1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
|
#!/usr/bin/env python
# This will (hopefully) be the code to extract symmetry operations
# from Hall symbols
import numpy as np
lattice_symbols = {
'P': [[0, 0, 0]],
'A': [[0, 0, 0], [0, 1./2, 1./2]],
'B': [[0, 0, 0], [1./2, 0, 1./2]],
'C': [[0, 0, 0], [1./2, 1./2, 0]],
'I': [[0, 0, 0], [1./2, 1./2, 1./2]],
'R': [[0, 0, 0], [2./3, 1./3, 1./3], [1./3, 2./3, 2./3]],
'H': [[0, 0, 0], [2./3, 1./3, 0], [1./3, 2./3, 0]],
'F': [[0, 0, 0], [0, 1./2, 1./2], [1./2, 0, 1./2], [1./2, 1./2, 0]],
'p': [[0, 0, 0]],
'c': [[0, 0, 0], [1./2, 1./2, 0]]
}
rotation_matrices = {
'1x': [[1, 0, 0],
[0, 1, 0],
[0, 0, 1]],
'1y': [[1, 0, 0],
[0, 1, 0],
[0, 0, 1]],
'1z': [[1, 0, 0],
[0, 1, 0],
[0, 0, 1]],
'2x': [[1, 0, 0],
[0, -1, 0],
[0, 0, -1]],
'2y': [[-1, 0, 0],
[0, 1, 0],
[0, 0, -1]],
'2z': [[-1, 0, 0],
[0, -1, 0],
[0, 0, 1]],
'3x': [[1, 0, 0],
[0, 0, -1],
[0, 1, -1]],
'3y': [[-1, 0, 1],
[0, 1, 0],
[-1, 0, 0]],
'3z': [[0, -1, 0],
[1, -1, 0],
[0, 0, 1]],
'4x': [[1, 0, 0],
[0, 0, -1],
[0, 1, 0]],
'4y': [[0, 0, 1],
[0, 1, 0],
[-1, 0, 0]],
'4z': [[0, -1, 0],
[1, 0, 0],
[0, 0, 1]],
'6x': [[1, 0, 0],
[0, 1, -1],
[0, 1, 0]],
'6y': [[0, 0, 1],
[0, 1, 0],
[-1, 0, 1]],
'6z': [[1, -1, 0],
[1, 0, 0],
[0, 0, 1]],
'2px': [[-1, 0, 0], # b-c
[0, 0, -1],
[0, -1, 0]],
'2ppx': [[-1, 0, 0], # b+c
[0, 0, 1],
[0, 1, 0]],
'2py': [[0, 0, -1], # a-c
[0, -1, 0],
[-1, 0, 0]],
'2ppy': [[0, 0, 1], # a+c
[0, -1, 0],
[1, 0, 0]],
'2pz': [[0, -1, 0], # a-b
[-1, 0, 0],
[0, 0, -1]],
'2ppz': [[0, 1, 0], # a+b
[1, 0, 0],
[0, 0, -1]],
'3*': [[0, 0, 1], # a+b+c
[1, 0, 0],
[0, 1, 0]]
}
translations = {
'a': [1./2, 0, 0],
'b': [0, 1./2, 0],
'c': [0, 0, 1./2],
'n': [1./2, 1./2, 1./2],
'u': [1./4, 0, 0],
'v': [0, 1./4, 0],
'w': [0, 0, 1./4],
'd': [1./4, 1./4, 1./4]
}
def read_spg_csv(filename="spg.csv"):
hall_symbols = []
for line in open(filename):
data = line.split(',')
hall_symbols.append([data[6], data[4]])
return hall_symbols
class HallSymbol:
def __init__(self, hall_symbol):
self.hall_symbol = hall_symbol.split()
self._decompose()
self._full_operations()
def get_LNV(self):
return self.L, self.N, self.V
def get_operations(self):
return self.G_R, self.G_T
def _full_operations(self):
gens_R, gens_T = self._generators()
E = np.array(rotation_matrices['1x'])
T0 = np.zeros(3, dtype=float)
if self.L[0] == '-':
G_R = [E, -E]
G_T = [T0, T0]
else:
G_R = [E]
G_T = [T0]
for r, t in zip(gens_R, gens_T):
G2_R, G2_T = self._get_group(r, t)
G_R, G_T = self._multiply_groups(G_R, G_T, G2_R, G2_T)
if self.V is not None:
G_T = self._change_of_basis(G_R, G_T)
G_R_with_centres = []
G_T_with_centred = []
for t in lattice_symbols[self.L[-1]]:
self._lattice_translation(G_R_with_centres,
G_T_with_centred,
G_R, G_T, t)
self.G_R = np.array(G_R_with_centres)
self.G_T = np.array(G_T_with_centred)
# Make sure the first operation has no rotation.
assert (self.G_R[0] == rotation_matrices['1x']).all()
# In Hall numbers 212, 213, 214, the first operation has non-zero
# translation. This translation is subtracted from all operations.
self.G_T -= self.G_T[0]
self.G_T -= np.rint(self.G_T)
cond = self.G_T < -1e-3
self.G_T[cond] += 1
def _change_of_basis(self, G_R, G_T):
G_T_new = []
v = self.V.astype(float) / 12
for r, t in zip(G_R, G_T):
G_T_new.append(-np.dot(r, v) + t + v)
return G_T_new
def _lattice_translation(self, G_R, G_T, G_R0, G_T0, translation):
for r, t in zip(G_R0, G_T0):
G_R.append(r.copy())
t_new = t + translation
G_T.append(t_new)
def _multiply_groups(self, G1_R, G1_T, G2_R, G2_T): # G2xG1
G_R = []
G_T = []
for r1, t1 in zip(G2_R, G2_T):
for r2, t2 in zip(G1_R, G1_T):
G_R.append(np.dot(r1, r2))
G_T.append(np.dot(r1, t2) + t1)
return G_R, G_T
def _get_group(self, r, t):
G_R = [r, ]
G_T = [t, ]
while not (G_R[-1] == rotation_matrices['1x']).all():
_r = np.dot(G_R[-1], r)
_t = np.dot(G_R[-1], t) + G_T[-1]
G_R.append(_r)
G_T.append(_t)
# Bring identity in front
_r = G_R.pop()
_t = G_T.pop()
G_R.insert(0, _r)
G_T.insert(0, _t)
return G_R, G_T
# def _get_group(self, r, t):
# G_R, G_T = self._get_group_recursive([np.array(r)], [np.array(t)])
# r = G_R.pop()
# t = G_T.pop()
# G_R.insert(0, r)
# G_T.insert(0, t)
# return G_R, G_T
# def _get_group_recursive(self, G_R, G_T):
# if not (G_R[-1] == rotation_matrices['1x']).all():
# r = np.dot(G_R[-1], G_R[0])
# t = np.dot(G_R[-1], G_T[0]) + G_T[-1]
# G_R.append(r)
# G_T.append(t)
# self._get_group_recursive(G_R, G_T)
# return G_R, G_T
def _generators(self):
R = []
T = []
for N in self.N:
rot = np.array(rotation_matrices[N[1] + N[2]])
if N[0] == '-':
rot = -rot
R.append(rot)
trans = np.zeros(3, dtype=float)
if N[3] is not None:
for t in N[3]:
if t in ('1', '2', '3', '4', '5'):
trans_screw = float(t) / int(N[1])
if N[2] == 'x':
trans[0] += trans_screw
elif N[2] == 'y':
trans[1] += trans_screw
elif N[2] == 'z':
trans[2] += trans_screw
else:
raise
else:
trans += np.array(translations[t])
T.append(trans)
return np.array(R, dtype=int), np.array(T, dtype=float)
def _rotation_matrix(self, str):
pass
# Decompose Hall symbol
# The following methods are used by _decompose().
def _decompose(self):
L = self.hall_symbol.pop(0)
N = []
V = None
precededN = 0
for i, ms in enumerate(self.hall_symbol):
if ms[0] == '(':
V = self._change_of_basis_symbol(self.hall_symbol[i + 2])
break
else:
N.append(self._matrix_symbol(ms, i, precededN))
precededN = int(N[-1][1][0])
self.L = L
self.N = N
self.V = V
def _matrix_symbol(self, N, i, precededN):
if N[0] == '-':
improper = '-'
N = N[1:]
else:
improper = None
N, R, A = self._rotation(N, i, precededN)
if len(N) > 0:
T = self._translation(N)
else:
T = None
return [improper, R, A, T]
def _rotation(self, N, i, precededN):
A = None
if N[0] == '2':
if len(N) > 1: # 2"
if N[1] == '=':
R = '2pp'
A = 'z'
N = N[2:]
if i == 1 and A is None:
if precededN == 2 or precededN == 4: # 2x
R = '2'
A = 'x'
N = N[1:]
elif precededN == 3 or precededN == 6: # 2'
R = '2p'
A = 'z'
N = N[1:]
elif N[0] == '3': # 3*
if i == 2:
R = '3'
A = '*'
N = N[1:]
elif len(N) > 1:
if N[1] == '*':
R = '3'
A = '*'
N = N[2:]
if A is None:
R = N[0]
N = N[1:]
if len(N) > 0 and i == 0:
N, A = self._principal_axis(N)
else:
A = 'z'
return N, R, A
def _principal_axis(self, N):
if N[0] == 'x':
return N[1:], 'x'
if N[0] == 'y':
return N[1:], 'y'
return N, 'z'
def _translation(self, N):
T = []
for i in range(len(N)):
T.append(N[i])
return T
def _change_of_basis_symbol(self, V):
return np.array([0, 0, int(V[:-1])])
def dump_operations(filename):
hall_symbols = read_spg_csv(filename)
count = 0
print(" 0 , /* dummy */")
for i in range(len(hall_symbols)):
hs = HallSymbol(hall_symbols[i][0])
G_R, G_T = hs.get_operations()
for j, (r, t) in enumerate(zip(G_R, G_T)):
count += 1
total = encode_symmetry(r, t)
r_enc_dec, t_enc_dec = decode_symmetry(total)
assert np.allclose(r_enc_dec, r.reshape(-1).tolist())
assert np.allclose(t_enc_dec, t * 12)
text = " %-8d," % (total)
text += " /* %4d (%3d) [" % (count, i + 1)
text += "%2d," * 9 % tuple(r_enc_dec)
text += "%2d,%2d,%2d] */" % tuple(t_enc_dec)
print(text)
def dump_operations_old(filename):
hall_symbols = read_spg_csv(filename)
count = 0
for i in range(530):
hs = HallSymbol(hall_symbols[i][0])
G_R, G_T = hs.get_operations()
for j, (r, t) in enumerate(zip(G_R, G_T)):
count += 1
text = "{%3d," % (i + 1)
text += "%2d,%2d,%2d,%2d,%2d,%2d,%2d,%2d,%2d," % tuple(r.ravel())
text += "%2d,%2d,%2d" % tuple((t * 12 + 0.1).astype(int))
text += "}, /* %4d */" % count
print(text)
# Ternary numerical system
def encode_symmetry(r, t):
r_encode = encode_rotation(r)
t_encode = encode_trans(t)
total = t_encode * 3 ** 9 + r_encode
return total
def encode_rotation(r):
r_sum = 0
for i, x in enumerate(r.ravel()):
r_sum += (x + 1) * 3**(8 - i)
return r_sum
def encode_trans(t):
x = np.rint(t * 12).astype(int)
t_encode = x[0] * 144 + x[1] * 12 + x[2]
return t_encode
def decode_symmetry(c):
r_encoded = c % (3 ** 9)
t_encoded = c // (3 ** 9)
r_aligned = decode_rotation(r_encoded) # (9, )
t_multiplied = decode_trans(t_encoded) # (3, )
return r_aligned, t_multiplied
def decode_rotation(c):
r = []
for i in range(8, -1, -1):
r.append((c % (3**(i+1))) // (3**i) - 1)
return np.array(r)
def decode_trans(c):
return c // 144, (c % 144) // 12, (c % 12)
def get_reference_to_operations(filename):
hall_symbols = read_spg_csv(filename)
count = 0
for i in range(len(hall_symbols)):
hs = HallSymbol(hall_symbols[i][0])
G_R, G_T = hs.get_operations()
print(" {%4d,%5d}, /* %3d */ " % (len(G_R), count + 1, i + 1))
count += len(G_R)
def watch_hs(filename, number):
print(" { 0, 0}, /* 0 */")
num = number - 1
hall_symbols = read_spg_csv(filename)
hs = HallSymbol(hall_symbols[num][0])
for char, vals in zip(('L', 'N', 'V'), hs.get_LNV()):
print("%s: %s" % (char, vals))
G_R, G_T = hs.get_operations()
print(number, ":", hall_symbols[num][0], "(", len(G_R), ")")
for i, (r, t) in enumerate(zip(G_R, G_T)):
print("-----", i + 1, "-----")
print(r, t)
if __name__ == '__main__':
"""
Usage
-----
To watch symmetry operations of a Hall symbol,
% python hall2operations.py --hs spg.csv 213
To dump symmetry operations of all Hall symbols that are copied to
spglb_database.c,
% python hall2operations.py --dump spg.csv
To dump address of symmetry operation data that is copied to
spglb_database.c,
% python hall2operations.py --reference spg.csv
"""
from optparse import OptionParser
parser = OptionParser()
parser.set_defaults(watch_hs=False,
dump_operations=False,
shift=None,
origin=None)
parser.add_option("--hs", dest="watch_hs",
action="store_true",
help="spg.csv [spg NUM]")
parser.add_option("--dump", dest="is_dump",
action="store_true")
parser.add_option("--reference", dest="is_reference",
action="store_true")
(options, args) = parser.parse_args()
if options.is_dump:
dump_operations(args[0])
if options.is_reference:
get_reference_to_operations(args[0])
elif options.watch_hs:
watch_hs(args[0], int(args[1]))
|