u.Jy
    >>> rest_value = 6000. * u.AA
    >>> mean1 = 5035. * u.AA
    >>> mean2 = 5015. * u.AA
    >>> g1 = models.Gaussian1D(amplitude=30 * u.Jy, mean=mean1, stddev=10. * u.AA)
    >>> g2 = models.Gaussian1D(amplitude=30 * u.Jy, mean=mean2, stddev=10. * u.AA)
    >>> flux1 = f1 + g1(spec_axis)
    >>> flux2 = f2 + g2(spec_axis)
    >>> uncertainty = StdDevUncertainty(0.2*np.ones(size)*u.Jy)
    >>> ospec = Spectrum(spectral_axis=spec_axis, flux=flux1, uncertainty=uncertainty, velocity_convention='optical', rest_value=rest_value)
    >>> tspec = Spectrum(spectral_axis=spec_axis, flux=flux2, uncertainty=uncertainty)
    >>> corr, lag = correlation.template_correlate(ospec, tspec)

The lag values are reported in km/s units. The correlation values are computed after the template spectrum is
normalized in order to have the same total flux as the observed spectrum.


Reference/API
-------------
.. automodapi:: specutils.analysis
    :no-heading: