File: manipulation.rst

package info (click to toggle)
specutils 2.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,460 kB
  • sloc: python: 13,497; makefile: 111
file content (413 lines) | stat: -rw-r--r-- 19,475 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
====================
Manipulating Spectra
====================

While there are myriad ways you might want to alter a spectrum,
:ref:`specutils <specutils>` provides some specific functionality that
is commonly used in astronomy.  These tools are detailed here, but it
is important to bear in mind that this is *not* intended to be
exhaustive - the point of :ref:`specutils <specutils>` is to provide a
framework you can use to do your data analysis.  Hence the
functionality described here is best thought of as pieces you might
string together with your own functionality to build a tailor-made
spectral analysis environment.

In general, however, :ref:`specutils <specutils>` is designed around
the idea that spectral manipulations generally yield *new* spectrum
objects, rather than in-place operations.  This is not a true
restriction, but is a guideline that is recommended primarily to keep
you from accidentally modifying a spectrum you didn't mean to change.

Smoothing
---------

Specutils provides smoothing for spectra in two forms: 1) convolution based
using smoothing `astropy.convolution` and 2) median filtering
using the :func:`scipy.signal.medfilt`.  Each of these act on the flux
of the :class:`~specutils.Spectrum` object.

.. note:: Specutils smoothing kernel widths and standard deviations are
             in units of pixels and not ``Quantity``.

Convolution Based Smoothing
^^^^^^^^^^^^^^^^^^^^^^^^^^^

While any kernel supported by `astropy.convolution` will work (using the
`~specutils.manipulation.convolution_smooth` function), several
commonly-used kernels have convenience functions wrapping them to simplify
the smoothing process into a simple one-line operation.  Currently
implemented are: :func:`~specutils.manipulation.box_smooth`
(:class:`~astropy.convolution.Box1DKernel`),
:func:`~specutils.manipulation.gaussian_smooth`
(:class:`~astropy.convolution.Gaussian1DKernel`), and
:func:`~specutils.manipulation.trapezoid_smooth`
(:class:`~astropy.convolution.Trapezoid1DKernel`). Note that, although
these kernels are 1D, they can be applied to higher-dimensional
data (e.g. spectral cubes), in which case the data will be smoothed only
along the spectral dimension.

.. code-block:: python

    >>> from specutils import Spectrum
    >>> import astropy.units as u
    >>> import numpy as np
    >>> from specutils.manipulation import box_smooth, gaussian_smooth, trapezoid_smooth

    >>> spec1 = Spectrum(spectral_axis=np.arange(1, 50) * u.nm,
    ...                    flux=np.random.default_rng(12345).random(49)*u.Jy)
    >>> spec1_bsmooth = box_smooth(spec1, width=3)
    >>> spec1_gsmooth = gaussian_smooth(spec1, stddev=3)
    >>> spec1_tsmooth = trapezoid_smooth(spec1, width=3)
    >>> gaussian_smooth(spec1, stddev=3) # doctest: +FLOAT_CMP
    <Spectrum(flux=[0.25860917267578276 ... 0.15868783272966752] Jy (shape=(49,), mean=0.48009 Jy); spectral_axis=<SpectralAxis [ 1.  2.  3. ... 47. 48. 49.] nm> (length=49))>

Each of the specific smoothing methods create the appropriate `astropy.convolution.convolve`
kernel and then call a helper function :func:`~specutils.manipulation.convolution_smooth`
that takes the spectrum and an astropy 1D kernel.  So, one could also do:

.. code-block:: python

    >>> from astropy.convolution import Box1DKernel
    >>> from specutils.manipulation import convolution_smooth

    >>> box1d_kernel = Box1DKernel(width=3)

    >>> spec1 = Spectrum(spectral_axis=np.arange(1, 50) * u.nm,
    ...                    flux=np.random.default_rng(12345).random(49) * u.Jy)
    >>> convolution_smooth(spec1, box1d_kernel) # doctest: +FLOAT_CMP
    <Spectrum(flux=[0.1813647873923075 ... 0.1201562712204726] Jy (shape=(49,), mean=0.49378 Jy); spectral_axis=<SpectralAxis [ 1.  2.  3. ... 47. 48. 49.] nm> (length=49))>

In this case, the ``spec1_bsmooth2`` result should be equivalent to the ``spec1_bsmooth`` in
the section above (assuming the flux data of the input ``spec`` is the same). Note that,
as in the case of the kernel-specific functions, a 1D kernel can be applied to a
multi-dimensional spectrum and will smooth that spectrum along the spectral dimension.
In the case of :func:`~specutils.manipulation.convolution_smooth`, one can also input
a higher-dimensional kernel that matches the dimensionality of the data.

The uncertainties are propagated using a standard "propagation of errors" method, if the uncertainty
is defined for the spectrum *and* it is one of StdDevUncertainty, VarianceUncertainty or InverseVariance.
But note that this does *not* consider covariance between points.

Median Smoothing
^^^^^^^^^^^^^^^^

The median based smoothing  is implemented using `scipy.signal.medfilt` and
has a similar call structure to the convolution-based smoothing methods. This
method applys the median filter across the flux.


.. note::
    This method is not flux conserving and errors are not propagated.


.. code-block:: python

    >>> from specutils.manipulation import median_smooth

    >>> spec1 = Spectrum(spectral_axis=np.arange(1, 50) * u.nm,
    ...                    flux=np.random.default_rng(12345).random(49) * u.Jy)
    >>> median_smooth(spec1, width=3) # doctest: +FLOAT_CMP
    <Spectrum(flux=[0.22733602246716966 ... 0.005022333717131788] Jy (shape=(49,), mean=0.48620 Jy); spectral_axis=<SpectralAxis [ 1.  2.  3. ... 47. 48. 49.] nm> (length=49))>

Resampling
----------
:ref:`specutils <specutils>` contains several classes for resampling the flux
in a :class:`~specutils.Spectrum` object.  Currently supported methods of
resampling are integrated flux conserving with :class:`~specutils.manipulation.FluxConservingResampler`,
linear interpolation with :class:`~specutils.manipulation.LinearInterpolatedResampler`,
and cubic spline with :class:`~specutils.manipulation.SplineInterpolatedResampler`.
Each of these classes takes in a :class:`~specutils.Spectrum` and a user
defined output dispersion grid, and returns a new :class:`~specutils.Spectrum`
with the resampled flux. Currently the resampling classes expect the new
dispersion grid unit to be the same as the input spectrum's dispersion grid unit.
Additionally, all resamplers take an optional ``extrapolation_treatment`` keyword which
can be ``nan_fill``, ``zero_fill``, or ``truncate``, to determine what to do with output
wavelength bins that have no overlap with the original spectrum.

If the input :class:`~specutils.Spectrum` contains an uncertainty,
:class:`~specutils.manipulation.FluxConservingResampler` will propogate the
uncertainty to the final output :class:`~specutils.Spectrum`. However, the
other two implemented resampling classes (:class:`~specutils.manipulation.LinearInterpolatedResampler`
and :class:`~specutils.manipulation.SplineInterpolatedResampler`) will ignore
any input uncertainty.

Here's a set of simple examples showing each of the three types of resampling:

.. plot::
    :include-source:
    :align: center
    :context: close-figs

    First are the imports we will need as well as loading in the example data:

    >>> from astropy.io import fits
    >>> from astropy import units as u
    >>> import numpy as np
    >>> from matplotlib import pyplot as plt
    >>> from astropy.visualization import quantity_support
    >>> quantity_support()  # for getting units on the axes below  # doctest: +IGNORE_OUTPUT

    >>> filename = 'https://data.sdss.org/sas/dr16/sdss/spectro/redux/26/spectra/1323/spec-1323-52797-0012.fits'
    >>> # The spectrum is in the second HDU of this file.
    >>> with fits.open(filename) as f:  # doctest: +IGNORE_OUTPUT +REMOTE_DATA
    ...     specdata = f[1].data[1020:1250]  # doctest: +REMOTE_DATA

    Then we re-format this dataset into astropy quantities, and create a
    `~specutils.Spectrum` object:

    >>> from specutils import Spectrum
    >>> lamb = 10**specdata['loglam'] * u.AA # doctest: +REMOTE_DATA
    >>> flux = specdata['flux'] * 10**-17 * u.Unit('erg cm-2 s-1 AA-1') # doctest: +REMOTE_DATA
    >>> input_spec = Spectrum(spectral_axis=lamb, flux=flux) # doctest: +REMOTE_DATA

    >>> f, ax = plt.subplots()  # doctest: +IGNORE_OUTPUT +REMOTE_DATA
    >>> ax.step(input_spec.spectral_axis, input_spec.flux) # doctest: +IGNORE_OUTPUT +REMOTE_DATA

.. plot::
    :include-source:
    :align: center
    :context: close-figs

    Now we show examples and plots of the different resampling currently
    available.

    >>> from specutils.manipulation import FluxConservingResampler, LinearInterpolatedResampler, SplineInterpolatedResampler
    >>> new_disp_grid = np.arange(4800, 5200, 3) * u.AA

    Flux Conserving Resampler:

    >>> fluxcon = FluxConservingResampler()
    >>> new_spec_fluxcon = fluxcon(input_spec, new_disp_grid) # doctest: +IGNORE_OUTPUT +REMOTE_DATA
    >>> f, ax = plt.subplots()  # doctest: +IGNORE_OUTPUT
    >>> ax.step(new_spec_fluxcon.spectral_axis, new_spec_fluxcon.flux) # doctest: +IGNORE_OUTPUT +REMOTE_DATA

.. plot::
    :include-source:
    :align: center
    :context: close-figs

    Linear Interpolation Resampler:

    >>> linear = LinearInterpolatedResampler()
    >>> new_spec_lin = linear(input_spec, new_disp_grid)  # doctest: +REMOTE_DATA
    >>> f, ax = plt.subplots()  # doctest: +IGNORE_OUTPUT
    >>> ax.step(new_spec_lin.spectral_axis, new_spec_lin.flux) # doctest: +IGNORE_OUTPUT +REMOTE_DATA

.. plot::
    :include-source:
    :align: center
    :context: close-figs

    Spline Resampler:

    >>> spline = SplineInterpolatedResampler()
    >>> new_spec_sp = spline(input_spec, new_disp_grid)  # doctest: +REMOTE_DATA
    >>> f, ax = plt.subplots()  # doctest: +IGNORE_OUTPUT
    >>> ax.step(new_spec_sp.spectral_axis, new_spec_sp.flux) # doctest: +IGNORE_OUTPUT +REMOTE_DATA

Splicing/Combining Multiple Spectra
-----------------------------------
The resampling functionality detailed above is also the default way
:ref:`specutils <specutils>` supports splicing multiple spectra together into a
single spectrum. This can be achieved as follows:

.. plot::
    :include-source:
    :align: center
    :context: close-figs

    >>> spec1 = Spectrum(spectral_axis=np.arange(1, 50) * u.micron, flux=np.random.randn(49)*u.Jy)
    >>> spec2 = Spectrum(spectral_axis=np.arange(51, 100) * u.micron, flux=(np.random.randn(49)+1)*u.Jy)

    >>> new_spectral_axis = np.concatenate([spec1.spectral_axis.value, spec2.spectral_axis.to_value(spec1.spectral_axis.unit)]) * spec1.spectral_axis.unit

    >>> resampler = LinearInterpolatedResampler(extrapolation_treatment='zero_fill')
    >>> new_spec1 = resampler(spec1, new_spectral_axis)
    >>> new_spec2 = resampler(spec2, new_spectral_axis)

    >>> final_spec = new_spec1 + new_spec2

    Yielding a spliced spectrum (the solid line below) composed of the splice of
    two other spectra (dashed lines)::

    >>> f, ax = plt.subplots()  # doctest: +IGNORE_OUTPUT
    >>> ax.step(final_spec.spectral_axis, final_spec.flux, where='mid', c='k', lw=2) # doctest: +IGNORE_OUTPUT
    >>> ax.step(spec1.spectral_axis, spec1.flux, ls='--', where='mid', lw=1) # doctest: +IGNORE_OUTPUT
    >>> ax.step(spec2.spectral_axis, spec2.flux, ls='--', where='mid', lw=1) # doctest: +IGNORE_OUTPUT


Uncertainty Estimation
----------------------

Some of the machinery in :ref:`specutils <specutils>` (e.g.
`~specutils.analysis.snr`) requires an uncertainty to be present.
While some data reduction pipelines generate this as part of the
reduction process, sometimes it's necessary to estimate the
uncertainty in a spectrum using the spectral data itself. Currently
:ref:`specutils <specutils>` provides the straightforward
`~specutils.manipulation.noise_region_uncertainty` function.

First we build a spectrum like that used in :doc:`analysis`, but without a
known uncertainty:

.. code-block:: python

    >>> from astropy.modeling import models
    >>> spectral_axis = np.linspace(10, 1, 200) * u.GHz
    >>> spectral_model = models.Gaussian1D(amplitude=3*u.Jy, mean=5*u.GHz, stddev=0.8*u.GHz)
    >>> flux = spectral_model(spectral_axis)
    >>> flux += np.random.default_rng(42).normal(0., 0.2, spectral_axis.shape) * u.Jy
    >>> noisy_gaussian = Spectrum(spectral_axis=spectral_axis, flux=flux)

Now we estimate the uncertainty from the region that does *not* contain
the line:

.. code-block:: python

    >>> from specutils import SpectralRegion
    >>> from specutils.manipulation import noise_region_uncertainty
    >>> noise_region = SpectralRegion([(10, 7), (3, 0)] * u.GHz)
    >>> spec_w_unc = noise_region_uncertainty(noisy_gaussian, noise_region)
    >>> spec_w_unc.uncertainty[::20] # doctest: +FLOAT_CMP
    StdDevUncertainty([0.17501999, 0.17501999, 0.17501999, 0.17501999,
                       0.17501999, 0.17501999, 0.17501999, 0.17501999,
                       0.17501999, 0.17501999])

Or similarly, expressed in pixels:

.. code-block:: python

    >>> noise_region = SpectralRegion([(0, 25), (175, 200)]*u.pix)
    >>> spec_w_unc = noise_region_uncertainty(noisy_gaussian, noise_region)
    >>> spec_w_unc.uncertainty[::20]  # doctest: +FLOAT_CMP
    StdDevUncertainty([0.17547552, 0.17547552, 0.17547552, 0.17547552,
                       0.17547552, 0.17547552, 0.17547552, 0.17547552,
                       0.17547552, 0.17547552])

S/N Threshold Mask
------------------

It is useful to be able to find all the spaxels in an ND spectrum
in which the signal to noise ratio is greater than some threshold.
This method implements this functionality so that a `~specutils.Spectrum`
object, `~specutils.SpectrumCollection` or an :class:`~astropy.nddata.NDData` derived
object may be passed in as the first parameter. The second parameter
is a floating point threshold.

For example, first a spectrum with flux and uncertainty is created, and
then call the ``snr_threshold`` method:

.. code-block:: python

    >>> import numpy as np
    >>> from astropy.nddata import StdDevUncertainty
    >>> import astropy.units as u
    >>> from specutils import Spectrum
    >>> from specutils.manipulation import snr_threshold
    >>> wavelengths = np.arange(0, 10)*u.um
    >>> rng = np.random.default_rng(42)
    >>> flux = 100*np.abs(rng.standard_normal(10))*u.Jy
    >>> uncertainty = StdDevUncertainty(np.abs(rng.standard_normal(10))*u.Jy)
    >>> spectrum = Spectrum(spectral_axis=wavelengths, flux=flux, uncertainty=uncertainty)
    >>> spectrum_masked = snr_threshold(spectrum, 50)
    >>> # To create a masked flux array
    >>> flux_masked = spectrum_masked.flux
    >>> flux_masked[spectrum_masked.mask] = np.nan

The output ``spectrum_masked`` is a shallow copy of the input ``spectrum``
with the ``mask`` attribute set to False where the S/N is greater than 50
and True elsewhere. It is this way to be consistent with ``astropy.nddata``.

.. note:: The mask attribute is the only attribute modified by ``snr_threshold()``. To
             retrieve the masked flux data use ``spectrum.masked.flux_masked``.

Shifting
--------

In addition to resampling, you may sometimes wish to simply shift the
``spectral_axis`` of a spectrum (a la the ``specshift`` iraf task).
There is no explicit function for this because it is a basic transform of
the ``spectral_axis``. Therefore one can use a construct like this:

.. code-block:: python

    >>> from specutils import Spectrum
    >>> wavelengths = np.arange(0, 10) * u.um
    >>> flux = 100 * np.abs(np.random.default_rng(42).standard_normal(10)) * u.Jy
    >>> spectrum = Spectrum(spectral_axis=wavelengths, flux=flux)
    >>> spectrum  # doctest: +FLOAT_CMP
    <Spectrum(flux=<Quantity [ 30.47170798, 103.99841062,  75.04511958,  94.05647164,
               195.10351887, 130.21795069,  12.78404032,  31.62425923,
                 1.68011575,  85.30439276] Jy> (shape=(10,), mean=76.02860 Jy); spectral_axis=<SpectralAxis [0. 1. 2. ... 7. 8. 9.] um> (length=10))>

    >>> shift = 12300 * u.AA
    >>> new_spec = Spectrum(spectral_axis=spectrum.spectral_axis + shift, flux=spectrum.flux)
    >>> new_spec  # doctest: +FLOAT_CMP
    <Spectrum(flux=<Quantity [ 30.47170798, 103.99841062,  75.04511958,  94.05647164,
               195.10351887, 130.21795069,  12.78404032,  31.62425923,
                 1.68011575,  85.30439276] Jy> (shape=(10,), mean=76.02860 Jy); spectral_axis=<SpectralAxis [ 1.23  2.23  3.23 ...  8.23  9.23 10.23] um> (length=10))>

Replacing a region
------------------

A specific wavelength region of a spectrum can be replaced with a model
fitted to that region by using the ``model_replace`` function.
By default, the function uses a cubic spline to model the specified region.
Alternatively, it can use a previously fitted model from `~astropy.modeling`.

The simplest way to use ``model_replace`` is to provide a list or array
with the spline knots:

.. code-block:: python

    >>> from specutils.manipulation.model_replace import model_replace
    >>> wave_val = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
    >>> flux_val = np.array([2, 4, 6, 8, 10, 12, 14, 16, 18, 20])
    >>> input_spectrum = Spectrum(spectral_axis=wave_val * u.AA, flux=flux_val * u.mJy)
    >>> spline_knots = [3.5, 4.7, 6.8, 7.1] * u.AA
    >>> result = model_replace(input_spectrum, None, model=spline_knots)
    >>> result
    <Spectrum(flux=<Quantity [ 2.,  4.,  6.,  8., 10., 12., 14., 16., 18., 20.] mJy> (shape=(10,), mean=11.00000 mJy); spectral_axis=<SpectralAxis [ 1.  2.  3. ...  8.  9. 10.] Angstrom> (length=10))>

The default behavior is to keep the data outside the replaced region unchanged.
Alternatively, the spectrum outside the replaced region can be filled with zeros:

.. code-block:: python

    >>> spline_knots = [3.5, 4.7, 6.8, 7.1] * u.AA
    >>> result = model_replace(input_spectrum, None, model=spline_knots, extrapolation_treatment='zero_fill')
    >>> result
    <Spectrum(flux=<Quantity [ 0.,  0.,  0.,  8., 10., 12., 14.,  0.,  0.,  0.] mJy> (shape=(10,), mean=4.40000 mJy); spectral_axis=<SpectralAxis [ 1.  2.  3. ...  8.  9. 10.] Angstrom> (length=10))>

One can define the spline knots by providing an instance of `~specutils.SpectralRegion`,
and the number of knots to be evenly spread along the region:

.. code-block:: python

    >>> from specutils import SpectralRegion
    >>> region = SpectralRegion(3.5*u.AA, 7.1*u.AA)
    >>> result = model_replace(input_spectrum, region, model=4)
    >>> result
    <Spectrum(flux=<Quantity [ 2.,  4.,  6.,  8., 10., 12., 14., 16., 18., 20.] mJy> (shape=(10,), mean=11.00000 mJy); spectral_axis=<SpectralAxis [ 1.  2.  3. ...  8.  9. 10.] Angstrom> (length=10))>

A model fitted over the region can also be used to replace the spectrum flux values:

.. code-block:: python

    >>> from astropy.modeling import models
    >>> from specutils.fitting import fit_lines
    >>> flux_val = np.array([1, 1.1, 0.9, 4., 10., 5., 2., 1., 1.2, 1.1])
    >>> input_spectrum = Spectrum(spectral_axis=wave_val * u.AA, flux=flux_val * u.mJy)
    >>> model = models.Gaussian1D(10, 5.6, 1.2)
    >>> fitted_model = fit_lines(input_spectrum, model)
    >>> region = SpectralRegion(3.5*u.AA, 7.1*u.AA)
    >>> result = model_replace(input_spectrum, region, model=fitted_model)
    >>> result  # doctest: +FLOAT_CMP
    <Spectrum(flux=<Quantity [1.        , 1.1       , 0.9       , 4.40803188, 9.58269826,
              5.61240079, 0.88557902, 1.        , 1.2       , 1.1       ] mJy> (shape=(10,), mean=2.67887 mJy); spectral_axis=<SpectralAxis [ 1.  2.  3. ...  8.  9. 10.] Angstrom> (length=10))>

Reference/API
-------------

.. automodapi:: specutils.manipulation
    :no-heading: