1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
|
// Copyright (C) 2025 Spglib team
// SPDX-License-Identifier: BSD-3-Clause
#include <spglib.h>
#include "py_bindings.h"
using namespace spglib;
auto unkown_error_msg = "Unknown Spglib error, please report upstream.";
class Spglib_classic_exception : public spglib::SpglibError {
static char const *_get_current_error_msg() {
auto msg = spg_get_error_message(spg_get_error_code());
if (msg == nullptr) msg = unkown_error_msg;
return msg;
}
public:
Spglib_classic_exception() : SpglibError{_get_current_error_msg()} {}
};
void try_throw_error() {
auto msg = spg_get_error_message(spg_get_error_code());
if (msg == nullptr) msg = unkown_error_msg;
throw spglib::SpglibError(msg);
}
Lattice::Lattice(array_double &&_array)
: array{std::forward<array_double>(_array)} {
if (array.ndim() != 2) throw SpglibError("Lattice ndim is not 2");
if (array.shape(0) != 3 || array.shape(1) != 3)
throw SpglibError("Lattice is not a 3x3 matrix");
}
double (*Lattice::data())[3] {
return reinterpret_cast<double (*)[3]>(array.mutable_data());
}
double const (*Lattice::data() const)[3] {
return reinterpret_cast<double const(*)[3]>(array.data());
}
Rotations::Rotations(array_int &&_array)
: array{std::forward<array_int>(_array)},
n_operations(static_cast<int>(array.shape(0))) {
if (array.ndim() != 3) throw SpglibError("Rotations ndim is not 3");
if (array.shape(1) != 3 || array.shape(2) != 3)
throw SpglibError("Lattice is not a nx3x3 matrix");
}
int (*Rotations::data())[3][3] {
return reinterpret_cast<int (*)[3][3]>(array.mutable_data());
}
int const (*Rotations::data() const)[3][3] {
return reinterpret_cast<int const(*)[3][3]>(array.data());
}
Translations::Translations(array_double &&_array)
: array{std::forward<array_double>(_array)},
n_operations(static_cast<int>(array.shape(0))) {
if (array.ndim() != 2) throw SpglibError("Rotations ndim is not 3");
if (array.shape(1) != 3) throw SpglibError("Lattice is not a nx3 matrix");
}
double (*Translations::data())[3] {
return reinterpret_cast<double (*)[3]>(array.mutable_data());
}
double const (*Translations::data() const)[3] {
return reinterpret_cast<double const(*)[3]>(array.data());
}
Symmetries::Symmetries(Rotations &&_rotations, Translations &&_translations)
: rotations{std::forward<Rotations>(_rotations)},
translations{std::forward<Translations>(_translations)},
n_operations{rotations.n_operations} {
if (rotations.n_operations != translations.n_operations)
throw SpglibError(
"Number of Rotations and Translations is inconsistent");
}
Positions::Positions(array_double &&_array)
: array{std::forward<array_double>(_array)},
n_atoms(static_cast<int>(array.shape(0))) {
if (array.ndim() != 2) throw SpglibError("Rotations ndim is not 2");
if (array.shape(1) != 3) throw SpglibError("Lattice is not a nx3 matrix");
}
double (*Positions::data())[3] {
return reinterpret_cast<double (*)[3]>(array.mutable_data());
}
double const (*Positions::data() const)[3] {
return reinterpret_cast<double const(*)[3]>(array.data());
}
AtomTypes::AtomTypes(array_int &&_array)
: array(std::forward<array_int>(_array)),
n_atoms(static_cast<int>(array.shape(0))) {
if (array.ndim() != 1) throw SpglibError("AtomTypes ndim is not 1");
}
int *AtomTypes::data() { return array.mutable_data(); }
int const *AtomTypes::data() const { return array.data(); }
Magmoms::Magmoms(array_double &&_array)
: array(std::forward<array_double>(_array)),
n_atoms(static_cast<int>(array.shape(0))) {
if (array.ndim() == 1) {
// Allowed
} else if (array.ndim() != 2) {
if (array.shape(1) != 3)
throw SpglibError("Lattice is not a nx3 matrix");
} else
throw SpglibError("Magmoms ndim is not 1 or 2");
}
double *Magmoms::data() { return array.mutable_data(); }
double const *Magmoms::data() const { return array.data(); }
Atoms::Atoms(Positions &&_positions, AtomTypes &&_types)
: positions{std::forward<Positions>(_positions)},
types{std::forward<AtomTypes>(_types)},
n_atoms(positions.n_atoms) {
if (positions.n_atoms != types.n_atoms)
throw SpglibError("Number of Positions and Types is inconsistent");
}
spglib::SpglibError::SpglibError(std::string_view _msg) : msg{_msg} {}
char const *spglib::SpglibError::what() const noexcept { return msg.c_str(); }
py::tuple spglib::version_tuple() {
py::tuple version(3);
version[0] = spg_get_major_version();
version[1] = spg_get_minor_version();
version[2] = spg_get_micro_version();
return version;
}
py::str spglib::version_string() { return spg_get_version(); }
py::str spglib::version_full() { return spg_get_version_full(); }
py::str spglib::commit() { return spg_get_commit(); }
static auto wyckoffs_index_to_letter =
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";
py::dict Dataset_to_dict(SpglibDataset *dataset) {
py::dict dict{};
dict["number"] = dataset->spacegroup_number;
dict["hall_number"] = dataset->hall_number;
dict["international"] = dataset->international_symbol;
dict["hall"] = dataset->hall_symbol;
dict["choice"] = dataset->choice;
{
array_double transformation_matrix({3, 3});
array_double origin_shift(3);
for (auto i = 0; i < 3; i++) {
for (auto j = 0; j < 3; j++)
transformation_matrix.mutable_at(i, j) =
dataset->transformation_matrix[i][j];
origin_shift.mutable_at(i) = dataset->origin_shift[i];
}
dict["transformation_matrix"] = transformation_matrix;
dict["origin_shift"] = origin_shift;
}
{
array_int rotations({dataset->n_operations, 3, 3});
array_double translations({dataset->n_operations, 3});
for (auto ind_oper = 0; ind_oper < dataset->n_operations; ind_oper++)
for (auto i = 0; i < 3; i++) {
for (auto j = 0; j < 3; j++)
rotations.mutable_at(ind_oper, i, j) =
dataset->rotations[ind_oper][i][j];
translations.mutable_at(ind_oper, i) =
dataset->translations[ind_oper][i];
}
dict["rotations"] = rotations;
dict["translations"] = translations;
}
{
py::list wyckoffs(dataset->n_atoms);
py::list site_symmetry_symbols(dataset->n_atoms);
array_int crystallographic_orbits(dataset->n_atoms);
array_int equiv_atoms(dataset->n_atoms);
array_double primitive_lattice({3, 3});
array_int mapping_to_primitive(dataset->n_atoms);
array_double std_lattice({3, 3});
for (auto ind_atom = 0; ind_atom < dataset->n_atoms; ind_atom++) {
wyckoffs[ind_atom] =
wyckoffs_index_to_letter[dataset->wyckoffs[ind_atom]];
site_symmetry_symbols[ind_atom] =
dataset->site_symmetry_symbols[ind_atom];
crystallographic_orbits.mutable_at(ind_atom) =
dataset->crystallographic_orbits[ind_atom];
equiv_atoms.mutable_at(ind_atom) =
dataset->equivalent_atoms[ind_atom];
mapping_to_primitive.mutable_at(ind_atom) =
dataset->mapping_to_primitive[ind_atom];
}
for (auto i = 0; i < 3; i++)
for (auto j = 0; j < 3; j++) {
// Transposed
primitive_lattice.mutable_at(i, j) =
dataset->primitive_lattice[j][i];
// Transposed
std_lattice.mutable_at(i, j) = dataset->std_lattice[j][i];
}
dict["wyckoffs"] = wyckoffs;
dict["site_symmetry_symbols"] = site_symmetry_symbols;
dict["crystallographic_orbits"] = crystallographic_orbits;
dict["equivalent_atoms"] = equiv_atoms;
dict["primitive_lattice"] = primitive_lattice;
dict["mapping_to_primitive"] = mapping_to_primitive;
dict["std_lattice"] = std_lattice;
}
{
array_int std_types(dataset->n_std_atoms);
array_double std_positions({dataset->n_std_atoms, 3});
array_double std_rotations({3, 3});
array_int std_mapping_to_primitive(dataset->n_std_atoms);
for (auto ind_atom = 0; ind_atom < dataset->n_std_atoms; ind_atom++) {
std_types.mutable_at(ind_atom) = dataset->std_types[ind_atom];
for (auto i = 0; i < 3; i++)
std_positions.mutable_at(ind_atom, i) =
dataset->std_positions[ind_atom][i];
std_mapping_to_primitive.mutable_at(ind_atom) =
dataset->std_mapping_to_primitive[ind_atom];
}
for (auto i = 0; i < 3; i++)
for (auto j = 0; j < 3; j++)
std_rotations.mutable_at(i, j) =
dataset->std_rotation_matrix[i][j];
dict["std_types"] = std_types;
dict["std_positions"] = std_positions;
dict["std_rotation_matrix"] = std_rotations;
dict["std_mapping_to_primitive"] = std_mapping_to_primitive;
}
dict["pointgroup"] = dataset->pointgroup_symbol;
return dict;
}
py::dict MagneticDataset_to_dict(SpglibMagneticDataset *dataset,
int tensor_rank) {
py::dict dict{};
dict["uni_number"] = dataset->uni_number;
dict["msg_type"] = dataset->msg_type;
dict["hall_number"] = dataset->hall_number;
dict["tensor_rank"] = dataset->tensor_rank;
dict["n_operations"] = dataset->n_operations;
{
array_int rotations({dataset->n_operations, 3, 3});
array_double translations({dataset->n_operations, 3});
array_int time_reversal({dataset->n_operations});
for (auto ind_oper = 0; ind_oper < dataset->n_operations; ind_oper++) {
for (auto i = 0; i < 3; i++) {
for (auto j = 0; j < 3; j++)
rotations.mutable_at(ind_oper, i, j) =
dataset->rotations[ind_oper][i][j];
translations.mutable_at(ind_oper, i) =
dataset->translations[ind_oper][i];
}
time_reversal.mutable_at(ind_oper) =
dataset->time_reversals[ind_oper];
}
dict["rotations"] = rotations;
dict["translations"] = translations;
dict["time_reversals"] = time_reversal;
}
dict["n_atoms"] = dataset->n_atoms;
{
array_int equiv_atoms(dataset->n_atoms);
for (auto ind_atom = 0; ind_atom < dataset->n_atoms; ind_atom++)
equiv_atoms.mutable_at(ind_atom) =
dataset->equivalent_atoms[ind_atom];
dict["equivalent_atoms"] = equiv_atoms;
}
{
array_double transformation_matrix({3, 3});
array_double origin_shift(3);
for (auto i = 0; i < 3; i++) {
for (auto j = 0; j < 3; j++)
transformation_matrix.mutable_at(i, j) =
dataset->transformation_matrix[i][j];
origin_shift.mutable_at(i) = dataset->origin_shift[i];
}
dict["transformation_matrix"] = transformation_matrix;
dict["origin_shift"] = origin_shift;
}
dict["n_std_atoms"] = dataset->n_std_atoms;
{
array_double std_lattice({3, 3});
for (auto i = 0; i < 3; i++)
for (auto j = 0; j < 3; j++)
// Transposed
std_lattice.mutable_at(i, j) = dataset->std_lattice[j][i];
dict["std_lattice"] = std_lattice;
}
{
array_int std_types(dataset->n_std_atoms);
array_double std_positions({dataset->n_std_atoms, 3});
for (auto ind_atom = 0; ind_atom < dataset->n_std_atoms; ind_atom++) {
std_types.mutable_at(ind_atom) = dataset->std_types[ind_atom];
for (auto i = 0; i < 3; i++)
std_positions.mutable_at(ind_atom, i) =
dataset->std_positions[ind_atom][i];
}
dict["std_types"] = std_types;
dict["std_positions"] = std_positions;
}
{
int n_tensors = dataset->n_std_atoms;
if (tensor_rank == 1) n_tensors *= 3;
array_double std_tensors{n_tensors};
for (auto ind_tensor = 0; ind_tensor < n_tensors; ind_tensor++)
std_tensors.mutable_at(ind_tensor) =
dataset->std_tensors[ind_tensor];
if (tensor_rank == 1) std_tensors = std_tensors.reshape({-1, 3});
dict["std_tensors"] = std_tensors;
}
{
array_double std_rotations({3, 3});
array_double primitive_lattice({3, 3});
for (auto i = 0; i < 3; i++)
for (auto j = 0; j < 3; j++) {
std_rotations.mutable_at(i, j) =
dataset->std_rotation_matrix[i][j];
// Transposed
primitive_lattice.mutable_at(i, j) =
dataset->primitive_lattice[j][i];
}
dict["std_rotation_matrix"] = std_rotations;
dict["primitive_lattice"] = primitive_lattice;
}
return dict;
}
py::dict SpacegroupType_to_dict(SpglibSpacegroupType &spg_type) {
py::dict dict{};
dict["number"] = spg_type.number;
dict["international_short"] = spg_type.international_short;
dict["international_full"] = spg_type.international_full;
dict["international"] = spg_type.international;
dict["schoenflies"] = spg_type.schoenflies;
dict["hall_number"] = spg_type.hall_number;
dict["hall_symbol"] = spg_type.hall_symbol;
dict["choice"] = spg_type.choice;
dict["pointgroup_international"] = spg_type.pointgroup_international;
dict["pointgroup_schoenflies"] = spg_type.pointgroup_schoenflies;
dict["arithmetic_crystal_class_number"] =
spg_type.arithmetic_crystal_class_number;
dict["arithmetic_crystal_class_symbol"] =
spg_type.arithmetic_crystal_class_symbol;
return dict;
}
py::dict MagneticSpacegroupType_to_dict(
SpglibMagneticSpacegroupType &spg_type) {
py::dict dict{};
dict["uni_number"] = spg_type.uni_number;
dict["litvin_number"] = spg_type.litvin_number;
dict["bns_number"] = spg_type.bns_number;
dict["og_number"] = spg_type.og_number;
dict["number"] = spg_type.number;
dict["type"] = spg_type.type;
return dict;
}
py::dict spglib::dataset(Lattice const &lattice, Positions const &positions,
AtomTypes const &atom_types, py::int_ hall_number,
py::float_ symprec, py::float_ angle_tolerance) {
auto dataset = spgat_get_dataset_with_hall_number(
lattice.data(), positions.data(), atom_types.data(), atom_types.n_atoms,
hall_number, symprec, angle_tolerance);
if (dataset == nullptr) throw Spglib_classic_exception();
auto array = Dataset_to_dict(dataset);
spg_free_dataset(dataset);
return array;
}
py::dict spglib::layer_dataset(Lattice const &lattice,
Positions const &positions,
AtomTypes const &atom_types,
py::int_ aperiodic_dir, py::float_ symprec) {
auto dataset = spg_get_layer_dataset(lattice.data(), positions.data(),
atom_types.data(), atom_types.n_atoms,
aperiodic_dir, symprec);
if (dataset == nullptr) throw Spglib_classic_exception();
auto array = Dataset_to_dict(dataset);
spg_free_dataset(dataset);
return array;
}
py::dict spglib::magnetic_dataset(Lattice const &lattice,
Positions const &positions,
AtomTypes const &atom_types,
array_double magmoms, py::int_ tensor_rank,
py::bool_ is_axial, py::float_ symprec,
py::float_ angle_tolerance,
py::float_ mag_symprec) {
auto dataset = spgms_get_magnetic_dataset(
lattice.data(), positions.data(), atom_types.data(), magmoms.data(),
tensor_rank, positions.n_atoms, is_axial * 1, symprec, angle_tolerance,
mag_symprec);
if (dataset == nullptr) throw Spglib_classic_exception();
switch (int(tensor_rank)) {
case 0:
case 1:
break;
default:
spg_free_magnetic_dataset(dataset);
auto msg = std::string("Unexpected tensor_rank value: ");
msg += tensor_rank;
throw SpglibError(msg);
}
auto array = MagneticDataset_to_dict(dataset, tensor_rank);
spg_free_magnetic_dataset(dataset);
return array;
}
py::dict spglib::spacegroup_type(py::int_ hall_number) {
auto spg_type = spg_get_spacegroup_type(hall_number);
if (spg_type.number == 0) throw Spglib_classic_exception();
return SpacegroupType_to_dict(spg_type);
}
py::dict spglib::spacegroup_type_from_symmetry(Rotations const &rotations,
Translations const &translations,
Lattice const &lattice,
py::float_ symprec) {
auto spg_type = spg_get_spacegroup_type_from_symmetry(
rotations.data(), translations.data(), rotations.n_operations,
lattice.data(), symprec);
if (spg_type.number == 0) throw Spglib_classic_exception();
return SpacegroupType_to_dict(spg_type);
}
py::dict spglib::magnetic_spacegroup_type(py::int_ uni_number) {
auto msg_type = spg_get_magnetic_spacegroup_type(uni_number);
if (msg_type.number == 0) throw Spglib_classic_exception();
return MagneticSpacegroupType_to_dict(msg_type);
}
py::dict spglib::magnetic_spacegroup_type_from_symmetry(
Rotations const &rotations, Translations const &translations,
array_int time_reversals, Lattice const &lattice, py::float_ symprec) {
auto msg_type = spg_get_magnetic_spacegroup_type_from_symmetry(
rotations.data(), translations.data(), (int *)time_reversals.data(),
time_reversals.size(), lattice.data(), symprec);
if (msg_type.number == 0) throw Spglib_classic_exception();
return MagneticSpacegroupType_to_dict(msg_type);
}
py::int_ spglib::symmetry_from_database(Rotations &rotations,
Translations &translations,
py::int_ hall_number) {
if (rotations.n_operations < 192 || translations.n_operations < 192)
throw Spglib_classic_exception();
auto val = spg_get_symmetry_from_database(rotations.data(),
translations.data(), hall_number);
if (val == 0) throw Spglib_classic_exception();
return val;
}
py::int_ spglib::magnetic_symmetry_from_database(Rotations &rotations,
Translations &translations,
array_int time_reversals,
py::int_ uni_number,
py::int_ hall_number) {
if (rotations.n_operations < 384 || translations.n_operations < 384 ||
time_reversals.shape(0) < 384)
throw Spglib_classic_exception();
auto val = spg_get_magnetic_symmetry_from_database(
rotations.data(), translations.data(), (int *)time_reversals.data(),
uni_number, hall_number);
if (val == 0) throw Spglib_classic_exception();
return val;
}
py::tuple spglib::pointgroup(array_int rotations) {
char symbol[6];
array_int transf_matrix({3, 3});
auto ptg_num =
spg_get_pointgroup(symbol, (int (*)[3])transf_matrix.mutable_data(),
(int (*)[3][3])rotations.data(), rotations.shape(0));
if (ptg_num == 0) throw Spglib_classic_exception();
py::list array(3);
array[0] = symbol;
array[1] = ptg_num;
array[2] = transf_matrix;
return array;
}
py::int_ spglib::standardize_cell(Lattice &lattice, Positions &positions,
array_int atom_types, py::int_ num_atom,
py::int_ to_primative, py::int_ no_idealize,
py::float_ symprec,
py::float_ angle_tolerance) {
auto val = spgat_standardize_cell(
lattice.data(), positions.data(), atom_types.mutable_data(), num_atom,
to_primative, no_idealize, symprec, angle_tolerance);
if (val == 0) throw Spglib_classic_exception();
return val;
}
py::int_ spglib::refine_cell(Lattice &lattice, Positions &positions,
AtomTypes &atom_types, py::int_ num_atom,
py::float_ symprec, py::float_ angle_tolerance) {
auto val =
spgat_refine_cell(lattice.data(), positions.data(), atom_types.data(),
num_atom, symprec, angle_tolerance);
if (val > 0)
// Valid value
return val;
throw Spglib_classic_exception();
}
py::int_ spglib::symmetry(Rotations &rotations, Translations &translations,
Lattice const &lattice, Positions const &positions,
AtomTypes const &atom_types, py::float_ symprec,
py::float_ angle_tolerance) {
auto val = spgat_get_symmetry(rotations.data(), translations.data(),
rotations.n_operations, lattice.data(),
positions.data(), atom_types.data(),
atom_types.n_atoms, symprec, angle_tolerance);
if (val == 0) throw Spglib_classic_exception();
return val;
}
py::int_ spglib::symmetry_with_collinear_spin(
Rotations &rotations, Translations &translations, array_int equiv_atoms,
Lattice const &lattice, Positions const &positions,
AtomTypes const &atom_types, array_double magmoms, py::float_ symprec,
py::float_ angle_tolerance) {
auto val = spgat_get_symmetry_with_collinear_spin(
rotations.data(), translations.data(), equiv_atoms.mutable_data(),
equiv_atoms.size(), lattice.data(), positions.data(), atom_types.data(),
magmoms.data(), atom_types.n_atoms, symprec, angle_tolerance);
if (val == 0) throw Spglib_classic_exception();
return val;
}
py::int_ spglib::symmetry_with_site_tensors(
Rotations &rotations, Translations &translations, array_int equiv_atoms,
Lattice &primitive_lattice, array_int spin_flips, Lattice const &lattice,
Positions const &positions, AtomTypes const &atom_types,
array_double tensors, py::int_ with_time_reversal, py::int_ is_axial,
py::float_ symprec, py::float_ angle_tolerance, py::float_ mag_symprec) {
int tensor_rank = tensors.ndim() - 1;
int *spin_flips_ptr;
switch (tensor_rank) {
case 0:
case 1:
spin_flips_ptr = spin_flips.mutable_data();
break;
default:
spin_flips_ptr = nullptr;
}
auto val = spgms_get_symmetry_with_site_tensors(
rotations.data(), translations.data(), equiv_atoms.mutable_data(),
primitive_lattice.data(), spin_flips_ptr, rotations.n_operations,
lattice.data(), positions.data(), atom_types.data(), tensors.data(),
tensor_rank, atom_types.n_atoms, with_time_reversal, is_axial, symprec,
angle_tolerance, mag_symprec);
if (val == 0) throw Spglib_classic_exception();
return val;
}
py::int_ spglib::primitive(Lattice &lattice, Positions &positions,
AtomTypes &atom_types, py::float_ symprec,
py::float_ angle_tolerance) {
auto val = spgat_find_primitive(lattice.data(), positions.data(),
atom_types.data(), atom_types.n_atoms,
symprec, angle_tolerance);
if (val == 0) throw Spglib_classic_exception();
return val;
}
py::int_ spglib::grid_point_from_address(array_int grid_address,
array_int mesh) {
// TODO: Throw if input is unexpected
// Otherwise does not seem to have errors associated.
// Also this is not generally exposed, maybe get rid of it?
return spg_get_dense_grid_point_from_address(grid_address.data(),
mesh.data());
}
py::int_ spglib::ir_reciprocal_mesh(
array_int grid_address, array_int grid_mapping_table, array_int mesh,
array_int is_shift, py::int_ is_time_reversal, Lattice const &lattice,
Positions const &positions, AtomTypes const &atom_types,
py::float_ symprec) {
auto val = spg_get_ir_reciprocal_mesh(
(int (*)[3])grid_address.mutable_data(),
grid_mapping_table.mutable_data(), mesh.data(), is_shift.data(),
is_time_reversal, lattice.data(), positions.data(), atom_types.data(),
atom_types.n_atoms, symprec);
if (val > 0)
// Valid value
return val;
throw Spglib_classic_exception();
}
py::int_ spglib::ir_reciprocal_mesh(
array_int grid_address, array_size_t grid_mapping_table, array_int mesh,
array_int is_shift, py::int_ is_time_reversal, Lattice const &lattice,
Positions const &positions, AtomTypes const &atom_types,
py::float_ symprec) {
auto val = spg_get_dense_ir_reciprocal_mesh(
(int (*)[3])grid_address.mutable_data(),
grid_mapping_table.mutable_data(), mesh.data(), is_shift.data(),
is_time_reversal, lattice.data(), positions.data(), atom_types.data(),
atom_types.n_atoms, symprec);
if (val == 0) throw Spglib_classic_exception();
return val;
}
py::int_ spglib::stabilized_reciprocal_mesh(array_int grid_address,
array_int grid_mapping_table,
array_int mesh, array_int is_shift,
py::int_ is_time_reversal,
Rotations const &rotations,
array_double qpoints) {
auto val = spg_get_stabilized_reciprocal_mesh(
(int (*)[3])grid_address.mutable_data(),
grid_mapping_table.mutable_data(), mesh.data(), is_shift.data(),
is_time_reversal, rotations.n_operations, rotations.data(),
qpoints.shape(0), (double (*)[3])qpoints.data());
if (val > 0)
// Valid value, did not error
return val;
throw Spglib_classic_exception();
}
py::int_ spglib::stabilized_reciprocal_mesh(array_int grid_address,
array_size_t grid_mapping_table,
array_int mesh, array_int is_shift,
py::int_ is_time_reversal,
Rotations const &rotations,
array_double qpoints) {
auto val = spg_get_dense_stabilized_reciprocal_mesh(
(int (*)[3])grid_address.mutable_data(),
grid_mapping_table.mutable_data(), mesh.data(), is_shift.data(),
is_time_reversal, rotations.n_operations, rotations.data(),
qpoints.shape(0), (double (*)[3])qpoints.data());
if (val == 0) throw Spglib_classic_exception();
return val;
}
void spglib::grid_points_by_rotations(array_size_t rot_grid_points,
array_int address_orig,
Rotations const &rot_reciprocal,
array_int mesh, array_int is_shift) {
// TODO: Throw if input is unexpected
// Otherwise does not seem to have errors associated.
spg_get_dense_grid_points_by_rotations(
rot_grid_points.mutable_data(), address_orig.data(),
rot_reciprocal.n_operations, rot_reciprocal.data(), mesh.data(),
is_shift.data());
}
void spglib::BZ_grid_points_by_rotations(array_size_t rot_grid_points,
array_int address_orig,
Rotations const &rot_reciprocal,
array_int mesh, array_int is_shift,
array_size_t bz_map) {
// TODO: Throw if input is unexpected
// Otherwise does not seem to have errors associated.
spg_get_dense_BZ_grid_points_by_rotations(
rot_grid_points.mutable_data(), address_orig.data(),
rot_reciprocal.n_operations, rot_reciprocal.data(), mesh.data(),
is_shift.data(), bz_map.data());
}
py::int_ spglib::BZ_grid_address(array_int bz_grid_address, array_size_t bz_map,
array_int grid_address, array_int mesh,
Lattice const &reciprocal_lattice,
array_int is_shift) {
// TODO: Throw if input is unexpected
// Otherwise does not seem to have errors associated.
return spg_relocate_dense_BZ_grid_address(
(int (*)[3])bz_grid_address.mutable_data(), bz_map.mutable_data(),
(int (*)[3])grid_address.data(), mesh.data(), reciprocal_lattice.data(),
is_shift.data());
}
py::int_ spglib::delaunay_reduce(Lattice &lattice, py::float_ symprec) {
auto val = spg_delaunay_reduce(lattice.data(), symprec);
if (val == 0) throw Spglib_classic_exception();
return val;
}
py::int_ spglib::niggli_reduce(Lattice &lattice, py::float_ eps) {
auto val = spg_niggli_reduce(lattice.data(), eps);
if (val == 0) throw Spglib_classic_exception();
return val;
}
py::int_ spglib::hall_number_from_symmetry(Rotations const &rotations,
Translations const &translations,
py::float_ symprec) {
auto val = spg_get_hall_number_from_symmetry(
rotations.data(), translations.data(), rotations.n_operations, symprec);
if (val == 0) throw Spglib_classic_exception();
return val;
}
|