1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
from __future__ import annotations
import sys
import os
import subprocess
from tempfile import TemporaryDirectory
from string import Template
import json
from itertools import product
from joblib import Parallel, delayed
import numpy as np
from numpy.typing import NDArray
import click
from operation import MagneticOperation
from make_msgtype_db import get_type_of_msg
from magnetic_hall import MagneticHallSymbol
from transform import Transformation, get_standard_hall_number
from load import get_msg_numbers, get_spg_table, get_msg_table
sys.path.append('..')
from hall2operations import encode_symmetry
MAX_ENCODED = (3 ** 9) * (12 ** 3)
MAX_DENOMINATOR = 4
def enumerate_linears(max_element=1):
# Enumerate integer matrix with determinant=1
linears = []
for nums in product(range(-max_element, max_element + 1), repeat=9):
arr = np.array(nums).reshape(3, 3)
if np.isclose(np.linalg.det(arr), 1):
linears.append(arr.astype(int))
return linears
def enumerate_origin_shifts():
shifts = []
for shift in product([0, 1 / 4, 1 / 3, 1 / 2, 2 / 3, 3 / 4], repeat=3):
shifts.append(np.array(shift))
return shifts
def get_family_space_group(coset: list[MagneticOperation]) -> list[MagneticOperation]:
fsg = []
for g in coset:
fsg.append(MagneticOperation.from_linear_translation_time_reversal(
linear=g.linear,
translation=g.translation,
time_reversal=False,
))
return fsg
def get_maximal_space_subgroup(coset: list[MagneticOperation]) -> list[MagneticOperation]:
xsg = []
for g in coset:
if g.time_reversal:
continue
xsg.append(MagneticOperation.from_linear_translation_time_reversal(
linear=g.linear,
translation=g.translation,
time_reversal=False,
))
return xsg
def dump_operation(g: MagneticOperation) -> str:
if g.time_reversal:
raise ValueError("Only accept ordinary operation.")
ret = "[ "
for i in range(3):
ret += f"[{g._linear_tuple[i][0]}, {g._linear_tuple[i][1]}, {g._linear_tuple[i][2]}, {g._translation_tuple[i]}], "
ret += "[0, 0, 0, 1] ]"
return ret
def get_conjugator_type3(coset: list[MagneticOperation], linears, shifts) -> list[NDArray]:
fsg = set(get_family_space_group(coset))
pg = set([ops._linear_tuple for ops in fsg])
found = [set(coset)]
conjugators = []
for linear in linears:
t_no_shift = Transformation(linear=linear)
coset2_no_shift = t_no_shift.transform_coset(coset)
fsg2_no_shift = set(get_family_space_group(coset2_no_shift))
pg2_no_shift = set([ops._linear_tuple for ops in fsg2_no_shift])
# At least, point groups should be equal
if pg2_no_shift != pg:
continue
for origin_shift in shifts:
t = Transformation(linear=linear, origin_shift=origin_shift)
coset2 = t.transform_coset(coset)
fsg2 = set(get_family_space_group(coset2))
if fsg2 != fsg:
continue
coset2 = set(coset2)
if coset2 in found:
continue
found.append(coset2)
conjugators.append(t._augmented_matrix.tolist())
break
return conjugators
def get_conjugator_type4(coset: list[MagneticOperation], linears, shifts) -> list[NDArray]:
"""
Return conjugators s.t.
(P, p)^-1 * coset * (P, p)
is conjugate with `coset`.
"""
xsg = set(get_maximal_space_subgroup(coset))
pg = set([ops._linear_tuple for ops in xsg])
found = [set(coset)]
conjugators = []
for linear in linears:
t_no_shift = Transformation(linear=linear)
coset2_no_shift = t_no_shift.transform_coset(coset)
xsg2_no_shift = set(get_maximal_space_subgroup(coset2_no_shift))
pg2_no_shift = set([ops._linear_tuple for ops in xsg2_no_shift])
# At least, point groups should be equal
if pg2_no_shift != pg:
continue
for origin_shift in shifts:
t = Transformation(linear=linear, origin_shift=origin_shift)
coset2 = t.transform_coset(coset)
xsg2 = set(get_maximal_space_subgroup(coset2))
if xsg2 != xsg:
continue
coset2 = set(coset2)
if coset2 in found:
continue
found.append(coset2)
conjugators.append(t._augmented_matrix.tolist())
break
return conjugators
def get_conjugator(hall_number, spg_table, msg_table, mapping, linears, shifts):
data = {}
number = spg_table[hall_number]['number']
choice = spg_table[hall_number]['choice']
hall_number_std = get_standard_hall_number(number)
# Transformation from ITA standard settings to the other settings
trns = Transformation.to_standard(hall_number, choice, number).inverse()
for bns_number, mhall_symbol in msg_table[hall_number_std].items():
mhs = MagneticHallSymbol(mhall_symbol)
coset = trns.transform_coset(mhs.coset)
msg_type = get_type_of_msg(mhall_symbol)
uni_number = mapping[bns_number]
if msg_type == 3 and number >= 16:
# Triclinic and monoclinic seem to have no alternative setting for type-III
ret = get_conjugator_type3(coset, linears, shifts)
elif msg_type == 4:
ret = get_conjugator_type4(coset, linears, shifts)
else:
ret = []
data[(hall_number, uni_number)] = ret
# print(f"hall_number={hall_number}, uni_number={uni_number} ({msg_type}): {ret}")
return data
def dump_cpp(raw_all_datum):
all_datum = {}
for data in raw_all_datum:
conjugators = data['conjugators']
all_datum[(data['hall_number'], data['uni_number'])] = conjugators
# Check if symmetry encoding can be used
for g in conjugators:
assert np.max(np.abs(g)) <= 1
mapping = {uni_number: [] for uni_number in range(1, 1651 + 1)}
for (hall_number, uni_number), conjugators in all_datum.items():
# sorted by uni_number->hall_number
mapping[uni_number].append((hall_number, conjugators))
MAX_HALL_NUMBERS = 18
MAX_NUM_SETTINGS = 6
contents = []
contents.append(f"static const int alternative_transformations[][{MAX_HALL_NUMBERS}][{MAX_NUM_SETTINGS + 1}] = {{")
contents.append(" { { 0 } }, /* dummy */")
for uni_number in range(1, 1651 + 1):
hall_conjugators = mapping[uni_number]
assert len(hall_conjugators) <= MAX_HALL_NUMBERS
contents.append(" {")
for hall_number, conjugators in hall_conjugators:
line = " { "
for conj in conjugators:
conj = np.array(conj)
linear = np.around(conj[:-1, :-1]).astype(int)
assert np.isclose(np.linalg.det(linear), 1) # Sanity check
origin_shift = np.remainder(conj[:-1, -1], 1)
encoded = encode_symmetry(linear, origin_shift)
assert 0 <= encoded < MAX_ENCODED
line += f"{encoded}, "
line += f"0 }}, /* UNI={uni_number}, Hall={hall_number} */"
contents.append(line)
contents.append(" },")
contents.append("};")
for line in contents:
print(line)
@click.command()
@click.option('--output', default="conjugators.json")
@click.option('--dump', is_flag=True, default=False)
def main(output, dump):
if dump:
with open(output, 'r') as f:
all_datum = json.load(f)
dump_cpp(all_datum)
return
msg_table = get_msg_table()
spg_table = get_spg_table()
msg_numbers = get_msg_numbers()
mapping = {}
for _, bns_number, _, uni_number in msg_numbers:
mapping[bns_number] = uni_number
linears = enumerate_linears()
shifts = enumerate_origin_shifts()
ret = Parallel(n_jobs=-1, verbose=11)(delayed(get_conjugator)(hall_number, spg_table, msg_table, mapping, linears, shifts) for hall_number in range(1, 530 + 1))
all_datum = []
for r in ret:
for (hall_number, uni_number), val in r.items():
all_datum.append({
'hall_number': hall_number,
'uni_number': uni_number,
'conjugators': val,
})
with open(output, 'w') as f:
json.dump(all_datum, f, indent=2)
return all_datum
def debug():
linears = enumerate_linears()
shifts = enumerate_origin_shifts()
# Testing
# hall_symbol ="P 2ac 2ab'"
# hall_symbol = "P 2ac' 2ab -1'" # 61.435
# hall_symbol = "-P 2 2'" # 47.252
hall_symbol = "P 2' 2'" # 16.3
mhs = MagneticHallSymbol(hall_symbol)
ret = get_conjugator_type3(mhs.coset, linears, shifts)
print(ret)
# hall_symbol = "P 2ac 2ab 1c'"
# hall_symbol = "-C 2yc 1c'"
# mhs = MagneticHallSymbol(hall_symbol)
# ret = get_conjugator_type4(mhs.coset, linears)
# print(ret)
if __name__ == '__main__':
# debug()
main()
|