1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
|
Examples
========
C++
----
.. code-block:: c++
#include <complex>
#include <iostream>
#include <vector>
#include "spfft/spfft.hpp"
int main(int argc, char** argv) {
const int dimX = 2;
const int dimY = 2;
const int dimZ = 2;
std::cout << "Dimensions: x = " << dimX << ", y = " << dimY << ", z = " << dimZ << std::endl
<< std::endl;
// Use default OpenMP value
const int numThreads = -1;
// Use all elements in this example.
const int numFrequencyElements = dimX * dimY * dimZ;
// Slice length in space domain. Equivalent to dimZ for non-distributed case.
const int localZLength = dimZ;
// Interleaved complex numbers
std::vector<double> frequencyElements;
frequencyElements.reserve(2 * numFrequencyElements);
// Indices of frequency elements
std::vector<int> indices;
indices.reserve(dimX * dimY * dimZ * 3);
// Initialize frequency domain values and indices
double initValue = 0.0;
for (int xIndex = 0; xIndex < dimX; ++xIndex) {
for (int yIndex = 0; yIndex < dimY; ++yIndex) {
for (int zIndex = 0; zIndex < dimZ; ++zIndex) {
// init with interleaved complex numbers
frequencyElements.emplace_back(initValue);
frequencyElements.emplace_back(-initValue);
// add index triplet for value
indices.emplace_back(xIndex);
indices.emplace_back(yIndex);
indices.emplace_back(zIndex);
initValue += 1.0;
}
}
}
std::cout << "Input:" << std::endl;
for (int i = 0; i < numFrequencyElements; ++i) {
std::cout << frequencyElements[2 * i] << ", " << frequencyElements[2 * i + 1] << std::endl;
}
// Create local Grid. For distributed computations, a MPI Communicator has to be provided
spfft::Grid grid(dimX, dimY, dimZ, dimX * dimY, SPFFT_PU_HOST, numThreads);
// Create transform.
// Note: A transform handle can be created without a grid if no resource sharing is desired.
spfft::Transform transform =
grid.create_transform(SPFFT_PU_HOST, SPFFT_TRANS_C2C, dimX, dimY, dimZ, localZLength,
numFrequencyElements, SPFFT_INDEX_TRIPLETS, indices.data());
///////////////////////////////////////////////////
// Option A: Reuse internal buffer for space domain
///////////////////////////////////////////////////
// Transform backward
transform.backward(frequencyElements.data(), SPFFT_PU_HOST);
// Get pointer to buffer with space domain data. Is guaranteed to be castable to a valid
// std::complex pointer. Using the internal working buffer as input / output can help reduce
// memory usage.
double* spaceDomainPtr = transform.space_domain_data(SPFFT_PU_HOST);
std::cout << std::endl << "After backward transform:" << std::endl;
for (int i = 0; i < transform.local_slice_size(); ++i) {
std::cout << spaceDomainPtr[2 * i] << ", " << spaceDomainPtr[2 * i + 1] << std::endl;
}
/////////////////////////////////////////////////
// Option B: Use external buffer for space domain
/////////////////////////////////////////////////
std::vector<double> spaceDomainVec(2 * transform.local_slice_size());
// Transform backward
transform.backward(frequencyElements.data(), spaceDomainVec.data());
// Transform forward
transform.forward(spaceDomainVec.data(), frequencyElements.data(), SPFFT_NO_SCALING);
// Note: In-place transforms are also supported by passing the same pointer for input and output.
std::cout << std::endl << "After forward transform (without normalization):" << std::endl;
for (int i = 0; i < numFrequencyElements; ++i) {
std::cout << frequencyElements[2 * i] << ", " << frequencyElements[2 * i + 1] << std::endl;
}
return 0;
}
C
-
.. code-block:: c
#include <stdio.h>
#include <stdlib.h>
#include "spfft/spfft.h"
int main(int argc, char** argv) {
const int dimX = 2;
const int dimY = 2;
const int dimZ = 2;
printf("Dimensions: x = %d, y = %d, z = %d\n\n", dimX, dimY, dimZ);
/* Use default OpenMP value */
const int numThreads = -1;
/* use all elements in this example. */
const int numFrequencyElements = dimX * dimY * dimZ;
/* Slice length in space domain. Equivalent to dimZ for non-distributed case. */
const int localZLength = dimZ;
/* interleaved complex numbers */
double* frequencyElements = (double*)malloc(2 * sizeof(double) * numFrequencyElements);
/* indices of frequency elements */
int* indices = (int*)malloc(3 * sizeof(int) * numFrequencyElements);
/* initialize frequency domain values and indices */
double initValue = 0.0;
size_t count = 0;
for (int xIndex = 0; xIndex < dimX; ++xIndex) {
for (int yIndex = 0; yIndex < dimY; ++yIndex) {
for (int zIndex = 0; zIndex < dimZ; ++zIndex, ++count) {
/* init values */
frequencyElements[2 * count] = initValue;
frequencyElements[2 * count + 1] = -initValue;
/* add index triplet for value */
indices[3 * count] = xIndex;
indices[3 * count + 1] = yIndex;
indices[3 * count + 2] = zIndex;
initValue += 1.0;
}
}
}
printf("Input:\n");
for (size_t i = 0; i < dimX * dimY * dimZ; ++i) {
printf("%f, %f\n", frequencyElements[2 * i], frequencyElements[2 * i + 1]);
}
printf("\n");
SpfftError status = 0;
/* create local Grid. For distributed computations, a MPI Communicator has to be provided */
SpfftGrid grid;
status = spfft_grid_create(&grid, dimX, dimY, dimZ, dimX * dimY, SPFFT_PU_HOST, numThreads);
if (status != SPFFT_SUCCESS) exit(status);
/* create transform */
SpfftTransform transform;
status = spfft_transform_create(&transform, grid, SPFFT_PU_HOST, SPFFT_TRANS_C2C, dimX, dimY,
dimZ, localZLength, numFrequencyElements, SPFFT_INDEX_TRIPLETS, indices);
if (status != SPFFT_SUCCESS) exit(status);
/* grid can be safely destroyed after creating all transforms */
status = spfft_grid_destroy(grid);
if (status != SPFFT_SUCCESS) exit(status);
/**************************************************
Option A: Reuse internal buffer for space domain
***************************************************/
/* Get pointer to buffer with space domain data. Is guaranteed to be castable to a valid
complex type pointer. Using the internal working buffer as input / output can help reduce
memory usage.*/
double* spaceDomain;
status = spfft_transform_get_space_domain(transform, SPFFT_PU_HOST, &spaceDomain);
if (status != SPFFT_SUCCESS) exit(status);
/* transform backward */
status = spfft_transform_backward(transform, frequencyElements, SPFFT_PU_HOST);
if (status != SPFFT_SUCCESS) exit(status);
printf("After backward transform:\n");
for (size_t i = 0; i < dimX * dimY * dimZ; ++i) {
printf("%f, %f\n", spaceDomain[2 * i], spaceDomain[2 * i + 1]);
}
printf("\n");
/**********************************************
Option B: Use external buffer for space domain
***********************************************/
spaceDomain = (double*)malloc(2 * sizeof(double) * dimX * dimY * dimZ);
/* transform backward */
status = spfft_transform_backward_ptr(transform, frequencyElements, spaceDomain);
if (status != SPFFT_SUCCESS) exit(status);
/* transform forward */
status = spfft_transform_forward_ptr(transform, spaceDomain, frequencyElements, SPFFT_NO_SCALING);
if (status != SPFFT_SUCCESS) exit(status);
/* Note: In-place transforms are also supported by passing the same pointer for input and output. */
printf("After forward transform (without normalization):\n");
for (size_t i = 0; i < dimX * dimY * dimZ; ++i) {
printf("%f, %f\n", frequencyElements[2 * i], frequencyElements[2 * i + 1]);
}
/* destroying the final transform will free the associated memory */
status = spfft_transform_destroy(transform);
if (status != SPFFT_SUCCESS) exit(status);
free(spaceDomain);
free(frequencyElements);
return 0;
}
Fortran
-------
.. code-block:: fortran
program main
use iso_c_binding
use spfft
implicit none
integer :: i, j, k, counter
integer, parameter :: dimX = 2
integer, parameter :: dimY = 2
integer, parameter :: dimZ = 2
integer, parameter :: maxNumLocalZColumns = dimX * dimY
integer, parameter :: processingUnit = 1
integer, parameter :: maxNumThreads = -1
type(c_ptr) :: grid = c_null_ptr
type(c_ptr) :: transform = c_null_ptr
integer :: errorCode = 0
integer, dimension(dimX * dimY * dimZ * 3):: indices = 0
complex(C_DOUBLE_COMPLEX), dimension(dimX * dimY * dimZ):: frequencyElements
real(C_DOUBLE), dimension(2*dimX * dimY * dimZ):: spaceDomain
complex(C_DOUBLE_COMPLEX), pointer :: spaceDomainPtr(:,:,:)
type(c_ptr) :: realValuesPtr
counter = 0
do k = 1, dimZ
do j = 1, dimY
do i = 1, dimX
frequencyElements(counter + 1) = cmplx(counter, -counter)
indices(counter * 3 + 1) = i - 1
indices(counter * 3 + 2) = j - 1
indices(counter * 3 + 3) = k - 1
counter = counter + 1
end do
end do
end do
! print input
print *, "Input:"
do i = 1, size(frequencyElements)
print *, frequencyElements(i)
end do
! create grid
errorCode = spfft_grid_create(grid, dimX, dimY, dimZ, maxNumLocalZColumns, processingUnit, maxNumThreads);
if (errorCode /= SPFFT_SUCCESS) error stop
! create transform
! Note: A transform handle can be created without a grid if no resource sharing is desired.
errorCode = spfft_transform_create(transform, grid, processingUnit, 0, dimX, dimY, dimZ, dimZ,&
size(frequencyElements), SPFFT_INDEX_TRIPLETS, indices)
if (errorCode /= SPFFT_SUCCESS) error stop
! grid can be safely destroyed after creating all required transforms
errorCode = spfft_grid_destroy(grid)
if (errorCode /= SPFFT_SUCCESS) error stop
! *************************************************
! Option A: Reuse internal buffer for space domain
! *************************************************
! set space domain array to use memory allocted by the library
errorCode = spfft_transform_get_space_domain(transform, processingUnit, realValuesPtr)
if (errorCode /= SPFFT_SUCCESS) error stop
! transform backward
errorCode = spfft_transform_backward(transform, frequencyElements, processingUnit)
if (errorCode /= SPFFT_SUCCESS) error stop
call c_f_pointer(realValuesPtr, spaceDomainPtr, [dimX,dimY,dimZ])
print *, ""
print *, "After backward transform:"
do k = 1, size(spaceDomainPtr, 3)
do j = 1, size(spaceDomainPtr, 2)
do i = 1, size(spaceDomainPtr, 1)
print *, spaceDomainPtr(i, j, k)
end do
end do
end do
! **********************************************
! Option B: Use external buffer for space domain
! **********************************************
! transform backward
errorCode = spfft_transform_backward_ptr(transform, frequencyElements, spaceDomain)
if (errorCode /= SPFFT_SUCCESS) error stop
! transform forward
errorCode = spfft_transform_forward_ptr(transform, spaceDomain, frequencyElements, SPFFT_NO_SCALING)
if (errorCode /= SPFFT_SUCCESS) error stop
print *, ""
print *, "After forward transform (without normalization):"
do i = 1, size(frequencyElements)
print *, frequencyElements(i)
end do
! destroying the final transform will free the associated memory
errorCode = spfft_transform_destroy(transform)
if (errorCode /= SPFFT_SUCCESS) error stop
end
|