1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
#include <fftw3.h>
#include <algorithm>
#include <memory>
#include <random>
#include <vector>
#include "gtest/gtest.h"
#include "gtest_mpi.hpp"
#include "memory/array_view_utility.hpp"
#include "memory/host_array.hpp"
#include "memory/host_array_view.hpp"
#include "mpi_util/mpi_communicator_handle.hpp"
#include "parameters/parameters.hpp"
#include "transpose/transpose_mpi_buffered_host.hpp"
#include "transpose/transpose_mpi_compact_buffered_host.hpp"
#include "transpose/transpose_mpi_unbuffered_host.hpp"
#include "util/common_types.hpp"
using namespace spfft;
class TransposeTest : public ::testing::Test {
protected:
void SetUp() override {
comm_ = MPICommunicatorHandle(MPI_COMM_WORLD);
SizeType dimX = 2 * comm_.size();
SizeType dimY = 3 * comm_.size();
SizeType dimZ = 4 * comm_.size();
// create memory space
array1_ = HostArray<std::complex<double>>(dimX * dimY * dimZ, std::complex<double>(1.0, 1.0));
array2_ = HostArray<std::complex<double>>(dimX * dimY * dimZ, std::complex<double>(1.0, 1.0));
fullArray_ = HostArray<std::complex<double>>(dimX * dimY * dimZ);
// plane split between ranks
const SizeType numLocalXYPlanes =
(dimZ / comm_.size()) + (comm_.rank() == comm_.size() - 1 ? dimZ % comm_.size() : 0);
const SizeType localXYPlaneOffset = (dimZ / comm_.size()) * comm_.rank();
// create all indices the same way (random generator must be equally initialized)
std::mt19937 sharedRandGen(42);
std::uniform_real_distribution<double> dis(0.0, 1.0);
std::uniform_int_distribution<int> rankSelector(0, comm_.size() - 1);
std::vector<int> indexTriplets;
indexTriplets.reserve(dimX * dimY * dimZ);
for (int x = 0; x < static_cast<int>(dimX); ++x) {
for (int y = 0; y < static_cast<int>(dimY); ++y) {
// create sparse z stick distribution
if (dis(sharedRandGen) < 0.5 &&
rankSelector(sharedRandGen) == static_cast<int>(comm_.size())) {
for (int z = 0; z < static_cast<int>(dimY); ++z) {
indexTriplets.push_back(x);
indexTriplets.push_back(y);
indexTriplets.push_back(z);
}
}
}
}
paramPtr_.reset(new Parameters(comm_, SPFFT_TRANS_C2C, dimX, dimY, dimZ, numLocalXYPlanes,
indexTriplets.size() / 3, SPFFT_INDEX_TRIPLETS,
indexTriplets.data()));
// initialize random z-stick data
auto fullView = create_3d_view(fullArray_, 0, dimX, dimY, dimZ);
auto freqView = create_2d_view(array1_, 0, paramPtr_->num_z_sticks(comm_.rank()), dimZ);
for (SizeType r = 0; r < comm_.size(); ++r) {
for (const auto& stickIdx : paramPtr_->z_stick_xy_indices(r)) {
const auto x = stickIdx / dimY;
const auto y = stickIdx - x * dimY;
for (SizeType z = 0; z < freqView.dim_inner(); ++z) {
fullView(x, y, z) = std::complex<double>(dis(sharedRandGen), dis(sharedRandGen));
}
}
}
// copy data into sticks
SizeType count = 0;
for (const auto& stickIdx : paramPtr_->z_stick_xy_indices(comm_.rank())) {
const auto x = stickIdx / dimY;
const auto y = stickIdx - x * dimY;
for (SizeType z = 0; z < freqView.dim_inner(); ++z) {
freqView(count, z) = fullView(x, y, z);
}
++count;
}
}
MPICommunicatorHandle comm_;
std::shared_ptr<Parameters> paramPtr_;
HostArray<std::complex<double>> array1_;
HostArray<std::complex<double>> array2_;
HostArray<std::complex<double>> fullArray_;
};
static void check_space_domain(const HostArrayView3D<std::complex<double>>& realView,
const HostArrayView3D<std::complex<double>>& fullView,
const SizeType planeOffset, const SizeType numLocalXYPlanes) {
for (SizeType z = 0; z < numLocalXYPlanes; ++z) {
for (SizeType x = 0; x < fullView.dim_outer(); ++x) {
for (SizeType y = 0; y < fullView.dim_mid(); ++y) {
EXPECT_EQ(realView(z, x, y).real(), fullView(x, y, z + planeOffset).real());
EXPECT_EQ(realView(z, x, y).imag(), fullView(x, y, z + planeOffset).imag());
}
}
}
}
static void check_freq_domain(const HostArrayView2D<std::complex<double>>& freqView,
const HostArrayView3D<std::complex<double>>& fullView,
HostArrayConstView1D<int> xyIndices) {
for (SizeType stickIdx = 0; stickIdx < freqView.dim_outer(); ++stickIdx) {
const auto x = xyIndices(stickIdx) / fullView.dim_outer();
const auto y = xyIndices(stickIdx) - x * fullView.dim_outer();
for (SizeType z = 0; z < freqView.dim_inner(); ++z) {
EXPECT_EQ(freqView(stickIdx, z).real(), fullView(x, y, z).real());
EXPECT_EQ(freqView(stickIdx, z).imag(), fullView(x, y, z).imag());
}
}
}
TEST_F(TransposeTest, Unbuffered) {
GTEST_MPI_GUARD
auto freqXYView = create_3d_view(array2_, 0, paramPtr_->num_xy_planes(comm_.rank()),
paramPtr_->dim_x(), paramPtr_->dim_y());
auto freqView =
create_2d_view(array1_, 0, paramPtr_->num_z_sticks(comm_.rank()), paramPtr_->dim_z());
auto fullView =
create_3d_view(fullArray_, 0, paramPtr_->dim_x(), paramPtr_->dim_y(), paramPtr_->dim_z());
TransposeMPIUnbufferedHost<double> transpose(paramPtr_, comm_, freqXYView, freqView);
transpose.backward();
check_space_domain(freqXYView, fullView, paramPtr_->xy_plane_offset(comm_.rank()),
paramPtr_->num_xy_planes(comm_.rank()));
transpose.forward();
check_freq_domain(freqView, fullView, paramPtr_->z_stick_xy_indices(comm_.rank()));
}
TEST_F(TransposeTest, CompactBuffered) {
GTEST_MPI_GUARD
auto freqXYView = create_3d_view(array2_, 0, paramPtr_->num_xy_planes(comm_.rank()),
paramPtr_->dim_x(), paramPtr_->dim_y());
auto freqView =
create_2d_view(array1_, 0, paramPtr_->num_z_sticks(comm_.rank()), paramPtr_->dim_z());
auto fullView =
create_3d_view(fullArray_, 0, paramPtr_->dim_x(), paramPtr_->dim_y(), paramPtr_->dim_z());
auto transposeBufferZ = create_1d_view(
array2_, 0, paramPtr_->total_num_xy_planes() * paramPtr_->num_z_sticks(comm_.rank()));
auto transposeBufferXY = create_1d_view(
array1_, 0, paramPtr_->total_num_z_sticks() * paramPtr_->num_xy_planes(comm_.rank()));
TransposeMPICompactBufferedHost<double, double> transpose(paramPtr_, comm_, freqXYView, freqView,
transposeBufferXY, transposeBufferZ);
transpose.backward();
check_space_domain(freqXYView, fullView, paramPtr_->xy_plane_offset(comm_.rank()),
paramPtr_->num_xy_planes(comm_.rank()));
transpose.forward();
check_freq_domain(freqView, fullView, paramPtr_->z_stick_xy_indices(comm_.rank()));
}
TEST_F(TransposeTest, Buffered) {
GTEST_MPI_GUARD
auto freqXYView = create_3d_view(array2_, 0, paramPtr_->num_xy_planes(comm_.rank()),
paramPtr_->dim_x(), paramPtr_->dim_y());
auto freqView =
create_2d_view(array1_, 0, paramPtr_->num_z_sticks(comm_.rank()), paramPtr_->dim_z());
auto fullView =
create_3d_view(fullArray_, 0, paramPtr_->dim_x(), paramPtr_->dim_y(), paramPtr_->dim_z());
auto transposeBufferZ = create_1d_view(
array2_, 0, paramPtr_->max_num_z_sticks() * paramPtr_->max_num_xy_planes() * comm_.size());
auto transposeBufferXY = create_1d_view(
array1_, 0, paramPtr_->max_num_z_sticks() * paramPtr_->max_num_xy_planes() * comm_.size());
TransposeMPIBufferedHost<double, double> transpose(paramPtr_, comm_, freqXYView, freqView,
transposeBufferXY, transposeBufferZ);
transpose.backward();
check_space_domain(freqXYView, fullView, paramPtr_->xy_plane_offset(comm_.rank()),
paramPtr_->num_xy_planes(comm_.rank()));
transpose.forward();
check_freq_domain(freqView, fullView, paramPtr_->z_stick_xy_indices(comm_.rank()));
}
|