1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
import decimal
import numpy as np
import math
try:
from functools import lru_cache
except ImportError:
from backports.functools_lru_cache import lru_cache
# 1.4 becomes 1 and 1.6 becomes 2. special case: 1.5 becomes 2.
def round_half_up(number):
return int(decimal.Decimal(number).quantize(decimal.Decimal('1'), rounding=decimal.ROUND_HALF_UP))
def preemphasis(signal, shift=1, cof=0.98):
"""preemphasising on the signal.
Args:
signal (array): The input signal.
shift (int): The shift step.
cof (float): The preemphasising coefficient. 0 equals to no filtering.
Returns:
the pre-emphasized signal.
"""
rolled_signal = np.roll(signal, shift)
return signal - cof * rolled_signal
@lru_cache()
def _create_frame_indices(numframes, frame_stride, frame_sample_length):
indices = np.tile(np.arange(0, frame_sample_length), (numframes, 1)) + np.tile(
np.arange(0, numframes * frame_stride, frame_stride), (frame_sample_length, 1)).T
return np.array(indices, dtype=np.int32)
def stack_frames(sig, sampling_frequency, frame_length=0.020, frame_stride=0.020, filter=lambda x: np.ones((x,)),
zero_padding=True):
"""Frame a signal into overlapping frames.
Args:
sig (array): The audio signal to frame of size (N,).
sampling_frequency (int): The sampling frequency of the signal.
frame_length (float): The length of the frame in second.
frame_stride (float): The stride between frames.
filter (array): The time-domain filter for applying to each frame. By default it is one so nothing will be changed.
zero_padding (bool): If the samples is not a multiple of frame_length(number of frames sample), zero padding will
be done for generating last frame.
Returns:
array: stacked_frames-Array of frames of size (number_of_frames x frame_len).
"""
## Check dimension
assert sig.ndim == 1, "Signal dimention should be of the format of (N,) but it is %s instead" % str(sig.shape)
# Initial necessary values
length_signal = sig.shape[0]
frame_sample_length = int(sampling_frequency * frame_length + 0.5) # Defined by the number of samples
frame_stride = float(int(sampling_frequency * frame_stride + 0.5))
# Zero padding is done for allocating space for the last frame.
if zero_padding:
# Calculation of number of frames
numframes = 1 + int(math.ceil((length_signal - frame_sample_length) / frame_stride))
# Zero padding
len_sig = int((numframes - 1) * frame_stride + frame_sample_length)
additive_zeros = np.zeros((len_sig - length_signal,))
signal = np.concatenate((sig, additive_zeros))
else:
# No zero padding! The last frame which does not have enough
# samples(remaining samples <= frame_sample_length), will be dropped!
numframes = 1 + int(math.floor((length_signal - frame_sample_length) / frame_stride))
# new length
len_sig = int((numframes - 1) * frame_stride + frame_sample_length)
signal = sig[0:len_sig]
# Getting the indices of all frames.
indices = _create_frame_indices(numframes, frame_stride, frame_sample_length)
# Extracting the frames based on the allocated indices.
frames = signal[indices]
# Apply the windows function
window = np.tile(filter(frame_sample_length), (numframes, 1))
Extracted_Frames = frames * window
return Extracted_Frames
def fft_spectrum(frames, fft_points=512):
"""This function computes the one-dimensional n-point discrete Fourier Transform (DFT) of a real-valued
array by means of an efficient algorithm called the Fast Fourier Transform (FFT). Please refer to
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.rfft.html for further details.
Args:
frames (array): The frame array in which each row is a frame.
fft_points (int): The length of FFT. If fft_length is greater than frame_len, the frames will be zero-padded.
Returns:
array: The fft spectrum - If frames is an num_frames x sample_per_frame matrix, output will be num_frames x FFT_LENGTH.
"""
SPECTRUM_VECTOR = np.fft.rfft(frames, n=fft_points, axis=-1, norm=None)
return np.absolute(SPECTRUM_VECTOR)
def power_spectrum(frames, fft_points=512):
"""Power spectrum of each frame.
Args:
frames (array): The frame array in which each row is a frame.
fft_points (int): The length of FFT. If fft_length is greater than frame_len, the frames will be zero-padded.
Returns:
array: The power spectrum - If frames is an num_frames x sample_per_frame matrix, output will be num_frames x fft_length.
"""
return 1.0 / fft_points * np.square(fft_spectrum(frames, fft_points))
def log_power_spectrum(frames, fft_points=512, normalize=True):
"""Log power spectrum of each frame in frames.
Args:
frames (array): The frame array in which each row is a frame.
fft_points (int): The length of FFT. If fft_length is greater than frame_len, the frames will be zero-padded.
normalize (bool): If normalize=True, the log power spectrum will be normalized.
Returns:
array: The power spectrum - If frames is an num_frames x sample_per_frame matrix, output will be num_frames x fft_length.
"""
power_spec = power_spectrum(frames, fft_points)
power_spec[power_spec <= 1e-20] = 1e-20
log_power_spec = 10 * np.log10(power_spec)
if normalize:
return log_power_spec - np.max(log_power_spec)
else:
return log_power_spec
def derivative_extraction(feat, DeltaWindows):
"""This function the derivative features.
Args:
feat (array): The main feature vector(For returning the second order derivative it can be first-order derivative).
DeltaWindows (int): The value of DeltaWindows is set using the configuration parameter DELTAWINDOW.
Returns:
array: Derivative feature vector - A NUMFRAMESxNUMFEATURES numpy array which is the derivative features along the features.
"""
# Getting the shape of the vector.
rows, cols = feat.shape
# Difining the vector of differences.
DIF = np.zeros(feat.shape, dtype=float)
Scale = 0
# Pad only along features in the vector.
FEAT = np.lib.pad(feat, ((0, 0), (DeltaWindows, DeltaWindows)), 'edge')
for i in range(DeltaWindows):
# Start index
offset = DeltaWindows
# The dynamic range
Range = i + 1
dif = Range * FEAT[:, offset + Range:offset + Range + cols] - FEAT[:, offset - Range:offset - Range + cols]
Scale += 2 * np.power(Range, 2)
DIF += dif
return DIF / Scale
def cmvn(vec, variance_normalization=False):
""" This function is aimed to perform global cepstral mean and variance normalization
(CMVN) on input feature vector "vec". The code assumes that there is one observation per row.
Args:
vec (array): input feature matrix (size:(num_observation,num_features))
variance_normalization (bool): If the variance normilization should be performed or not.
Return:
array: The mean(or mean+variance) normalized feature vector.
"""
eps = 2**-30
rows, cols = vec.shape
# Mean calculation
norm = np.mean(vec, axis=0)
norm_vec = np.tile(norm, (rows, 1))
# Mean subtraction
mean_subtracted = vec - norm_vec
# Variance normalization
if variance_normalization:
stdev = np.std(mean_subtracted, axis=0)
stdev_vec = np.tile(stdev, (rows, 1))
output = mean_subtracted / (stdev_vec + eps)
else:
output = mean_subtracted
return output
def cmvnw(vec, win_size=301, variance_normalization=False):
""" This function is aimed to perform local cepstral mean and variance normalization on a sliding window.
(CMVN) on input feature vector "vec". The code assumes that there is one observation per row.
Args:
vec (array): input feature matrix (size:(num_observation,num_features))
win_size (int): The size of sliding window for local normalization. Default=301 which is around 3s if 100 Hz rate is considered(== 10ms frame stide)
variance_normalization (bool): If the variance normilization should be performed or not.
Return:
array: The mean(or mean+variance) normalized feature vector.
"""
# Get the shapes
eps = 2**-30
rows, cols = vec.shape
# Windows size must be odd.
assert type(win_size) == int, "Size must be of type 'int'!"
assert win_size % 2 == 1, "Windows size must be odd!"
# Padding and initial definitions
pad_size = int((win_size - 1) / 2)
vec_pad = np.lib.pad(vec, ((pad_size, pad_size), (0, 0)), 'symmetric')
mean_subtracted = np.zeros(np.shape(vec), dtype=np.float32)
for i in range(rows):
window = vec_pad[i:i + win_size, :]
window_mean = np.mean(window, axis=0)
mean_subtracted[i, :] = vec[i, :] - window_mean
# Variance normalization
if variance_normalization:
# Initial definitions.
variance_normalized = np.zeros(np.shape(vec), dtype=np.float32)
vec_pad_variance = np.lib.pad(mean_subtracted, ((pad_size, pad_size), (0, 0)), 'symmetric')
# Looping over all observations.
for i in range(rows):
window = vec_pad_variance[i:i + win_size, :]
window_variance = np.std(window, axis=0)
variance_normalized[i, :] = mean_subtracted[i, :] / (window_variance + eps)
output = variance_normalized
else:
output = mean_subtracted
return output
# def resample_Fn(wave, fs, f_new=16000):
# """This function resample the data to arbitrary frequency
# :param fs: Frequency of the sound file.
# :param wave: The sound file itself.
# :returns:
# f_new: The new frequency.
# signal_new: The new signal samples at new frequency.
#
# dependency: from scikits.samplerate import resample
# """
#
# # Resampling using interpolation(There are other methods than 'sinc_best')
# signal_new = resample(wave, float(f_new) / fs, 'sinc_best')
#
# # Necessary data converting for saving .wav file using scipy.
# signal_new = np.asarray(signal_new, dtype=np.int16)
#
# # # Uncomment if you want to save the audio file
# # # Save using new format
# # wav.write(filename='resample_rainbow_16k.wav',rate=fr,data=signal_new)
# return signal_new, f_new
|