File: test_spglib.py

package info (click to toggle)
spglib 2.7.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 14,180 kB
  • sloc: ansic: 125,066; python: 7,717; cpp: 2,197; f90: 2,143; ruby: 792; makefile: 22; sh: 18
file content (314 lines) | stat: -rw-r--r-- 9,629 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
from __future__ import annotations

import pathlib
from typing import TYPE_CHECKING

import numpy as np
from spglib import (
    MagneticSpaceGroupType,
    find_primitive,
    get_magnetic_spacegroup_type,
    get_magnetic_symmetry_from_database,
    get_pointgroup,
    get_spacegroup,
    get_spacegroup_type,
    get_symmetry_dataset,
    standardize_cell,
)

if TYPE_CHECKING:
    from conftest import CrystalData

# fmt: off
spg_to_hall = [
    1,   2,   3,   6,   9,   18,  21,  30,  39,  57,  # noqa: E241
    60,  63,  72,  81,  90,  108, 109, 112, 115, 116,  # noqa: E241
    119, 122, 123, 124, 125, 128, 134, 137, 143, 149,
    155, 161, 164, 170, 173, 176, 182, 185, 191, 197,
    203, 209, 212, 215, 218, 221, 227, 228, 230, 233,
    239, 245, 251, 257, 263, 266, 269, 275, 278, 284,
    290, 292, 298, 304, 310, 313, 316, 322, 334, 335,
    337, 338, 341, 343, 349, 350, 351, 352, 353, 354,
    355, 356, 357, 358, 359, 361, 363, 364, 366, 367,
    368, 369, 370, 371, 372, 373, 374, 375, 376, 377,
    378, 379, 380, 381, 382, 383, 384, 385, 386, 387,
    388, 389, 390, 391, 392, 393, 394, 395, 396, 397,
    398, 399, 400, 401, 402, 404, 406, 407, 408, 410,
    412, 413, 414, 416, 418, 419, 420, 422, 424, 425,
    426, 428, 430, 431, 432, 433, 435, 436, 438, 439,
    440, 441, 442, 443, 444, 446, 447, 448, 449, 450,
    452, 454, 455, 456, 457, 458, 460, 462, 463, 464,
    465, 466, 467, 468, 469, 470, 471, 472, 473, 474,
    475, 476, 477, 478, 479, 480, 481, 482, 483, 484,
    485, 486, 487, 488, 489, 490, 491, 492, 493, 494,
    495, 497, 498, 500, 501, 502, 503, 504, 505, 506,
    507, 508, 509, 510, 511, 512, 513, 514, 515, 516,
    517, 518, 520, 521, 523, 524, 525, 527, 529, 530, 531]
# fmt: on


def get_spgnum(name: str) -> int:
    """Get number reference from filename."""
    file_name = pathlib.Path(name).stem
    spgnum = int(file_name.split("_")[1])
    return spgnum


def test_get_symmetry_dataset(crystal_data: CrystalData):
    symprec = 1e-5
    dataset = get_symmetry_dataset(crystal_data.cell, symprec=symprec)
    spgnum = get_spgnum(crystal_data.name)
    assert dataset.number == spgnum

    for i in range(spg_to_hall[spgnum - 1], spg_to_hall[spgnum]):
        dataset_with_hall_number = get_symmetry_dataset(
            crystal_data.cell, hall_number=i, symprec=symprec
        )
        assert dataset_with_hall_number.hall_number == i
        spg_type = get_spacegroup_type(dataset_with_hall_number.hall_number)
        assert dataset_with_hall_number.international == spg_type.international_short
        assert dataset_with_hall_number.hall == spg_type.hall_symbol
        assert dataset_with_hall_number.choice == spg_type.choice
        assert dataset_with_hall_number.pointgroup == spg_type.pointgroup_international

    wyckoffs = dataset.wyckoffs
    assert wyckoffs == crystal_data.ref["wyckoffs"]


def test_standardize_cell_and_pointgroup(crystal_data: CrystalData):
    spgnum = get_spgnum(crystal_data.name)
    symprec = 1e-5
    std_cell = standardize_cell(
        crystal_data.cell,
        to_primitive=False,
        no_idealize=True,
        symprec=symprec,
    )
    dataset = get_symmetry_dataset(std_cell, symprec=symprec)
    assert dataset.number == spgnum

    # The test for point group has to be done after standardization.
    ptg_symbol, _, _ = get_pointgroup(dataset.rotations)
    assert dataset.pointgroup == ptg_symbol


def test_standardize_cell_from_primitive(crystal_data: CrystalData):
    spgnum = get_spgnum(crystal_data.name)
    symprec = 1e-5
    prim_cell = standardize_cell(
        crystal_data.cell,
        to_primitive=True,
        no_idealize=True,
        symprec=symprec,
    )
    std_cell = standardize_cell(
        prim_cell,
        to_primitive=False,
        no_idealize=True,
        symprec=symprec,
    )
    dataset = get_symmetry_dataset(std_cell, symprec=symprec)
    assert dataset.number == spgnum


def test_standardize_cell_to_primitive(crystal_data: CrystalData):
    spgnum = get_spgnum(crystal_data.name)
    symprec = 1e-5
    prim_cell = standardize_cell(
        crystal_data.cell,
        to_primitive=True,
        no_idealize=True,
        symprec=symprec,
    )
    dataset = get_symmetry_dataset(prim_cell, symprec=symprec)
    assert dataset.number == spgnum


def test_refine_cell(crystal_data_dataset):
    crystal_data = crystal_data_dataset["crystal_data"]
    dataset_0 = crystal_data_dataset["dataset"]
    symprec = crystal_data_dataset["symprec"]
    spgnum = get_spgnum(crystal_data.name)
    ref_cell_0 = (
        dataset_0.std_lattice,
        dataset_0.std_positions,
        dataset_0.std_types,
    )
    dataset_1 = get_symmetry_dataset(ref_cell_0, symprec=symprec)
    # Check the same space group type is found.
    assert dataset_1.number == spgnum

    # Check if the same structure is obtained when applying
    # standardization again, i.e., examining non cycling behaviour.
    # Currently only for orthorhombic.

    ref_cell_1 = (
        dataset_1.std_lattice,
        dataset_1.std_positions,
        dataset_1.std_types,
    )
    dataset_2 = get_symmetry_dataset(ref_cell_1, symprec=symprec)
    np.testing.assert_equal(
        dataset_1.std_types,
        dataset_2.std_types,
    )
    np.testing.assert_allclose(
        dataset_1.std_lattice,
        dataset_2.std_lattice,
        atol=symprec,
    )
    diff = dataset_1.std_positions - dataset_2.std_positions
    diff -= np.rint(diff)
    np.testing.assert_allclose(diff, 0, atol=symprec)


def test_get_spacegroup():
    cell = (
        [
            [1.0, 0.0, 0.0],
            [0.0, 1.0, 0.0],
            [0.0, 0.0, 1.0],
        ],
        [
            [0.0, 0.0, 0.0],
            [0.0, 0.5, 0.5],
            [0.5, 0.0, 0.5],
            [0.5, 0.5, 0.0],
        ],
        [0, 0, 0, 0],
    )
    assert get_spacegroup(cell) == "Fm-3m (225)"
    assert get_spacegroup(cell, symbol_type=1) == "Oh^5 (225)"


def test_find_primitive(crystal_data_dataset):
    crystal_data = crystal_data_dataset["crystal_data"]
    dataset = crystal_data_dataset["dataset"]
    symprec = crystal_data_dataset["symprec"]
    primitive = find_primitive(crystal_data.cell, symprec=symprec)

    spg_type = get_spacegroup_type(dataset.hall_number)
    c = spg_type.international_short[0]
    if c in ["A", "B", "C", "I"]:
        multiplicity = 2
    elif c == "F":
        multiplicity = 4
    elif c == "R":
        assert spg_type.choice == "H"
        if spg_type.choice == "H":
            multiplicity = 3
        else:  # spg_type['choice'] == 'R'
            multiplicity = 1
    else:
        multiplicity = 1
    assert len(dataset.std_types) == len(primitive[2]) * multiplicity


def test_magnetic_spacegroup_type():
    # P 3 -2"
    actual1 = get_magnetic_spacegroup_type(1279)
    expect1 = MagneticSpaceGroupType(
        uni_number=1279,
        litvin_number=1279,
        bns_number="156.49",
        og_number="156.1.1279",
        number=156,
        type=1,
    )
    assert actual1 == expect1

    # -P 2 2ab 1'
    actual2 = get_magnetic_spacegroup_type(452)
    expect2 = MagneticSpaceGroupType(
        uni_number=452,
        litvin_number=442,
        bns_number="55.354",
        og_number="55.2.442",
        number=55,
        type=2,
    )
    assert actual2 == expect2

    # P 31 2 1c' (0 0 1)
    actual3 = get_magnetic_spacegroup_type(1262)
    expect3 = MagneticSpaceGroupType(
        uni_number=1262,
        litvin_number=1270,
        bns_number="151.32",
        og_number="153.4.1270",
        number=151,
        type=4,
    )
    assert actual3 == expect3


def test_magnetic_symmetry_database():
    # UNI: R31'_c[R3] (1242), BNS: R_I3 (146.12)

    # Hexagonal axes: hall_number: 433
    data_h_actual = get_magnetic_symmetry_from_database(1242)
    for key in ["rotations", "translations", "time_reversals"]:
        assert len(data_h_actual[key]) == 18

    # Rhombohedral axes: hall_number: 434
    data_r_actual = get_magnetic_symmetry_from_database(1242, hall_number=434)
    data_r_expect = {
        "rotations": np.array(
            [
                # x,y,z
                [
                    [1, 0, 0],
                    [0, 1, 0],
                    [0, 0, 1],
                ],
                # y,z,x
                [
                    [0, 0, 1],
                    [1, 0, 0],
                    [0, 1, 0],
                ],
                # y+1/2,z+1/2,x+1/2'
                [
                    [0, 0, 1],
                    [1, 0, 0],
                    [0, 1, 0],
                ],
                # z,x,y
                [
                    [0, 1, 0],
                    [0, 0, 1],
                    [1, 0, 0],
                ],
                # x+1/2,y+1/2,z+1/2'
                [
                    [1, 0, 0],
                    [0, 1, 0],
                    [0, 0, 1],
                ],
                # z+1/2,x+1/2,y+1/2'
                [
                    [0, 1, 0],
                    [0, 0, 1],
                    [1, 0, 0],
                ],
            ],
            dtype=np.int32,
        ),
        "translations": np.array(
            [
                [0, 0, 0],
                [0, 0, 0],
                [0.5, 0.5, 0.5],
                [0, 0, 0],
                [0.5, 0.5, 0.5],
                [0.5, 0.5, 0.5],
            ],
        ),
        "time_reversals": np.array(
            [
                [0, 0, 1, 0, 1, 1],
            ],
        ),
    }
    for key in ["rotations", "translations", "time_reversals"]:
        assert np.allclose(data_r_actual[key], data_r_expect[key])