File: test_lm_set.c

package info (click to toggle)
sphinxbase 0.8%2B5prealpha-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 10,592 kB
  • ctags: 3,296
  • sloc: ansic: 29,950; sh: 11,802; makefile: 679; python: 335; perl: 121; yacc: 93; lex: 50
file content (198 lines) | stat: -rw-r--r-- 7,659 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#include <ngram_model.h>
#include <logmath.h>
#include <strfuncs.h>

#include "test_macros.h"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

int
main(int argc, char *argv[])
{
	logmath_t *lmath;
	ngram_model_t *lms[3];
	ngram_model_t *lmset;
	const char *names[] = { "100", "102" };
	const char *words[] = {
		"<UNK>",
		"ROBOMAN",
		"libio",
		"sphinxtrain",
		"bigbird",
		"quuxfuzz"
	};
	const int32 n_words = sizeof(words) / sizeof(words[0]);
	float32 weights[] = { 0.6, 0.4 };

	lmath = logmath_init(1.0001, 0, 0);

	lms[0] = ngram_model_read(NULL, LMDIR "/100.lm.dmp", NGRAM_BIN, lmath);
	lms[1] = ngram_model_read(NULL, LMDIR "/102.lm.dmp", NGRAM_BIN, lmath);

	lmset = ngram_model_set_init(NULL, lms, (char **)names, NULL, 2);
	TEST_ASSERT(lmset);
	TEST_EQUAL(ngram_model_set_select(lmset, "102"), lms[1]);
	TEST_EQUAL(ngram_model_set_select(lmset, "100"), lms[0]);
	TEST_EQUAL(ngram_score(lmset, "sphinxtrain", NULL),
		   logmath_log10_to_log(lmath, -2.7884));
	TEST_EQUAL(ngram_score(lmset, "huggins", "david", NULL),
		   logmath_log10_to_log(lmath, -0.0361));
	TEST_EQUAL_LOG(ngram_score(lmset, "daines", "huggins", "david", NULL),
		       logmath_log10_to_log(lmath, -0.4105));

	TEST_EQUAL(ngram_model_set_select(lmset, "102"), lms[1]);
	TEST_EQUAL(ngram_score(lmset, "sphinxtrain", NULL),
		   logmath_log10_to_log(lmath, -2.8192));
	TEST_EQUAL(ngram_score(lmset, "huggins", "david", NULL),
		   logmath_log10_to_log(lmath, -0.1597));
	TEST_EQUAL_LOG(ngram_score(lmset, "daines", "huggins", "david", NULL),
		       logmath_log10_to_log(lmath, -0.0512));

	/* Test interpolation with default weights. */
	TEST_ASSERT(ngram_model_set_interp(lmset, NULL, NULL));
	TEST_EQUAL_LOG(ngram_score(lmset, "sphinxtrain", NULL),
		       logmath_log(lmath,
				   0.5 * pow(10, -2.7884)
				   + 0.5 * pow(10, -2.8192)));

	/* Test interpolation with set weights. */
	TEST_ASSERT(ngram_model_set_interp(lmset, names, weights));
	TEST_EQUAL_LOG(ngram_score(lmset, "sphinxtrain", NULL),
		       logmath_log(lmath,
				   0.6 * pow(10, -2.7884)
				   + 0.4 * pow(10, -2.8192)));

	/* Test switching back to selected mode. */
	TEST_EQUAL(ngram_model_set_select(lmset, "102"), lms[1]);
	TEST_EQUAL(ngram_score(lmset, "sphinxtrain", NULL),
		   logmath_log10_to_log(lmath, -2.8192));
	TEST_EQUAL(ngram_score(lmset, "huggins", "david", NULL),
		   logmath_log10_to_log(lmath, -0.1597));
	TEST_EQUAL_LOG(ngram_score(lmset, "daines", "huggins", "david", NULL),
		       logmath_log10_to_log(lmath, -0.0512));

	/* Test interpolation with previously set weights. */
	TEST_ASSERT(ngram_model_set_interp(lmset, NULL, NULL));
	TEST_EQUAL_LOG(ngram_score(lmset, "sphinxtrain", NULL),
		       logmath_log(lmath,
				   0.6 * pow(10, -2.7884)
				   + 0.4 * pow(10, -2.8192)));

	/* Test interpolation with closed-vocabulary models and OOVs. */
	lms[2] = ngram_model_read(NULL, LMDIR "/turtle.lm", NGRAM_ARPA, lmath);
	TEST_ASSERT(ngram_model_set_add(lmset, lms[2], "turtle", 1.0, FALSE));
	TEST_EQUAL_LOG(ngram_score(lmset, "sphinxtrain", NULL),
		       logmath_log(lmath,
				   0.6 * (2.0 / 3.0) * pow(10, -2.7884)
				   + 0.4 * (2.0 / 3.0) * pow(10, -2.8192)));
	ngram_model_free(lmset);

	/* Test adding and removing language models with preserved
	 * word ID mappings. */
	lms[0] = ngram_model_read(NULL, LMDIR "/100.lm.dmp", NGRAM_BIN, lmath);
	lms[1] = ngram_model_read(NULL, LMDIR "/102.lm.dmp", NGRAM_BIN, lmath);
	lms[2] = ngram_model_read(NULL, LMDIR "/turtle.lm", NGRAM_ARPA, lmath);
	lmset = ngram_model_set_init(NULL, lms, (char **)names, NULL, 1);
	{
		int32 wid;
		wid = ngram_wid(lmset, "sphinxtrain");
		TEST_ASSERT(ngram_model_set_add(lmset, lms[1], "102", 1.0, TRUE));
		/* Verify that it is the same. */
		TEST_EQUAL(wid, ngram_wid(lmset, "sphinxtrain"));
		/* Now add another model and verify that its words
		 * don't actually get added. */
		TEST_ASSERT(ngram_model_set_add(lmset, lms[2], "turtle", 1.0, TRUE));
		TEST_EQUAL(wid, ngram_wid(lmset, "sphinxtrain"));
		TEST_EQUAL(ngram_unknown_wid(lmset), ngram_wid(lmset, "FORWARD"));
		/* Remove language model, make sure this doesn't break horribly. */
		TEST_EQUAL(lms[1], ngram_model_set_remove(lmset, "102", TRUE));
		ngram_model_free(lms[1]);
		TEST_EQUAL(wid, ngram_wid(lmset, "sphinxtrain"));
		/* Now enable remapping of word IDs and verify that it works. */
		TEST_EQUAL(lms[2], ngram_model_set_remove(lmset, "turtle", TRUE));
		TEST_ASSERT(ngram_model_set_add(lmset, lms[2], "turtle", 1.0, FALSE));
		printf("FORWARD = %d\n", ngram_wid(lmset, "FORWARD"));
	}

	ngram_model_free(lmset);

	/* Now test lmctl files. */
	lmset = ngram_model_set_read(NULL, LMDIR "/100.lmctl", lmath);
	TEST_ASSERT(lmset);
	/* Test iterators. */
	{
		ngram_model_set_iter_t *itor;
		ngram_model_t *lm;
		char const *lmname;

		itor = ngram_model_set_iter(lmset);
		TEST_ASSERT(itor);
		lm = ngram_model_set_iter_model(itor, &lmname);
		printf("1: %s\n", lmname);
		itor = ngram_model_set_iter_next(itor);
		lm = ngram_model_set_iter_model(itor, &lmname);
		printf("2: %s\n", lmname);
		itor = ngram_model_set_iter_next(itor);
		lm = ngram_model_set_iter_model(itor, &lmname);
		printf("3: %s\n", lmname);
		itor = ngram_model_set_iter_next(itor);
		TEST_EQUAL(itor, NULL);
	}

	TEST_EQUAL(ngram_score(lmset, "sphinxtrain", NULL),
		   logmath_log10_to_log(lmath, -2.7884));

	TEST_ASSERT(ngram_model_set_interp(lmset, NULL, NULL));
	TEST_EQUAL_LOG(ngram_score(lmset, "sphinxtrain", NULL),
		       logmath_log(lmath,
				   (1.0 / 3.0) * pow(10, -2.7884)
				   + (1.0 / 3.0) * pow(10, -2.8192)));

	ngram_model_set_select(lmset, "102");
	TEST_EQUAL(ngram_score(lmset, "sphinxtrain", NULL),
		   logmath_log10_to_log(lmath, -2.8192));
	TEST_EQUAL(ngram_score(lmset, "huggins", "david", NULL),
		   logmath_log10_to_log(lmath, -0.1597));
	TEST_EQUAL_LOG(ngram_score(lmset, "daines", "huggins", "david", NULL),
		       logmath_log10_to_log(lmath, -0.0512));

	ngram_model_set_select(lmset, "100");
	TEST_EQUAL(ngram_score(lmset, "sphinxtrain", NULL),
		   logmath_log10_to_log(lmath, -2.7884));
	TEST_EQUAL(ngram_score(lmset, "huggins", "david", NULL),
		   logmath_log10_to_log(lmath, -0.0361));
	TEST_EQUAL_LOG(ngram_score(lmset, "daines", "huggins", "david", NULL),
		       logmath_log10_to_log(lmath, -0.4105));

	/* Test class probabilities. */
	ngram_model_set_select(lmset, "100");
	TEST_EQUAL_LOG(ngram_score(lmset, "scylla:scylla", NULL),
		       logmath_log10_to_log(lmath, -2.7884) + logmath_log(lmath, 0.4));
	TEST_EQUAL_LOG(ngram_score(lmset, "scooby:scylla", NULL),
		       logmath_log10_to_log(lmath, -2.7884) + logmath_log(lmath, 0.1));
	TEST_EQUAL_LOG(ngram_score(lmset, "apparently", "karybdis:scylla", NULL),
		       logmath_log10_to_log(lmath, -0.5172));

	/* Test word ID mapping. */
	ngram_model_set_select(lmset, "turtle");
	TEST_EQUAL(ngram_wid(lmset, "ROBOMAN"),
		   ngram_wid(lmset, ngram_word(lmset, ngram_wid(lmset, "ROBOMAN"))));
	TEST_EQUAL(ngram_wid(lmset, "bigbird"),
		   ngram_wid(lmset, ngram_word(lmset, ngram_wid(lmset, "bigbird"))));
	TEST_EQUAL(ngram_wid(lmset, "quuxfuzz"), ngram_unknown_wid(lmset));
	TEST_EQUAL(ngram_score(lmset, "quuxfuzz", NULL), ngram_zero(lmset));
	ngram_model_set_map_words(lmset, words, n_words);
	TEST_EQUAL(ngram_wid(lmset, "ROBOMAN"),
		   ngram_wid(lmset, ngram_word(lmset, ngram_wid(lmset, "ROBOMAN"))));
	TEST_EQUAL(ngram_wid(lmset, "bigbird"),
		   ngram_wid(lmset, ngram_word(lmset, ngram_wid(lmset, "bigbird"))));
	TEST_EQUAL(ngram_wid(lmset, "quuxfuzz"), 5);
	TEST_EQUAL(ngram_score(lmset, "quuxfuzz", NULL), ngram_zero(lmset));

	ngram_model_free(lmset);
	logmath_free(lmath);
	return 0;
}