File: processing.py

package info (click to toggle)
speechpy-fast 2.4-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144 kB
  • sloc: python: 205; makefile: 4
file content (281 lines) | stat: -rwxr-xr-x 10,607 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import decimal

import numpy as np
import math

try:
    from functools import lru_cache
except ImportError:
    from backports.functools_lru_cache import lru_cache


# 1.4 becomes 1 and 1.6 becomes 2. special case: 1.5 becomes 2.
def round_half_up(number):
    return int(decimal.Decimal(number).quantize(decimal.Decimal('1'), rounding=decimal.ROUND_HALF_UP))


def preemphasis(signal, shift=1, cof=0.98):
    """preemphasising on the signal.

    Args:
        signal (array): The input signal.
        shift (int): The shift step.
        cof (float): The preemphasising coefficient. 0 equals to no filtering.

    Returns:
           the pre-emphasized signal.
    """

    rolled_signal = np.roll(signal, shift)
    return signal - cof * rolled_signal


@lru_cache()
def _create_frame_indices(numframes, frame_stride, frame_sample_length):
    indices = np.tile(np.arange(0, frame_sample_length), (numframes, 1)) + np.tile(
        np.arange(0, numframes * frame_stride, frame_stride), (frame_sample_length, 1)).T
    return np.array(indices, dtype=np.int32)


def stack_frames(sig, sampling_frequency, frame_length=0.020, frame_stride=0.020, filter=lambda x: np.ones((x,)),
                 zero_padding=True):
    """Frame a signal into overlapping frames.

    Args:
        sig (array): The audio signal to frame of size (N,).
        sampling_frequency (int): The sampling frequency of the signal.
        frame_length (float): The length of the frame in second.
        frame_stride (float): The stride between frames.
        filter (array): The time-domain filter for applying to each frame. By default it is one so nothing will be changed.
        zero_padding (bool): If the samples is not a multiple of frame_length(number of frames sample), zero padding will
                         be done for generating last frame.

    Returns:
            array: stacked_frames-Array of frames of size (number_of_frames x frame_len).

    """
    ## Check dimension
    assert sig.ndim == 1, "Signal dimention should be of the format of (N,) but it is %s instead" % str(sig.shape)

    # Initial necessary values
    length_signal = sig.shape[0]
    frame_sample_length = int(sampling_frequency * frame_length + 0.5)  # Defined by the number of samples
    frame_stride = float(int(sampling_frequency * frame_stride + 0.5))

    # Zero padding is done for allocating space for the last frame.
    if zero_padding:
        # Calculation of number of frames
        numframes = 1 + int(math.ceil((length_signal - frame_sample_length) / frame_stride))

        # Zero padding
        len_sig = int((numframes - 1) * frame_stride + frame_sample_length)
        additive_zeros = np.zeros((len_sig - length_signal,))
        signal = np.concatenate((sig, additive_zeros))

    else:
        # No zero padding! The last frame which does not have enough
        # samples(remaining samples <= frame_sample_length), will be dropped!
        numframes = 1 + int(math.floor((length_signal - frame_sample_length) / frame_stride))

        # new length
        len_sig = int((numframes - 1) * frame_stride + frame_sample_length)
        signal = sig[0:len_sig]

    # Getting the indices of all frames.
    indices = _create_frame_indices(numframes, frame_stride, frame_sample_length)

    # Extracting the frames based on the allocated indices.
    frames = signal[indices]

    # Apply the windows function
    window = np.tile(filter(frame_sample_length), (numframes, 1))
    Extracted_Frames = frames * window
    return Extracted_Frames


def fft_spectrum(frames, fft_points=512):
    """This function computes the one-dimensional n-point discrete Fourier Transform (DFT) of a real-valued
    array by means of an efficient algorithm called the Fast Fourier Transform (FFT). Please refer to
    https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.rfft.html for further details.

    Args:
        frames (array): The frame array in which each row is a frame.
        fft_points (int): The length of FFT. If fft_length is greater than frame_len, the frames will be zero-padded.

    Returns:
            array: The fft spectrum - If frames is an num_frames x sample_per_frame matrix, output will be num_frames x FFT_LENGTH.
    """
    SPECTRUM_VECTOR = np.fft.rfft(frames, n=fft_points, axis=-1, norm=None)
    return np.absolute(SPECTRUM_VECTOR)


def power_spectrum(frames, fft_points=512):
    """Power spectrum of each frame.

    Args:
        frames (array): The frame array in which each row is a frame.
        fft_points (int): The length of FFT. If fft_length is greater than frame_len, the frames will be zero-padded.

    Returns:
            array: The power spectrum - If frames is an num_frames x sample_per_frame matrix, output will be num_frames x fft_length.
    """
    return 1.0 / fft_points * np.square(fft_spectrum(frames, fft_points))


def log_power_spectrum(frames, fft_points=512, normalize=True):
    """Log power spectrum of each frame in frames.

    Args:
        frames (array): The frame array in which each row is a frame.
        fft_points (int): The length of FFT. If fft_length is greater than frame_len, the frames will be zero-padded.
        normalize (bool): If normalize=True, the log power spectrum will be normalized.

    Returns:
           array: The power spectrum - If frames is an num_frames x sample_per_frame matrix, output will be num_frames x fft_length.
    """
    power_spec = power_spectrum(frames, fft_points)
    power_spec[power_spec <= 1e-20] = 1e-20
    log_power_spec = 10 * np.log10(power_spec)
    if normalize:
        return log_power_spec - np.max(log_power_spec)
    else:
        return log_power_spec


def derivative_extraction(feat, DeltaWindows):
    """This function the derivative features.

    Args:
        feat (array): The main feature vector(For returning the second order derivative it can be first-order derivative).
        DeltaWindows (int): The value of  DeltaWindows is set using the configuration parameter DELTAWINDOW.

    Returns:
           array: Derivative feature vector - A NUMFRAMESxNUMFEATURES numpy array which is the derivative features along the features.
    """

    # Getting the shape of the vector.
    rows, cols = feat.shape

    # Difining the vector of differences.
    DIF = np.zeros(feat.shape, dtype=float)
    Scale = 0

    # Pad only along features in the vector.
    FEAT = np.lib.pad(feat, ((0, 0), (DeltaWindows, DeltaWindows)), 'edge')
    for i in range(DeltaWindows):
        # Start index
        offset = DeltaWindows

        # The dynamic range
        Range = i + 1

        dif = Range * FEAT[:, offset + Range:offset + Range + cols] - FEAT[:, offset - Range:offset - Range + cols]
        Scale += 2 * np.power(Range, 2)
        DIF += dif

    return DIF / Scale


def cmvn(vec, variance_normalization=False):
    """ This function is aimed to perform global cepstral mean and variance normalization
    (CMVN) on input feature vector "vec". The code assumes that there is one observation per row.

    Args:
        vec (array): input feature matrix (size:(num_observation,num_features))
        variance_normalization (bool): If the variance normilization should be performed or not.

    Return:
          array: The mean(or mean+variance) normalized feature vector.
    """
    eps = 2**-30
    rows, cols = vec.shape

    # Mean calculation
    norm = np.mean(vec, axis=0)
    norm_vec = np.tile(norm, (rows, 1))

    # Mean subtraction
    mean_subtracted = vec - norm_vec

    # Variance normalization
    if variance_normalization:
        stdev = np.std(mean_subtracted, axis=0)
        stdev_vec = np.tile(stdev, (rows, 1))
        output = mean_subtracted / (stdev_vec + eps)
    else:
        output = mean_subtracted

    return output


def cmvnw(vec, win_size=301, variance_normalization=False):
    """ This function is aimed to perform local cepstral mean and variance normalization on a sliding window.
    (CMVN) on input feature vector "vec". The code assumes that there is one observation per row.

    Args:
        vec (array): input feature matrix (size:(num_observation,num_features))
        win_size (int): The size of sliding window for local normalization. Default=301 which is around 3s if 100 Hz rate is considered(== 10ms frame stide)
        variance_normalization (bool): If the variance normilization should be performed or not.

    Return:
          array: The mean(or mean+variance) normalized feature vector.
    """
    # Get the shapes
    eps = 2**-30
    rows, cols = vec.shape

    # Windows size must be odd.
    assert type(win_size) == int, "Size must be of type 'int'!"
    assert win_size % 2 == 1, "Windows size must be odd!"

    # Padding and initial definitions
    pad_size = int((win_size - 1) / 2)
    vec_pad = np.lib.pad(vec, ((pad_size, pad_size), (0, 0)), 'symmetric')
    mean_subtracted = np.zeros(np.shape(vec), dtype=np.float32)

    for i in range(rows):
        window = vec_pad[i:i + win_size, :]
        window_mean = np.mean(window, axis=0)
        mean_subtracted[i, :] = vec[i, :] - window_mean

    # Variance normalization
    if variance_normalization:

        # Initial definitions.
        variance_normalized = np.zeros(np.shape(vec), dtype=np.float32)
        vec_pad_variance = np.lib.pad(mean_subtracted, ((pad_size, pad_size), (0, 0)), 'symmetric')

        # Looping over all observations.
        for i in range(rows):
            window = vec_pad_variance[i:i + win_size, :]
            window_variance = np.std(window, axis=0)
            variance_normalized[i, :] = mean_subtracted[i, :] / (window_variance + eps)
        output = variance_normalized
    else:
        output = mean_subtracted

    return output



# def resample_Fn(wave, fs, f_new=16000):
#     """This function resample the data to arbitrary frequency
#     :param fs: Frequency of the sound file.
#     :param wave: The sound file itself.
#     :returns:
#            f_new: The new frequency.
#            signal_new: The new signal samples at new frequency.
#
#     dependency: from scikits.samplerate import resample
#     """
#
#     # Resampling using interpolation(There are other methods than 'sinc_best')
#     signal_new = resample(wave, float(f_new) / fs, 'sinc_best')
#
#     # Necessary data converting for saving .wav file using scipy.
#     signal_new = np.asarray(signal_new, dtype=np.int16)
#
#     # # Uncomment if you want to save the audio file
#     # # Save using new format
#     # wav.write(filename='resample_rainbow_16k.wav',rate=fr,data=signal_new)
#     return signal_new, f_new