File: test_site_tensors.py

package info (click to toggle)
spglib 2.7.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 14,180 kB
  • sloc: ansic: 125,066; python: 7,717; cpp: 2,197; f90: 2,143; ruby: 792; makefile: 22; sh: 18
file content (141 lines) | stat: -rw-r--r-- 5,010 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import unittest

import numpy as np
from spglib import get_magnetic_symmetry, get_symmetry


class TestGetOperationsWithSiteTensors(unittest.TestCase):
    def setUp(self):
        lattice = [[0, 2, 2], [2, 0, 2], [2, 2, 0]]
        positions = [[0, 0, 0]]
        numbers = [1]
        magmoms = [[0, 0, 1]]
        self._cell_Ni = (lattice, positions, numbers, magmoms)

        # CrCl2, adapted from Example 1 in Tutorial-MAXMAGN:
        # http://webbdcrista1.ehu.es/cryst/tutorials/Tutorial-MAXMAGN.pdf
        lattice = [
            [6.8257, 0, 0],
            [0, 6.2139, 0],
            [0, 0, 3.4947],
        ]
        positions = [
            # Cr (2a), site symmetry: < -x,-y,-z; -x,-y,z >
            [0, 0, 0],
            [0.5, 0.5, 0.5],
            # Cl (4g)
            [0.3586, 0.2893, 0],
            [-0.3586, -0.2893, 0],
            [-0.3586 + 0.5, 0.2893 + 0.5, 0.5],
            [0.3586 + 0.5, -0.2893 + 0.5, 0.5],
        ]
        numbers = [1, 1, 2, 2, 2, 2]
        self._cell_CrCl2 = (lattice, positions, numbers)

    def tearDown(self):
        pass

    def test_get_symmetry_non_collinear(self):
        sym = get_magnetic_symmetry(self._cell_Ni, with_time_reversal=False)
        self.assertEqual(8, len(sym["rotations"]))
        np.testing.assert_equal(sym["equivalent_atoms"], [0])

        # type-III magnetic space group
        sym2 = get_magnetic_symmetry(self._cell_Ni)
        self.assertEqual(16, len(sym2["rotations"]))
        self.assertEqual(16, len(sym2["translations"]))
        self.assertEqual(16, len(sym2["time_reversals"]))

    def test_get_symmetry_vectors(self):
        # Space group without magnetic moments
        # Pnnm (58), "-P 2 2n" (hall_number=275)
        # Generators: -x,-y,-z; -x,-y,z; -x+1/2,y+1/2,-z+1/2
        sym = get_symmetry(self._cell_CrCl2)
        self.assertEqual(8, len(sym["rotations"]))

        # Type-I magnetic space group (MSG)
        magmoms1 = [
            [0, 0, 1],
            [0, 0, -1],
            [0, 0, 0],
            [0, 0, 0],
            [0, 0, 0],
            [0, 0, 0],
        ]
        sym1 = get_magnetic_symmetry(self._cell_CrCl2 + (magmoms1,))
        self.assertTrue(np.allclose(sym1["time_reversals"], False))
        self.assertTrue(np.allclose(sym1["rotations"], sym["rotations"]))
        self.assertTrue(np.allclose(sym1["translations"], sym["translations"]))

        # Type-II MSG
        # 58.394, -P 2 2n 1'
        magmoms2 = [
            [0, 0, 0],
            [0, 0, 0],
            [0, 0, 0],
            [0, 0, 0],
            [0, 0, 0],
            [0, 0, 0],
        ]
        sym2 = get_magnetic_symmetry(self._cell_CrCl2 + (magmoms2,))
        self.assertEqual(len(sym2["rotations"]), 16)
        self.assertEqual(np.sum(sym2["time_reversals"]), 8)

        sym2_gray = get_magnetic_symmetry(
            self._cell_CrCl2 + (magmoms2,),
            with_time_reversal=False,
        )
        self.assertTrue(np.allclose(sym2_gray["rotations"], sym["rotations"]))
        self.assertTrue(np.allclose(sym2_gray["translations"], sym["translations"]))

        # Type-III MSG
        # 58.397: -P 2 2n'
        # Generators: -x,-y,-z; -x,-y,z; -x+1/2,y+1/2,-z+1/2'
        magmoms3 = [
            [0, 0, 1],
            [0, 0, 1],
            [0, 0, 0],
            [0, 0, 0],
            [0, 0, 0],
            [0, 0, 0],
        ]
        sym3 = get_magnetic_symmetry(self._cell_CrCl2 + (magmoms3,))
        self.assertTrue(np.allclose(sym3["rotations"], sym["rotations"]))
        self.assertTrue(np.allclose(sym3["translations"], sym["translations"]))
        self.assertTrue(np.sum(sym3["time_reversals"]), 4)

        # Type-IV MSG
        # https://github.com/spglib/spglib/issues/150
        # -P 2 2 -> -P 2 2 1c' (47.254)
        lat = [[1, 0, 0], [0, 2, 0], [0, 0, 3]]
        pos = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.5]]
        num = [0, 0]
        magmom = [[0.0, 0.0, 1.0], [0.0, 0.0, -1.0]]
        sym_gray = get_symmetry((lat, pos, num))
        sym4 = get_magnetic_symmetry((lat, pos, num, magmom))
        self.assertTrue(np.allclose(sym_gray["rotations"], sym4["rotations"]))
        self.assertTrue(np.allclose(sym_gray["translations"], sym4["translations"]))
        self.assertTrue(sym4["time_reversals"].shape[0], 16)
        self.assertTrue(np.sum(sym4["time_reversals"]), 8)
        self.assertTrue(np.allclose(sym4["primitive_lattice"], lat))

    def test_with_distorted_magmom(self):
        magmoms = [
            [0, 0, 1.001],
            [0, 0, 0.999],
            [0, 0, 0],
            [0, 0, 0],
            [0, 0, 0],
            [0, 0, 0],
        ]
        sym = get_magnetic_symmetry(self._cell_CrCl2 + (magmoms,), mag_symprec=1e-2)
        expect = [0, 0, 2, 2, 2, 2]
        assert np.allclose(sym["equivalent_atoms"], expect)


if __name__ == "__main__":
    suite = unittest.TestLoader().loadTestsFromTestCase(
        TestGetOperationsWithSiteTensors,
    )
    unittest.TextTestRunner(verbosity=2).run(suite)
    # unittest.main()