1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
# Spglib for Python
## Usage note
The python binding will first try to use your system installed version of spglib. This can
be controlled by setting an appropriate `LD_LIBRARY_PATH` (linux) or `DYLD_LIBRAY_PATH`
(macos) to the appropriate location of the `libsymspg.so` library file. If no suitable
version is found, it will default to using the bundled version.
## Installation
The main installation method we support are using [pip](#using-pip) and [conda](#using-conda).
Additionally, you can build and install [from source](#building-from-source).
The following pip and conda packages are made and maintained by
[Paweł T. Jochym](https://github.com/jochym), which is of great help
to keeping spglib handy and useful.
### Using pip
You can find all the spglib release versions on our [PyPI project page](https://pypi.org/project/spglib/).
To install it use the standard pip install commands:
```console
$ pip install spglib
```
### Using conda
We also maintain a [conda package](https://anaconda.org/conda-forge/spglib) which you
can install:
```console
$ conda install -c conda-forge spglib
```
### Building from source
For this section we are assuming you have cloned or downloaded the spglib source
code, and we are working from the top-level directory.
```console
$ git clone https://github.com/spglib/spglib
$ cd spglib
```
To manually install spglib you will need `cmake` with any make tool like
`make`, a C compiler (e.g. gcc, clang), and python development files (python-dev),
including numpy ones.
There are two ways of building spglib with the python bindings using either a
python-centric or cmake-centric approach
#### Python controlled
This is the primary installation method suitable for production that we use to
distribute the spglib package.
```console
$ pip install .
```
All build configurations are defined in the top-level `pyproject.toml` file.
We are using [scikit-build-core](https://github.com/scikit-build/scikit-build-core)
to build both the main spglib C library and the python apis. You can thus
further configure your local installation, e.g. to use OpenMP:
```console
$ pip install . --config-settings=cmake.define.SPGLIB_USE_OMP=ON
```
Currently `scikit-build-core` does not support editable installs for development.
#### Cmake controlled
This method is not suitable for production, and it is only meant for quick development
```console
$ cmake -B ./build -DSPGLIB_WITH_Fortran=ON
$ cmake --build ./build
$ cmake --install ./build
```
This will detect and install the python manually in the currently activated virtual
environment's site-package folder (e.g. `venv/lib64/python3.11/site-packages`),
otherwise defaulting to the system (`/usr/lib64/python3.11/site-packages`). You may
edit this location by passing a `Python_INSTALL_DIR` option.
## Test
You may execute the python tests locally from the git repository root:
```console
$ pytest
```
## How to import spglib module
**Change in version 1.9.0!**
For versions 1.9.x or later:
```{testsetup}
import spglib
```
For versions 1.8.x or before:
```python
from pyspglib import spglib
```
If the version is not sure:
```python
try:
import spglib as spg
except ImportError:
from pyspglib import spglib as spg
```
## Version number
In version 1.8.3 or later, the version number is obtained by
`spglib.__version__` or {func}`spglib.spglib.get_version`.
## Example
Examples are found in {path}`example/python_api` directory.
(py_variables)=
## Variables
(py_variables_crystal_structure)=
### Crystal structure (`cell`)
A crystal structure is given by a **tuple**. This tuple format is
supported at version 1.9.1 or later.
The tuple format is shown as follows. There are three or four elements
in the tuple: `cell = (lattice, positions, numbers)` or `cell = (lattice, positions, numbers, magmoms)` where `magmoms` represents
magnetic moments on atoms and is optional.
Lattice parameters `lattice` are given by a 3x3 matrix with floating
point values, where $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are
given as rows, which results in the transpose of the definition for
C-API ({ref}`variables_lattice`). Fractional atomic positions
`positions` are given by a Nx3 matrix with floating point values,
where N is the number of atoms. Numbers to distinguish atomic species
`numbers` are given by a list of N integers.
The magnetic moments `magmoms` can be specified with `get_magnetic_symmetry`.
`magmoms` is a list of N floating-point values for collinear cases and a list of Nx3 in **cartesian coordinates** for non-collinear cases.
```python
lattice = [[a_x, a_y, a_z],
[b_x, b_y, b_z],
[c_x, c_y, c_z]]
positions = [[a_1, b_1, c_1],
[a_2, b_2, c_2],
[a_3, b_3, c_3],
...]
numbers = [n_1, n_2, n_3, ...]
magmoms = [m_1, m_2, m_3, ...] # Works with get_magnetic_symmetry for a collinear case
# magmoms = [[m_1x, m_1y, m_1z], ...] # For a non-collinear case
```
For example, the crystal structure (`cell`) of L1$_{2}$-type AlNi$_{3}$ is:
```python
lattice = [[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0]]
positions = [[0.0, 0.0, 0.0], # Al
[0.5, 0.5, 0.0], # Ni
[0.0, 0.5, 0.5], # Ni
[0.5, 0.0, 0.5]] # Ni
numbers = [1, 2, 2, 2] # Al, Ni, Ni, Ni
```
```{note}
When a crystal structure is not properly given, `TypeError` will be raised.
For previous versions between 1.9.5 and 2.3.1, `None` will be returned for the invalid input.
```
### Symmetry tolerance (`symprec`, `angle_tolerance`, `mag_symprec`)
Distance tolerance in Cartesian coordinates to find crystal symmetry. For more
details, see {ref}`variables_symprec`, {ref}`variables_angle_tolerance`, and
{ref}`variables_mag_symprec`.
## API summary
### Version
- {py:func}`spglib.utils.get_version`
### Error
- {py:func}`spglib.error.get_error_message`
### Space-group symmetry search
- {py:func}`spglib.spg.get_symmetry`
- {py:func}`spglib.spg.get_symmetry_dataset`
### Space-group type search
- {py:func}`spglib.spg.get_spacegroup`
### Standardization and finding primitive cell
- {py:func}`spglib.cell.standardize_cell`
- {py:func}`spglib.cell.find_primitive`
- {py:func}`spglib.cell.refine_cell`
### Space-group dataset access
- {py:func}`spglib.spg.get_symmetry_from_database`
- {py:func}`spglib.spg.get_spacegroup_type`
- {py:func}`spglib.spg.get_spacegroup_type_from_symmetry`
### Magnetic symmetry
- {py:func}`spglib.msg.get_magnetic_symmetry`
- {py:func}`spglib.msg.get_magnetic_symmetry_dataset`
- {py:func}`spglib.msg.get_magnetic_spacegroup_type`
- {py:func}`spglib.msg.get_magnetic_spacegroup_type_from_symmetry`
- {py:func}`spglib.msg.get_magnetic_symmetry_from_database`
### Lattice reduction
- {py:func}`spglib.reduce.niggli_reduce`
- {py:func}`spglib.reduce.delaunay_reduce`
### Kpoints
- {py:func}`spglib.kpoints.get_ir_reciprocal_mesh`
```python
mapping, grid = get_ir_reciprocal_mesh(mesh, cell, is_shift=[0, 0, 0])
```
Irreducible k-points are obtained from a sampling mesh of k-points.
`mesh` is given by three integers by array and specifies mesh
numbers along reciprocal primitive axis. `is_shift` is given by the
three integers by array. When `is_shift` is set for each reciprocal
primitive axis, the mesh is shifted along the axis in half of adjacent
mesh points irrespective of the mesh numbers. When the value is not 0,
`is_shift` is set.
`mapping` and `grid` are returned. `grid` gives the mesh points in
fractional coordinates in reciprocal space. `mapping` gives mapping to
the irreducible k-point indices that are obtained by
```python
np.unique(mapping)
```
Here `np` means the numpy module. The grid point is accessed by
`grid[index]`.
When the search failed, `None` is returned.
An example is shown below:
```python
import numpy as np
import spglib
lattice = np.array([[0.0, 0.5, 0.5],
[0.5, 0.0, 0.5],
[0.5, 0.5, 0.0]]) * 5.4
positions = [[0.875, 0.875, 0.875],
[0.125, 0.125, 0.125]]
numbers= [1,] * 2
cell = (lattice, positions, numbers)
print(spglib.get_spacegroup(cell, symprec=1e-5))
mesh = [8, 8, 8]
#
# Gamma centre mesh
#
mapping, grid = spglib.get_ir_reciprocal_mesh(mesh, cell, is_shift=[0, 0, 0])
# All k-points and mapping to ir-grid points
for i, (ir_gp_id, gp) in enumerate(zip(mapping, grid)):
print("%3d ->%3d %s" % (i, ir_gp_id, gp.astype(float) / mesh))
# Irreducible k-points
print("Number of ir-kpoints: %d" % len(np.unique(mapping)))
print(grid[np.unique(mapping)] / np.array(mesh, dtype=float))
#
# With shift
#
mapping, grid = spglib.get_ir_reciprocal_mesh(mesh, cell, is_shift=[1, 1, 1])
# All k-points and mapping to ir-grid points
for i, (ir_gp_id, gp) in enumerate(zip(mapping, grid)):
print("%3d ->%3d %s" % (i, ir_gp_id, (gp + [0.5, 0.5, 0.5]) / mesh))
# Irreducible k-points
print("Number of ir-kpoints: %d" % len(np.unique(mapping)))
print((grid[np.unique(mapping)] + [0.5, 0.5, 0.5]) / mesh)
```
|