1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
from __future__ import annotations
from typing import List
from fractions import Fraction
from queue import Queue
import numpy as np
from numpy.typing import NDArray
# Maximal denominator of fractional coordinates of translations
DENOMINATOR = 12
class MagneticOperation:
ndim = 3
def __init__(self, augmented_matrix: NDArray, time_reversal: bool):
self._augmented_matrix = augmented_matrix
self._time_reversal = time_reversal
self._linear = self.augmented_matrix[:self.ndim, :self.ndim]
self._translation = self.augmented_matrix[:self.ndim, -1]
# For comparison, store linear and translations as tuple of integers
self._linear_tuple = ndarray_to_integer_tuple(
self.augmented_matrix[: self.ndim, : self.ndim]
)
self._translation_tuple = tuple(
Fraction(t).limit_denominator(DENOMINATOR)
for t in self.augmented_matrix[: self.ndim, -1]
)
def __eq__(self, other) -> bool:
if not isinstance(other, MagneticOperation):
return False
return (self._linear_tuple == other._linear_tuple) and (
self._translation_tuple == other._translation_tuple
) and (
self.time_reversal == other.time_reversal
)
def __hash__(self):
return hash((self._linear_tuple, self._translation_tuple, self.time_reversal))
def __mul__(self, rhs: MagneticOperation) -> MagneticOperation:
if not isinstance(rhs, MagneticOperation):
raise ValueError("undefined operation")
return MagneticOperation(
augmented_matrix=np.dot(self.augmented_matrix, rhs.augmented_matrix),
time_reversal=(self.time_reversal != rhs.time_reversal),
)
def inverse(self) -> MagneticOperation:
return MagneticOperation(
augmented_matrix=np.linalg.inv(self.augmented_matrix),
time_reversal=self.time_reversal,
)
@property
def linear(self) -> NDArray:
return self._linear
@property
def translation(self) -> NDArray:
return self._translation
@property
def time_reversal(self) -> bool:
return self._time_reversal
@property
def augmented_matrix(self) -> NDArray:
return self._augmented_matrix
@classmethod
def identity(cls) -> MagneticOperation:
return MagneticOperation.from_linear_translation_time_reversal()
@classmethod
def from_linear_translation_time_reversal(cls, linear=None, translation=None, time_reversal=False):
aug = np.zeros((cls.ndim + 1, cls.ndim + 1))
aug[-1, -1] = 1
if linear is None:
aug[:cls.ndim, :cls.ndim] = np.eye(cls.ndim)
else:
aug[:cls.ndim, :cls.ndim] = linear
if translation is not None:
aug[:cls.ndim, -1] = translation
return cls(aug, time_reversal)
def ndarray_to_integer_tuple(array: NDArray):
array_int = np.around(array).astype(int)
array_t = tuple(map(tuple, array_int))
return array_t
def remainder1_with_denominator(arr: NDArray, denominator: int) -> NDArray:
"""
return arr (mod 1)
"""
arr_int = np.around(arr * denominator).astype(int)
arr_int_mod = np.remainder(arr_int, denominator)
arr_mod = arr_int_mod / denominator
return arr_mod
def remainder1_symmetry_operation(
ops: MagneticOperation,
) -> MagneticOperation:
new_translation = remainder1_with_denominator(ops.translation, DENOMINATOR)
return MagneticOperation.from_linear_translation_time_reversal(
ops.linear, new_translation, ops.time_reversal
)
def traverse(
generators: List[MagneticOperation],
) -> List[MagneticOperation]:
"""
Generate all coset operations
"""
coset = set()
que = Queue() # type: ignore
identity = MagneticOperation.identity()
que.put(identity)
while not que.empty():
g = que.get()
if g in coset:
continue
coset.add(g)
for h in generators:
# Take modulus by translation subgroup
gh = remainder1_symmetry_operation(g * h)
que.put(gh)
# Put identity in the first
coset.remove(identity)
ret = [identity] + list(coset) # type: ignore
return ret
|